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Building a Distance Function for Gestalt Grouping
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Abstract—A central problem in the area of scene analysis is that
of segmenting a scene into its natural objects. Current work empha-
sizes the semantic approach in which a priori knowledge of the shape
of an object is used. Yet there is much to learn about more primitive
cues for segmentation such as texture, color, and brightness. In
the case of human perception, segmentation appears to be due to a
multiplicity of cues which operate in a redundant fashion.

This paper describes a method for combining multiple cues. To
make the cues commensurable, each is regarded as a primitive dis-
tance function on pairs of regions of a scene. The total tendency of
two regions to be grouped together or segmented apart is measured
by a linear sum of the primitive distance functions. Computer-aided
psychophysical experiments are described which test how closely the
total distance function simulates human perception. The results also
give guidance for the further implementation of primitive distance
functions. The methodology is emphasized, but interesting results
are also reported.

Index Terms—Clustering, Gestalt clustering, image processing,
object identification, pattern recognition, psychophysics, robot vision,
scene analysis, texture.

INTRODUCTION

CENTRAL problem in the area of scene analysis is

that of segmenting a scene into regions which cor-
respond to its natural objects. For example, if a robot
is moving about in an environment containing such things
as furniture, tools, or doors, then the robot must be able to
segregate those things from their surroundings in order to
act properly. We will refer to this visual process by the
terms grouping or segmentation. In recent years, several
efforts have been directed toward the study of physical
cues for grouping and computer methods which are effec-
tive for a particular type of scene which involves a parti-
cular cue. Guzman [17], for example, has written a pro-
gram which can determine the objects in a rectilinear
line drawing of an overlapping jumble of blocks. The pri-
mary cues are the 7" and Y joins of the line drawing, where
a T join indicates an edge of one block disappearing under
another, and a Y join indicates a three-way corner of a
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single block [Fig. 1(a) ]. Other such corner and edge cues
give similar implications. The program then combines all
of the implications to decide which faces form blocks.
Zahn [27] uses the following type of algorithm for the
Gestalt clustering of points. A connected graph is con-
structed which has the points as nodes and which has the
following additional property; the sum of lengths of edges
is minimal. Such a graph is called a minimal spanning
tree (MST). Any edge which is unusually long compared to
its neighbors is a separating edge [Fig. 1(b)]. Removal of
a separating edge breaks the MST into parts which define
natural clusters of points. The definition of separating
edge can be varied to handle different types of grouping
problems.

Techniques such as those of Guzman and Zahn work
well only if they are applied to neatly defined artificial
scenes. For a Guzman scene, the edges must be relatively
straight and must meet in well-defined corners. In the
real world of robot-video input, or of digitized photo-
graphs, problems of focus, resolution, brightness, or
shadow cause edges to curve, fade, or even disappear en-
tirely. The eventual necessity of dealing with real world
scenes adds a level of complexity to the problem.

With regard to this problem we feel that basic research
must now proceed along two lines. The first line of re-
search involves the use of semantics or “world knowledge”
to help in the segmentation of imperfect images. For ex-
ample, if a robot sees most of a box, and it knows what a
box should look like, then it can fill in missing lines to
complete the box. This direction of research has appeared
promising for some time. Some of the basic ideas can be
found in an old paper by Roberts [3]. More recent work
by Brice and Fennema [4], Waltz [5], Yakimovsky [6],
and Harlow and Eisenbeis [7] have produced practical
working systems for specialized problems.

The second line of basic research must explore the use of
multiple or redundant physical cues for grouping. Pickett
[8] points out that some object boundaries are not re-
cognizable as sharp edges of contrasting brightness or
color. For example, if a robot sees a box with a missing
edge due to lack of brightness difference across that edge,
then perhaps the edge will be discernable if there is a con-
trast in color or texture between the box and its back-
ground. Since we know that human vision employs such
cues as brightness, contour, color, texture, stereopsis, and
relative motion to give perceptual grouping, there is need
to try computer simulations of each of these cues. Again,
there has been some experimental work with single cues.
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Grouping problems solvable by (a) Guzman or (b) Zahn
approaches.

Fig. 1.

