
Same Coverage, Less Bloat:
Accelerating Binary-only Fuzzing with

Coverage-preserving Coverage-guided Tracing

Stefan Nagy Anh Nguyen-Tuong Jason D. Hiser
snagy2@vt.edu nguyen@virginia.edu hiser@virginia.edu

Jack W. Davidson Matthew Hicks
jwd@virginia mdhicks2@vt.edu

Background

2

Software Fuzz-testing (Fuzzing)

3

• Today’s leading automated bug-finding approach
• Uncover bugs by bombarding program with inputs
• Coverage-guided search: breed only the winners

• Measure each input’s code coverage via tracing
• Keep and mutate only those reaching new code

Trace & maximize
code coverage

Coverage-guided Fuzzing

4

On average, fewer than 1 in 10,000 inputs reach new code coverage

For binary-only fuzzing, compounded by upwards of 10x slower speed

Generation1 Tracing2 Triage3
>99% <1%

Upwards of 10x

Coverage-guided Fuzzing

4

On average, less than 1 in 10K inputs increase coverage

For binary-only fuzzing, tracing is up to 10x slower

Generation1 Tracing2 Triage3

Coverage-guided Tracing (CGT)

5

Prior Work: Coverage-guided Tracing

5

Generation1 Tracing2 Triage3

>99%

<1%

Interrupt
Oracle

Filter-out the 99.9% of useless inputs at native speed without tracing

Overhead approaches 0% = orders-of-magnitude faster binary fuzzing

Native speed

6

Adoption of Coverage-guided Tracing

Despite some adoption, CGT’s performance advantages
remain sidelined by the majority of today’s fuzzers

Why? Most rely on edge and hit count coverage metrics,
yet CGT only supports binarized basic block coverage

The Code Coverage Dilemma

7

B

A
For critical edge A→C:

Edge Coverage
• Will capture every edge

irrespective of path taken

CGT: Block-level Coverage

• If path A→B→C seen first,
can’t discern edge A→C

For back edge C→A:
Hit Counts

• Will capture each count
backwards edge is taken

CGT: Binarized Counts
• Can’t discern any count

edge C→A is re-takenC

Edge
Edge

Edge
Edge

Edge
Edge

Block
Edge

Block

The Code Coverage Dilemma

8

Edge
Edge

Edge
Edge

Edge
Edge

Edge
Edge

Edge

Edge
Edge

Edge
Edge

Edge
Edge

Edge
Edge

Edge

✓✓

✓
✓

✓✓

✓
✓
✓

✓✓

✓
✕

✓✓

✓
✓
✓

✓✓

✓
✓

✓✓

✓
✓
✓

Is it possible to uphold the high speed of CGT while
meeting existing fuzzers’ coverage demands?

Coverage-preserving
Coverage-guided Tracing

9

How can CGT’s lightweight, interrupt-driven coverage
support finer-grained edge and hit count coverage?

Guiding Principle

10

To extend CGT beyond binarized block coverage, we must find ways to
make these finer-grained control-flows self-report their coverage

B
A

C
B

A

C
B

A

C

Resolving critical edges
• Edges whose start, end have 2+ out, in edges (respectively)
• If non-critical path is first, critical edge (A→C) never seen!

Naive approach: split each with new dummy block
• Covering a dummy (D) implicitly covers its critical edge
• To facilitate CGT, add interrupts on every dummy

Problem: splitting adds 30–40% more basic blocks
• Accumulates more and more overhead over native speed

Conventional Edge Coverage at Block Level

Splitting each critical edge with new basic
blocks will deteriorate CGT’s performance

11

B

A

C

D

How do critical edges manifest?

12

Observation: 89% of fuzzer-covered critical
edges are conditional jump target branches

bsdtar cert-basic clean_text

Observation: conditional jumps’ targets are self-encoded
• Jump instruction encoding:

• To resolve a jump to a target address:

Optimizing Common-case Critical Edges

To signal the edge as taken, we can resolve
its target to a CGT-style interrupt

13

[target] = [address] + [length] + [displacement]

[opcode] [PC-relative displacement]

Intuition: rewrite and force execution to an interrupt!

