
The Problems You’re Having May Not Be
the Problems You Think You’re Having:

Results from a Latency Study of Windows NT

Michael B. Jones
Microsoft Research, Microsoft Corporation

One Microsoft Way, Building 31/2260
Redmond, WA 98052, USA

mbj@microsoft.com
http://research.microsoft.com/~mbj/

John Regehr
Department of Computer Science, Thornton Hall

University of Virginia
Charlottesville, VA 22903-2242, USA

regehr@virginia.edu
http://www.cs.virginia.edu/~jdr8d/

Abstract
This paper is intended to catalyze discussions on

two intertwined systems topics. First, it presents early
results from a latency study of Windows NT that
identifies some specific causes of long thread scheduling
latencies, many of which delay the dispatching of
runnable threads for tens of milliseconds. Reasons for
these delays, including technical, methodological, and
economic are presented and possible solutions are
discussed.

Secondly, and equally importantly, it is intended to
serve as a cautionary tale against believing one’s own
intuition about the causes of poor system performance.
We went into this study believing we understood a
number of the causes of these delays, with our beliefs
informed more by conventional wisdom and hunches
than data. In nearly all cases the reasons we discovered
via instrumentation and measurement surprised us. In
fact, some directly contradicted “facts” we thought we
“knew”.

1. Introduction
This paper presents a snapshot of early results from

a study of Windows NT aimed at understanding and
improving its limitations when used for real-time tasks,
such as those that arise for audio, video, and industrial
control applications. It also examines the roles of
intuition and conventional wisdom versus
instrumentation and measurement in investigating
latency behaviors.

Clearly there are time scales for which Windows NT
can achieve effectively perfect reliability, such as the
one-second deadlines present in the Tiger Video
Fileserver [Bolosky et al. 97]. Other time scales, such as
reliable sub-millisecond scheduling of periodic tasks in
user space, are clearly out of reach. Yet, there is an
interesting middle ground between these time scales in
which deadlines may be met, but will not always be.

Many useful real-time activities, such as fine-grained
real-time audio waveform synthesis, fall into this middle
range.

This study focuses on system and application
behaviors in this region with the short-term goals of
understanding and improving the real-time
responsiveness of applications using Windows 2000 and
a longer-term goal of prototyping and recommending
possible scheduling and resource management
enhancements to future Microsoft systems products.

We present several examples of long scheduling
latencies and the causes for them. While it does provide
a snapshot of some of the early findings from our study
of Windows NT, it is not a record of completed work.
Rather, it is intended to provide some concrete starting
points for discussion at the workshop based on real data.
Also, while this paper primarily contains examples and
results from Windows NT, we believe that the kinds of
limitations and artifacts identified may also apply to
other commodity systems such as the many UNIX
variants.

Finally, while we went into the study with hunches
about the causes of long latencies, these were almost
always wrong. Only instrumentation and system
measurement revealed the true causes.

2. Windows NT Background
Windows NT [Solomon 98] and other commonly

available general-purpose operating systems such as
Solaris and Linux are increasingly being used to run
time-dependent tasks, despite good arguments against
doing so [Nieh et al. 93, Ramamritham et al. 98]. This
is the case even though many such systems, and
Windows NT in particular, were designed primarily to
maximize aggregate throughput and to achieve
approximately fair sharing of resources rather than to
provide low-latency response to events, predictable time-



based scheduling, or explicit resource allocation
mechanisms.

Features not found include deadline-based
scheduling, explicit CPU or resource management
[Mercer et al. 94, Nieh & Lam 97, Jones et al. 97, Banga
et al. 99], priority inheritance [Sha et al. 90], fine-
granularity clock and timer services [Jones et al. 96],
and bounded response time for essential system services
[Mogul 92, Endo et al. 96]. Features it does have
include elevated fixed real-time thread priorities,
interrupt routines that typically re-enable interrupts very
quickly, and periodic callback routines.