Rosenfeld and Thurson [97, for example, apply diameter-
limited operators (such as a small edge detector) to a
digitized photograph. An area of high activity of one
operator is interpreted as a possible Gestalt group. Fig. 2
shows this operation for a horizontal edge detector which
searches for two ones above two zeros in a binary digitized
image. This approach could employ a large variety of
operators to assess a variety of textural differences. How-
ever little is known about mechanisms by which disagree-
ments among the operators can be resolved or agreements
can be amplified.

The problem most crucial to the second line of research
is this; how can the computer make use of multiple or
redundant cues to perform grouping? The situation is in
curious contrast to classical pattern recognition, where
much is known about classification for a.given set of fea-
tures, but little is known about the feature extraction
process. Questions of the most basic sort are completely
open here. Should simple procedures (such as that of
Rosenfeld and Thurston) be applied sequentially or some-
how be assessed in parallel? Which of the grouping cues is
most effective? How important is context or other semantic
information in the grouping process? The last question
anticipates the eventual merging of the two lines of re-
search we have delineated.

Our work begins with the following observation. If
two parts of a scene are grouped, then they are close to
each other in some sense. In the case of human vision this
is a perceived closeness, due perhaps to similarity of
texture, color, or brightness. To obtain computer group-
ing, we define a perceptual distance function which is the
sum of components which can measure differences of
color, texture, or brightness. This achieves the desired
goal of integrating multiple cues for grouping into a single
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Fig. 2. Illustration of the Rosenfeld—Thurston technique.

mechanism. This report describes the “building” of a dis-
tance function for Gestalt grouping which performs well
on scenes which contain arrays of discrete figures, and,
in a separate implementation, performs grouping on general
image textures. Because the particular functions developed
here may not be of direct use to others, emphasis is placed
upon the methodology involved in building a distance
function. Special consideration is given to the psychophy-
sical testing of the distance function which is necessary to
yield close simulation of human perceptual grouping.

II. PSYCHOPHYSICS OF GROUPING

Perceptual grouping appears to be the basis of human
visual organization. Its importance to human vision has
long been recognized by Gestalt psychologists [10]. It
is responsible for the formation of wholes from parts, hence
for the determination of the objects of a visual scene.
Objects formed from parts in a scene may themselves to
grouped, thus it appears that perceptual grouping yields
a hierarchy of parts and subparts. Fig. 3 shows some of the
physical correlates of grouping. In each case, simple dif-
ferences account for a splitting of the field of vision into
two areas.

Grouping is not only basic to the structuring of a scene
but is usually a prerequisite for the recognition of objects
in a scene. The ambiguous figure illusion illustrates this.
For example, Fig. 4 can appear as a grinning man or as a
cherub smoking a cigarette. The figure may be seen one
way or the other, possibly in alternation, but not both
ways at once. If recognition could proceed without group-
ing, then the figure could be recognized both ways at once
even though only one way was grouped. Fig. 5 gives a more
pertinent illustration. Both parts of the figure contain a
numeral 4, but one is hard to recognize because it is not
an object of our perception. The parts of the hidden 4
are distributed among three more primitive objects. The
other numeral 4 is easily recognized despite a great deal
of visual noise because it is an object of our perception.
Both of these examples demonstrate that grouping is more
primitive and more fundamental than recognition.

The determination of relational structure in the visual
field is also due in part to grouping. For example, the left-
most target in a row of targets can be “‘seen” (that is,
distinguished as leftmost) if and only if the row itself is an
object of perception. Experiments with birds [11] have
shown that grouping is essential for this type of percep-
tion.
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Fig. 8. Illustration of textural grouping.
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Fig. 4. Tlustration of interplay between grouping and recognition.  Fig.5. Illustration that grouping is more primitive than recognition.

One complicating factor is that experience can affect
grouping. In some sense, grouping is due to perceptual
and cognitive factors, and the two are difficult to separate.
Psychologists generally agree, however, that grouping is
mainly a perceptual phenomenon which helps to organize
the visual field. For example, Hebb [127 postulates a
“primitive process” of grouping prior to the operation of
his perceptual assemblies.