Our Solution: Jump Mistargeting

14

• Modify jump target to resolve in a CGT-style interrupt

• Following a crash, restore displacement for future test cases
Outcome: CGT-style edge coverage at native speed

(i.e., zero additional basic blocks or instructions)

Most fuzzers rely on AFL-style bucketed hit counts:

Advances to higher buckets (e.g., [3]→[4,7]) flagged interesting
Problem: implemented within always-on instrumentation

• Increments each edge’s unique counter for each execution

Conventional Hit Count Coverage Tracking

Hit count tracking’s reliance on exhaustive tracing
contradicts CGT’s only-when-needed tracing mindset

15

[1] [2] [3] [4,7] [8,15] [16,31] [32,127] [128+]

A testing property of cycles (e.g., loops)

Unlocking deeper loop iterations
• Common precedent for many critical bugs

Differentiating progress of nested loops
• Maximal consecutive iterations

Why are hit counts important?

Observation: Hit counts primarily guide fuzzing
toward higher loop exploration progress

16

[1] [3] [4,7]
[8,15] [16,31] [32,127] [128+]

[2][1] [3][2] [4,7]
[8,15] [32,127][16,31] [128+]

for(i=0; i<100; i++){

}

Optimizing Loop Hit Count Tracking

17

Observation: loops’ induction variables encode their iterations

• Track jumps to higher buckets via range check on induction variable

for(int i = 0; i < 100; i = i + 1){

To signal a loop’s change in a hit count buckets, we can
use a range check guarded by CGT-style interrupts

Intuition: use interrupt to detect crossing buckets!

i = 0 i = 1 i = 2
iter 1 iter 2 iter 3

if (i > 1)
2)
3)
7)

15)
31)
127)
128)

Our Solution: Bucketed Unrolling

18

• Inject discrete interval checks (with interrupts on all false edges)

• If crash, entered a higher bucket; then clear interrupt and move on
Outcome: CGT-style hit counts without

relying on always-on tracing

• High-Efficiency eXpanded Coverage for Improved Testing of Executables
• Binary-only fuzzer built atop AFL 2.52b and ZAFL fuzzing rewriter
• Jump mistargeting:

• Implementation based on zero-address mistargeting
• Critical edge identification performed after control-flow parsing
• Jumps converted to 32-bit displacements (e.g., all are mistargetable)

• Bucketed unrolling:
• Implementation based on conventional AFL-style eight ranges
• Loop identification performed via standard back edge analysis
• For simplicity, we insert a fake induction variable and incrementor

Implementation: HeXcite

19

Evaluation

20

• Benchmarks: 8 diverse open-source + 4 closed-source binaries
• Evaluations: perform 16x24-hr trials per benchmark on Azure cloud
• Edge coverage: collect with LLVM instrumentation and AFL tools
• Loop coverage: compute max consecutive iterations capped at 128
• Performance: scale throughput relative to worst-performing competitor
• Bug-finding: crash triage performed via AddressSanitizer

Evaluation Setup

21

Does HeXcite improve edge coverage?

22

6.2% more edges than block-only UnTracer
23.1%, 18.1%, and 6.3% more edges than
binary-level QEMU, Dyninst, and RetroWrite

0 100 101

Hours of Fuzzing (log-scale)
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

R
el

. E
dg

e
C
ov

er
ag

e

Clang
QEMU

Dyninst
UnTracer

HeXcite

0 100 101

Hours of Fuzzing (log-scale)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

. E
dg

e
C
ov

er
ag

e

Clang
RetroWrite

QEMU
Dyninst

UnTracer
HeXcite

0 100 101

Hours of Fuzzing (log-scale)
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
el

. E
dg

e
C
ov

er
ag

e

Clang
RetroWrite

QEMU
Dyninst

UnTracer
HeXcite

0 100 101

Hours of Fuzzing (log-scale)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

. E
dg

e
C
ov

er
ag

e

Clang
RetroWrite

QEMU
Dyninst

UnTracer
HeXcite

1.1% more edges than source-level AFL-Clang

nasm tcpdump unrtf

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

1.0 0.33 1.0 1.0 1.0 1.0 4.06 1.0

6.77 1.09 1.0 1.1 16.12 1.0 8.9 3.18

1.07 1.0 3.58 10.75 3.0 1.38 1.68 1.05

2.28 4.38 4.25 10.56 1.1 8.1 10.56 1.33

10.64 6.98 1.49 3.76 2.77 1.07 1.07 1.5

2.27 1.6 1.0 1.0 13.04 2.0 1.0 2.88

1.0 2.25 10.62 5.0 2.1 7.46 1.35 0.53

5.59 3.76

5elatLve 0ax CRnsecutLve IteratLRns 3er LRRp

Does HeXcite improve loop exploration?