Under Windows NT not all CPU time is controlled
by the scheduler. Of course, time spent handling
interrupts is unscheduled, although the system is
designed to minimize hardware interrupt latencies by
doing as little work as possible at interrupt level.
Instead, much driver-related work occurs in Deferred
Procedure Calls (DPCs)—routines executed within the
kernel in no particular thread context in response to
queued requests for their execution. For example, DPCs
check the timer queues for expired timers and process
the completion of I/O requests. Hardware interrupt
latency is reduced by having interrupt handlers queue
DPCs to finish the work associated with them. All
queued DPCs are executed whenever a thread is selected
for execution just prior to starting the selected thread.
While good for interrupt latencies, DPCs can be bad for
thread scheduling latencies, as they can potentially cause
unbounded delays before a thread is scheduled.

Windows NT uses a loadable Hardware Abstraction
Layer (HAL) module that isolates the kernel and drivers
from low-level hardware details such as I/O interfaces,
interrupt controllers, and multiprocessor communication
mechanisms. The system clock is one service provided
by each HAL. The HAL generates periodic clock
interrupts for the kernel. The HAL interface contains no
means of requesting a single interrupt at a particular
time.

The Win32 interface contains a facility called
Multimedia Timers supporting periodic execution of
application code at a frequency specified by the
application. The period is specified in 1ms increments.
By default, the kernel receives a clock interrupt every 10
to 15ms; to permit more accurate timing, multimedia
timers internally use a Windows NT system call that
allows the timer interrupt frequency to be adjusted
within the range permitted by the HAL (typically 1-
15ms).

Multimedia timers are implemented by spawning a
high-priority thread that sets a kernel timer and then
blocks. Upon awakening the thread executes a callback

routine provided by the user, schedules its next wakeup,
and then goes back to sleep.

3. Baseline Performance Measurements
Given that multimedia timers are the primary

mechanism available for applications to request timely
execution of code, it is important for time-sensitive
applications to understand how well it works in practice.

We wrote a test application that sets the clock
frequency to the smallest period supported by the HAL
(~1ms for all HALs used in these tests) and requests
callbacks every 1ms. The Pentium cycle counter value
at which each callback occurs is recorded in pinned
memory. The application runs at the highest real-time
priority. It is blocked waiting for a callback nearly 100%
of the time, and so imposes no significant load on the
system. The core of the application is as follows:

int main(…) {
timeGetDevCaps(&TimeCap, …);
timeBeginPeriod(TimeCap.wPeriodMin);

// Set clock period to min supported

TimerID = timeSetEvent(
// Start periodic callback
1, // period (in milliseconds)
0, // resolution (0 = maximum)
CallBack, // callback function
0, // no user data
TIME_PERIODIC); // periodic timer

}
void Callback(…) {

TimeStamp [i++] = ReadTimeStamp();
// Record Pentium cycle counter value

}

On an ideal computer system dedicated to this program
the callbacks would occur exactly 1ms apart. Actual
runs allow us to determine how close real versions of
Windows NT running on real hardware come to this.

Measurements were made on two different
machines:
• a Pentium Pro 200MHz uniprocessor, with both an

Intel EtherExpress 16 ISA Ethernet card and a DEC
21140 DC21x4-based PCI Fast Ethernet card,
running uniprocessor kernels, using the standard
uniprocessor PC HAL, HALX86.

• a Pentium 2 333MHz uniprocessor (but with a dual-
processor motherboard) with an Intel EtherExpress
Pro PCI Ethernet card, running multiprocessor
kernels, using the standard multiprocessor PC HAL,
HALMPS.

NT4 measurements were made under Windows NT 4.0,
Service Pack 3. NT5 measurements were made under
Windows NT 5.0, build 1805 (a developer build between
Beta 1 and Beta 2). All measurements were made while
attached to the network.



3.1 Supported Clock Rates
The standard uniprocessor HAL advertises support

for clock rates in the range 1003µs to 14995µs. The
actual rate observed during our tests was equal to the
minimum, 1003µs. This was true for both NT4 and
NT5.