Though psychologists have an excellent qualitative view

of perceptual grouping and its importance, attempts to deal

with it in a quantitative fashion have been less successful.
The basic problems are two-fold. First, it is hard to say
precisely what causes grouping in a given scene aside from
vague reports such as “‘the shapes are similar,” or ‘“the
textures are the same.” Second, grouping appears to be
due to a multiplicity of cues which are hard to separate.
Thus, experimentally, it has been difficult to give opera-
tional definitions to the factors of grouping. At the same

time, it has been difficult to put forth any meaningful
theory of grouping.

To illustrate these difficulties, cons1der Fig. 6. The
Gestalt psychologists have postulated that similarly
shaped objects are grouped [137]. Thus, three groups can
be seen. Now suppose that in an experimental situation,
the subject is instructed to report which of the adjacent
pairs seem more like a single textural field. According to
Gestaltists, the groups which tend to coalesce are those
which have the most similarly shaped elements. But a use-
ful theory must relate observables. An attempt by Beck
[147 to give an operational definition of shape similarity
yielded a surprising result. Though most people would
segregate the slanted T’s from the upright T’s and angles,
most would also report that on an individual basis, the
upright 7T is more similar to the slanted T’ than it is to the
angle. In general, Beck found that inspection of the in-
dividual figures did not consistently predict grouping of
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Fig. 6. Type of scene used in the Beck experiment.

arrays of those figures. Thus, it appears difficult to arrive
at an operational definition of similarity (or similarity-
for-grouping) which would admit the simple Gestalt
theory.

The only alternative is to introduce new grouping prin-
ciples such as “orientation’ to explain the result of Beck’s
experiment. But each new factor moves us a step away from
the clean theory proposed by the Gestaltists. It is in this
sort of situation that computer modeling offers the best
hope of giving an understandable explanation of mental
phenomena. Instead of trying to explain perceptual group-
ing in terms of the fewest possible factors, one can as-
sume an indeterminate number of factors but still have a
simple model because the many factors can be organized
into information processing routines which are easy to
understand. Although the primary purpose of our work is
to achieve by simulation human performance at a per-
ceptual task, we also feel that our program is the embodi-
ment of a simple information processing model of per-
ceptual grouping.

IIT. BASIC ASSUMPTIONS AND
METHODOLOGY

The following assumptions are made. First, an inde-
finite number of elementary cues for grouping can be
discovered and can easily be simulated on the computer.
To make these commensurable, each may be regarded
as a nonnegative distance function which gives smaller
values to pairs of areas which are likely to be grouped and
larger values to those that are not. The second assumption
is that the total tendency to group is a positive linear com-
bination of the elementary distance functions. Letting
d; © = 1,-+-,n be the elementary distance functions

D= cdy+ ++ + cudn
will be the distance function that measures the total
tendency to group.

Considered in the light of human perception, these as-
sumptions are rather natural ones to make. The first as-
sumption eliminates the need to seek a single prineiple to
explain all grouping phenomena. Dozens of cases similar
to Fig. 3 can be presented, each possessing its own peculiar
reason for the way it is perceived. The ultimate model of

perceptual grouping may need dozens or hundreds of
“prineiples” to explain the full range of cases. That model
will be understandable if and only if there is an orderly
methodology for exploring each of its parts despite the
presence of the others. This requires that the interactions
between the elementary grouping principles be of a rela-
tively simple type. This simplicity is achieved here by
taking a linear sum of the grouping principles. The co-
efficients ¢; allow any particular cue to be more or less
potent in the total sum. If the d; are properly scaled, then
the ¢; are measures of the relative strengths of the cues.
These assumptions constitute an information processing
model of an aspect of human vision. The computer pro-
grams which will be described are embodiments of that
model, and running them gives a test of the model.

The next task is to lay out an appropriate methodology
for the development of the distance function D. The goal
is a difficult one. The function D must yield a close simula-
tion of an extremely complex and subtle visual pheno-
menon. This implies the need for a cycle of improvement
and testing where the results of testing give data for
further improvement. A single cycle of our program de-
velopment can be outlined by the following steps.