23

0 1 2 3 4 5

0
1

2
3

4
5

4.5 4.5 7.86 1.76 3.0 4.5

4.31 8.5 1.24 3.26 5.7 1.0

0.98 1.14 8.75 1.64 1.2 1.95

1.53 5.33 1.5 1.0 2.18 2.18

1.0 1.0 1.33 1.7 12.65 2.19

6.89 6.9

5elatLve 0ax CRnsecutLve IteratLRns 3er LRRp

130% more iterations than block-only UnTracer
36% more iterations than source-level AFL-Clang

unrtf mjsbin

jasper sam2p yara
0

20

40

60

80

R
el

at
iv

e
To

ta
l E

xe
cu

tio
ns

x xx
mjs nasm sfconvert tcpdump unrtf lzturbo pngout rar unrar

0.0

2.5

5.0

7.5

10.0

12.5

x x x xx x x x xx x x x x
Rel. Mean

0.0

0.2

0.4

0.6

0.8

1.0

QEMU Dyninst RetroWrite Clang HeXcite

Is HeXcite as fast as block-only CGT?

24

jasper sam2p yara
0

20

40

60

80

R
el

at
iv

e
To

ta
l E

xe
cu

tio
ns

x xx
mjs nasm sfconvert tcpdump unrtf lzturbo pngout rar unrar

0.0

2.5

5.0

7.5

10.0

12.5

x x x xx x x x xx x x x x
Rel. Mean

0.0

0.2

0.4

0.6

0.8

1.0

QEMU Dyninst RetroWrite Clang HeXcite

10% higher best-case than block-only UnTracer
11.4x, 24.1x, and 3.6x the fuzzing throughput of

binary-level QEMU, Dyninst, and RetroWrite
2.8x the throughput of source-level AFL-Clang

Can HeXcite improve binary bug-finding?

25

0 4 8 12 16 20 24

Hours of Fuzzing
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. U
ni

qu
e

B
ug

s

Clang
RetroWrite

QEMU
Dyninst

UnTracer
HeXcite

0 4 8 12 16 20 24

Hours of Fuzzing
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. U
ni

qu
e

B
ug

s

Clang
QEMU

Dyninst
UnTracer

HeXcite

0 4 8 12 16 20 24

Hours of Fuzzing
0.0

0.2

0.4

0.6

0.8

1.0

R
el

. U
ni

qu
e

B
ug

s

Clang
RetroWrite

Dyninst
UnTracer

HeXcite

12% more bugs than block-only UnTracer
521%, 749%, and 56% more bugs than

binary-level QEMU, Dyninst, and RetroWrite
46% more bugs than source-level AFL-Clang

0 100 101

Hours of Fuzzing (log-scale)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

. E
dg

e
C
ov

er
ag

e

Clang
RetroWrite

QEMU
Dyninst

UnTracer
HeXcite

unrtf nasm sfconvert

Does HeXcite accelerate bug-finding?

26

52.4% exposure speedup over block-only UnTracer

• Maximizing fuzzing performance is critical for effective bug-finding.
• Yet, the coverage shortcomings of Coverage-guided Tracing—fuzzing’s
fastest tracing strategy—restrict fuzzers to far slower, always-on tracing.

Conclusion: Why Coverage-preserving CGT?

27

Making CGT’s orders-of-magnitude faster tracing available to all fuzzers demands
extending it to the finer-grained coverage metrics used today: edges and hit counts.

By forcing finer-grained control-flow to self-report its coverage, we expand CGT
to binary-level edge and hit count coverage at virtually no performance loss.

2.8—24.1x higher than binary- and source-level tracing
6.2% more edges and 130% deeper loops than block-only CGT
12—749% more bugs than block-only CGT and always-on tracing

• Fuzzing speed:
• Code coverage:
• Bug-finding:

Thank you!

28

Find HeXcite and our evaluation benchmarks at:

https://github.com/FoRTE-Research/hexcite

Happy (binary) fuzzing!

Attribution for images throughout this presentation: www.vecteezy.com