The standard multiprocessor HAL advertises
support for clock rates in the range 1000µs to 15625µs.
The actual rate observed during our tests, however, was
976µs—less than the advertised minimum. See Section
4.1 for some of the implications of this fact. Once again,
these observations were consistent across NT4 and NT5.

Finally, note that some HALs do not even support
variable clock rates. This limits Multimedia Timer
resolution to a constant clock rate chosen by the HAL.

3.2 Times Between Timer Callbacks
Table 1 gives statistics for typical 10-second runs of

the test application on both test machines for both
operating system versions.

Times Between
Callbacks

PPro,
NT4

PPro,
NT5

P2,
NT4

P2,
NT5

Minimum µs 31 31 20 33
Maximum µs 2384 18114 2144 2396
Average µs 999 999 999 999
Std Dev µs 70 211 955 941

Table 1: Statistics about Times Between Callbacks

All provide an average time between callbacks of 999µs,
but the similarities end there. Note, for instance, that
the standard deviation for the Pentium 2 runs is around
950µs—nearly equal to the mean! Also, notice that
there was at least one instance on the Pentium Pro under
NT5 when no callback occurred for over 18ms.

The statistics do not come close to telling the full
story. Table 2 is a histogram of the actual times between
callbacks for these same runs, quantized into 100µs bins.

# Times Between
Callbacks Falling
Within Interval

PPro,
NT4

PPro,
NT5

P2,
NT4

P2,
NT5

0-100µs 34 62 4880 4880
100-200µs 1
300-400µs 1
500-600µs 4 2
600-700µs 6 1
700-800µs 22
800-900µs 150 10

900-1000µs 571 1281
1000-1100µs 9014 8627
1100-1200µs 161 10
1200-1300µs 28 1
1300-1400µs 6 1

1400-1500µs 1 1 2
1700-1800µs 2 5
1800-1900µs 9 91
1900-2000µs 5107 5014
2000-2100µs 4
2100-2200µs 2 2
2300-2400µs 2 2
7700-7800µs 2

18100-18200µs 1

Table 2: Histogram of Times Between Callbacks

Now, the reason for the high standard deviation for
the Pentium 2 runs is clear—no callbacks occurred with
spacings anywhere close to the desired 1ms apart.
Instead, about half occurred close to 0ms apart and half
occurred about 2ms apart!

Also, for the Pentium Pro NT5 run, note that twice
callbacks occurred about 7.7ms apart and once over
18ms apart. In fact, this is not atypical. On this
configuration, there are always two samples around 7-
8ms apart and one around 18ms apart.

Indeed, the point of our study is to try to learn what
is causing anomalies such as these, and to fix them!

4. Problems and Non-Problems

4.1 Problem: HAL Timing Differences
Because the HAL virtualizes the hardware timer

interface, HAL writers may implement timers in
different ways. For example, HALX86 uses the 8254
clock chip to generate clock interrupts on IRQ1, but
HALMPS uses the Real Time Clock (RTC) to generate
interrupts on IRQ8.

Upon receiving a clock interrupt, the HAL calls up
to the Windows NT kernel, which (among other things)
compares the current time to the expiration time of any
pending timers, and dequeues and processes those timers
whose expiration times have passed.

As we have seen, multimedia timers are able to
meet 1ms deadlines most of the time on machines
running HALX86. To understand why 1ms timers do
not work on machines running HALMPS, we next
examine the timer implementation in more detail.

A periodic multimedia timer always knows the time
at which it should next fire; every time it does fire, it
increments this value by the timer interval. If the next
firing time is ever in the past, the timer repeatedly fires
until the next time to fire is in the future. The next
firing time is rounded to the nearest millisecond. This
interacts poorly with HALMPS, which approximates
1ms clock interrupts by firing at 1024Hz, or every
976µs. (The RTC only supports power-of-2
frequencies.)