Step 1: The programmer implements new elementary
distance functions d; or modifies existing ones. To the
programmer, each d; is a subroutine which measures dif-
ferences between regions of an image. This modularity
is well suited for corrective changes and additions in-
dicated by Step 4.

Step 2: Experimental textures are arranged to form a
set of psychophysical experiments. After a complete set
is prepared, the experiments are conducted interactively,
and while the human subject is responding, the machine
records its response according to the distance function D.

Step 8: After a set of experiments is completed, the
machine adjusts the coefficients ¢;to obtain maximal agree-
ment with the human subjects over all sets of experiments
accumulated.

Step 4: Those experiments which still yield disagreement
are used as guidance for the next cycle of development
(Step 1). The key is to notice possible textural cues in
the cases which disagree.

The details of each of these steps will eventually be

made clear. The goal of this methodology is to converge
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rapidly to a good simulation of human perceptual group-
ing despite the dependence in Step 1 upon a programmer
of unknown ability. This is a good accommodation to
make, since the programming will probably fall into the
“black art” category where all programmers should be
considered to have unknown ability.

Since the computer is already being used as a simula-
tion tool, the second step affords a spectacular opportunity
to put the power of the computer to another use. The de-
sign, creation, and administration of effective psychophy-
sical tests can be a difficult and time consuming job.
More and more, psychologists are finding that the com-
puter can be used as a powerful tool which enables them
to perform experiments which would be too tedious with-
out the computer’s help. As a famous example, the dot
patterns used in Julesz’s experiments on binocular dis-
parity [157] and texture perception [167] were created by
computer. Here, if the development cycle is to be rapid,
then some sort of computer-assisted psychophysical ex-
perimentation seems essential.

Since the distance function is a sum of terms, the ideal
experiment would weigh the effect of one term against
another. Hopefully, sets of experiments would test the
terms in varying proportions to see if a single distance
function D performed well in all cases. Fortunately, the
previously mentioned Beck experiment can be used as an
extremely delicate test of the tendency of one pair of
areas to group against the tendency of another palr of
areas to group. Although the Beck experiment was ori-
ginally performed with hand-drafted textures, it can
easily be modified so that the computer does almost all
of the work involved in a rapid fashion.

IV. ARTIFICIAL TEXTURES

An initial experimental system was built for the pur-
pose of trying out the methodology. The hardware com-
ponents include an IBM 360/44 computer and an Adage
AGT-10 computer and graphics display. Through the
use of a link, the usual graphics functions are executable
by Fortran programs running on the IBM machine.
Fig. 7 outlines the flow of information between the basic
software components. Only parts of the system are used
at any one time, and it is useful to think of three modes
of operation with executive control lodged in one of the
boxes labeled 4, B, or C.

In its first mode of operation, the system interacts with
an experimenter to create a set of Beck experiments. Dis-
plays for two such experiments are shown in Fig. 8. The
system first displays a menu of stick figures and the ex-
perimenter chooses three figures with a light pen. Using a
set of buttons, the experimenter can rotate, shrink, or
enlarge the figures. Another button push causes the figures
to be repeated in a preset pattern to form three rectan-
gular areas. A final button push stores the experiment in
mternal numerical form. It is also possible to invoke a
pseudo-random number generator which generates ran-
dom experiments from the menu. The stick figures are
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Fig. 8. Two sample displays for experiments using artificial
textures.

input to the system in numerical form by means of punched
cards. Subject only to the limitation of the visual medium
(a cathode-ray tube capable of displaying several hundred
line segments) the experimenter can create dozens of
experiments in & matter of minutes.

Once a set of Beck experiments is stored in the system,
the second mode of operation can be entered. A human
subject is set in front of the graphics display and given a
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simple set of instructions. The subject interacts with the
system by means of three buttons. He is told to press
the center button to cause the scenes to be displayed in
sequence. For each scene he is to press the right button to
report the perception of more prominent division on
the right and the left button for more prominent division
on the left. It takes about two seconds for a scene to
appear, and the subject usually responds within five
seconds, so a set consisting of dozens of Beck experiments
can be performed in a few minutes. The results are auto-
matically stored in the computer. While the subject is
thinking, the system calculates its response according to
the distance function D, and the results of that calculation
are also stored.

The means of solving for the coefficients ¢; of the dis-
tance function will be taken up later. That solution process
is designed to give help to the programmer (appropriately
represented by a fuzzy cloud in Fig. 7) as he adds to or
modifies the elementary distance functions d;. The ele-
méntary distance functions are Fortran subroutines
written by the programmer and compiled into the system.
Appendix A of this report gives a description of the d;
developed for the artificial texture system.

Only two sets of experiments were performed with this
system. The first set consisted of twelve Beck experiments
which were produced interactively by one of the authors.
A graduate student unconnected with the project served
as the first subject. The initial distance function D used
the seven elementary distance functions described in
Appendix A. After golving for the coefficients ¢; we ob-
tained the surprising result that six of the ¢; were zero.
The only nonzero term was one which correlated the orien-
tations of lines in the figures. In other words, areas with
fine edges distributed over the same angles are grouped.
The distance function agreed with the human subject on
all of the twelve cases using only this term, a rather in-
teresting result in itself.

The second set of experiments consisted of 47 randomly
generated scenes. Since some of the scenes were ambig-
uous, three human subjects were used, and scenes which
caused disagreement were discarded due to a constraint
imposed by our method of solving for the coefficients.
This left 32 scenes which were clearly grouped to one side
or the other. After solving for a new set of coefficients ¢,
the results were poorer, but not poor enough to discourage
ug. These results are summarized and discussed in Sec-
tion VII.

These two experiments convinced us that the method-
ology was workable and that an interesting degree of
simulation of perceptual grouping was possible, so we
decided to concentrate immediately on a system which
would operate on naturally occurring image textures. There
were several particular reasons for not continuing with
the artificial texture system. The major reason was that a
line drawing graphics display is too crude for phychophysi-
cal experimentation with texture. Only a certain number of
lines could be drawn without flicker. Lines of different
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length had different brightnesses. Curves could not be
drawn at all, and an approximation to a curve using short
lines would be extremely bright. Second, the computer
representation of the textures as line segments given by
the coordinates of their end points was quite unsatisfac-
tory so far as computation was concerned. We decided
not to wrestle with these problems until the new and more
interesting system was built.

V. NATURAL TEXTURES

The introduction of naturally occurring textures gives
a tremendous increase to the dimensionality of the prob-
lem. Pickett [177] considers the varieties of textures to
be like independent dimensions in an infinite-dimensional
space. Practical scene analysis systems must be able to
deal with this dimensionality, but in some orderly fashion
starting with the most important dimensions. If a distance
function D can be successfully implemented for natural
textures, then some knowledge about this dimensionality
will be gained.

The natural texture system is identical in principle to
the previously described system. The graphics hardware is
replaced by a Spectrovision SG-D 2219 color video display
which is connected to a Hewlett—Packard 2100 computer.
To obtain digitized images, the Hewlett-Packard com-
puter is connected to an image digitizer which converts 35
mm photographie slides into 256 X 256 arrays with a
64 unit gray scale. The results are stored on magnetic tape.

‘The Hewlett—Packard computer is connected to a tele-

typewriter adjacent to the Spectrovision display, so ex-
periments can be composed or taken interactively as be-
fore. Fig. 9 shows several Beck experiments as they ap-
pear to a subject. The lower experiment is most interesting
since it weighs a fine textural similarity on the left against
a brick lattice textural similarity on the right. As the
experiments are composed, they are also stored on mag-
netic tape, and the experiments are given to a subject by
replaying the magnetic tape.

After a set of experiments is performed on the Aerojet
and Hewlett—Packard equipment, the results are hand
carried on magnetic tape to the IBM 360,/44 computer for
calculation of the distance function D and the coefficients
¢:. The elementary distance functions d; are modular rou-
tines on the 360/44 as before (see Appendix B). The re-
sults for this system are presented in Section VII.