Because the interrupt frequency is slightly higher
than the timer frequency, we would expect to
occasionally wait almost 2ms for a callback when the
976µs interrupt interval happens to be contained within
the 1000µs timer interval. Unfortunately, rounding the
firing time ensures that this worst case becomes the
common case. Since it never asks to wait less than 1ms,
it always waits nearly 2ms before expiring, then fires
again immediately to catch up, hence the observed
behavior.

We fixed this error by modifying the timer
implementation to compute the next firing time more
precisely, allowing it to request wakeups less than 1ms
in the future. (An alternative fix would have been to use
periodic kernel timers, rather than repeatedly setting
one-shot timers.) Results of our fix can be seen in Table
3.

As expected, approximately 2.4% of the wakeups
occur near 2ms, since clock interrupts arrive 2.4% faster
than timers. As a number of HALs besides HALMPS
use the RTC, this fix should be generally useful.

# Times Between
Callbacks Falling
Within Interval

P2,
NT5

P2,
NT5 fixed

0-100µs 4880 1
500-600µs 1
600-700µs 3
700-800µs 2
800-900µs 7

900-1000µs 9609
1000-1100µs 127
1100-1200µs 4
1200-1300µs 2
1300-1400µs 2
1400-1500µs 2 2
1700-1800µs 5
1800-1900µs 91
1900-2000µs 5014 240
2000-2100µs 4
2100-2200µs 2
2300-2400µs 2

Table 3: Histogram Showing Results of Timer Fix

4.2 Non-Problem: Interrupts
One piece of conventional wisdom is that the

problems might be caused by interrupts. Yet we never
observed an interrupt handler taking substantial fraction
of a millisecond. We believe this is the case since
interrupts needing substantial work typically queue
DPCs to do their work in a non-interrupt context.

4.3 Non-Problem: Ethernet Receive Processing
Another commonly held view is that Ethernet input

packet processing is a problem. Yet we tested many of
the most popular 10/100 Ethernet cards receiving full
rate 100Mbit point-to-point TCP traffic up to user space.
The cards we tested were the Intel EtherExpress Pro
100b, the SMC EtherPower II 10/100, the Compaq
Netelligent 10/100 Tx, and the DEC dc21x4 Fast 10/100
Ethernet. The longest observed individual DPC
execution we observed was only 600 µs, and the longest
cumulative delay of user-space threads was
approximately 2ms. Ethernet receive processing may
have been a problem for dumb ISA cards on 386/20s, but
it’s no longer a problem for modern cards and machines.

4.4 Problem: Long-Running DPCs
However, we did find numerous network-related

latency problems caused by “unimportant” background
work done by the cards or their drivers in DPCs.

DEC dc21x4 PCI Ethernet Card
Through instrumentation, we were able to

determine that the 7.7ms delays on the Pentium Pro
were caused by a long-running DPC. In particular, the
DEC dc21x4 PCI Fast 10/100 Ethernet driver causes a
periodic DPC to be executed every 5 seconds to do
autosense processing (determining if the card is
connected to a 10Mbit or 100Mbit Ethernet). And this
“unimportant background work” takes 6-7 ms every five
seconds.

This is largely due to poor hardware design. In
particular, most of this delay is occurs when the driver
does bit-serial reads and writes to three 16-bit status
registers, with 5µs stalls per bit, 48 in all.

Intel EtherExpress 16 ISA Ethernet Card
Similarly, the Intel EtherExpress 16 (EE16) ISA

Ethernet card and driver caused the 18.1ms delay.
Every ten seconds it schedules a DPC to wake up and
reset the card if no packets have been received during
the past ten seconds. Why? Because some versions of
the card would occasionally lock up and resetting them
would make them usable again. Probably no one
thought that the hardware reset path had to be fast. And
it isn’t! It takes 17ms.

An amusing observation about this scenario is that
the conventional wisdom is that unplugging your
Ethernet will make your machine run more predictably.
But for this driver, unplugging your Ethernet makes
latency worse! Once again, your intuition will lead you
astray.

4.5 Problem: Antisocial Video Cards
Misbehaving video card drivers are another source

of significant delays in scheduling user code. A number



of video cards manufacturers recently began employing a
hack to save a PCI bus transaction for each display
operation in order to gain a few percentage points on
their WinBench [Ziff-Davis 98] Graphics WinMark
performance.

The video cards have a command FIFO that is
written to via the PCI bus. They also have a status
register, read via the PCI bus, which says whether the
command FIFO is full or not. The hack is to not check
whether the command FIFO is full before attempting to
write to it, thus saving a PCI bus read.

The problem with this is that the result of
attempting to write to the FIFO when it is full is to stall
the CPU waiting on the PCI bus write until a command
has been completed and space becomes available to
accept the new command. In fact, this not only causes
the CPU to stall waiting on the PCI bus, but since the
PCI controller chip also controls the ISA bus and
mediates interrupts, ISA traffic and interrupt requests
are stalled as well. Even the clock interrupts stop.

These video cards will stall the machine, for
instance, when the user drags a window. For windows
occupying most of a 1024x768 screen on a 333MHz
Pentium II with an AccelStar II AGP video board (which
is based on the 3D Labs Permedia 2 chip set) this will
stall the machine for 25-30ms at a time!

This may marginally improve the graphics
performance under some circumstances, but it wrecks
havoc on any other devices expecting timely response
from the machine. For instance, this causes severe
problems with USB and IEEE 1394 video and audio
streams, as well as standard sound cards.

Some manufacturers, such as 3D Labs, do provide a
registry key that can be set to disable this anti-social
behavior. For instance, [Hanssen 98] describes this
behavior and lists the registry keys to fix several
common graphics cards, including some by Matrox,
Tseng Labs, Hercules, and S3. However as of this
writing, there were still drivers, including some from
Number 9 and ATI, for which this behavior could not be
disabled.

This hack, and the problems it causes, has recently
started to receive attention in the trade press [PC
Magazine 98]. We hope that pressures can soon be
brought to bear on the vendors to cease this antisocial
behavior. At the very least, should they persist in
writing drivers that can stall the machine, this behavior
should no longer be the default.

5. Methodology
Our primary method of discovering and diagnosing

timing problems is to produce instrumented versions of
applications, the kernel, and relevant drivers that record

timing information in physical memory buffers. After
runs in which interesting anomalies occur, a
combination of perl scripts and human eyeballing are
used to condense and correlate the voluminous timing
logs to extract the relevant bits of information from
them.

Typically, after a successful run and log analysis,
the conclusion is that more data is needed to understand
the behavior. So additional instrumentation is added,
usually to the kernel, thus unfortunately the
edit/compile/debug cycle often gets a reboot step added
to it. This approach works but we would be open to
ways to improve it.

For additional examples of latency measurements
taken without modifying the base operating system see
[Cota-Robles & Held 99].

6. Future Work
Improving predictability of the existing Windows

NT features used by time-dependent programs is clearly
important, but without better scheduling and resource
management support, this can only help so much. In
addition to continuing to study and improve the real-
time performance of the existing features, we also plan
to prototype better underpinnings for real-time
applications.

7. Conclusions
While the essential structure of Windows NT is

capable of providing low-latency response to events,
obvious (and often easy to fix!) problems we have seen,
such as video drivers that intentionally stall the PCI bus,
the poor interaction between multimedia timers and
HALMPS, and occasional long DPC execution times,
keep current versions of Windows NT from
guaranteeing timely response to real-time events below
thresholds in the tens of milliseconds. Bottom line—the
system is clearly not being actively developed or tested
for real-time responsiveness. We are working to change
that!

While the details of this paper are obviously drawn
from Windows NT, we believe that similar problems for
time-dependent tasks will also be found in other general-
purpose commodity systems for similar reasons. We
look forward to discussing this at the workshop.

Finally, our experiences during this study only
reinforce the truth that instrumentation and
measurement is the only way to actually understand the
performance of computer systems. Intuition will lead
you astray.
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