This work has given one especially interesting result.
Many of the “standard” textural measures used by other
workers were coded as elementary distance funetions here.
Each one alone could handle a few specific types of cases,
but could do little better than random over the range of
cases we dealt with. A sum of such terms gave good results
overall. In fact, Seetion VI will show that a sum of
terms (as given by several nonzero coefficients ¢;) is guar-
anteed to be superior to the use of any single term. Thus,
the general ideas presented in this report would seem to
be applicable to a variety of efforts in the area of texture
analysis.
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VI. RELATIVE STRENGTH OF CUES

Assuming that the d; are scaled to roughly the same

range, then the value of the coefficient ¢; of a term is an
indication of how important that term is in the caleulation
of grouping. Even if the d; are not scaled, the values of
the coefficients still determine the potency of the terms
in the total sum. Recalling that Beck’s original result
was somewhat counterintuitive, one would expect that
determining the values of these coefficients is a subtle
and difficult task. As it turns out, there are mathematical
methods for calculating optimal coefficients as experimen-
tation proceeds.
- Assume that a single Beck experiment is presented to
the distance function routines and suppose that there are
n elementary distance functions. Let di; be the ith meas-
ured distance between the two rectangular areas on the
left and d;; be the 7th measured distance between the two
rectangular areas on the right. If the human subject re-
ports division on the left, then in order for the computer
to agree

ci(dn — dig) + o+ + i (dny — duz) > 0.

If the human subject reports division on the right, then the
inequality is reversed. The inequalities can always be re-
garded in the same sense if the proper sign is appended to
the differences (dii — diz). Denote this ith signed dif-
ference by e;.

Suppose now that m experiments are performed where
m is larger than n. The result is m linear inequalities in n
unknowns. Let e;; be the 7th signed difference for the jth
experiment. Subtracting an artificial variable z; from each
equation converts it to an equality and the following
equations ean be written.

cien + o0 +Cn6n1—$1—y=b

G161 + s+ Colm —

a+t et =1

Tm— Y =20

¢ >0 1= 1,0v0yn
z; >0 j=1m
y=0

where b is an arbitrary positive constant. These equations
are in standard form for solution by linear programming.
The simplex algorithm can first be used to find whether a
solution exists. If a solution exists, then there is usually a
space of different solutions. Then setting

Gopt = Y,
simplex can be used to find a solution in the space of solu-
tions which maximizes the value of gops. This forces the
weakest inequality in the original problem to be as strong
as possible. In other words, the distance function will agree
with the human subjects as strongly as possible over all
cases.
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Fig. 9. Two sample displays for experiments using natural textures.

Each new Beck experiment adds a new linear inequality,
S0 m increases as more experiments are performed. This
poses no problem for the simplex algorithm since modern
versions can handle literally thousands of variables and
constraints. So long as a solution is maintained, the dis-
tance function achieves a perfect simulation of human
perceptual grouping. A difficulty arises when simplex
determines that no solution exists. To achieve as good a
simulation as possible, one might try to satisfy as many
of the linear inequalities as possible. This is quite compa-~
tible with our methodology since the remaining unsatisfied
inequalities can be reviewed by the programmer as he
modifies the programmed distance function. This can be
done by showing the Beck displays to the programmer on
the graphics or video display. If the programmer can de-
tect some feature which has not been properly captured by
the distance function, then he has some guidance for
making the proper corrections. '

Now consider the problem of satisfying as many of the
linear inequalities as possible. Although mathematical
techniques [187, [19] are known which are computa-
tionally feasible for small m, we have not found a practical
way to find the optimal solution for large m, so the fol-
lowing approach is used. The inequalities shown above are
modified by the addition of artificial variables z; > 0
j=1cem+ 1

cley; + oo Gt — 2 —yYF2=0b
et et =1
now the simplex algorithm is applied with
Gopr = — (21+ ++ + 2m + Kzmia)

in the hopé that this will automatically force most of the
z; terms to zero. A large constant K > m is included so that
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Zm1a is guaranteed to be forced to zero. The addition of the
new artificial variables guarantees that simplex will find
g solution. If simplex finds a solution with gop: = —Zz; =
0 then all of the original inequalities can be satisfied and a
second application of simplex is performed with the z; held
constant and g.,s = y. Suppose that some of the artificial
z; are still nonzero. Deleting the inequalities having non-
zero z; results in a system of equations that can be solved
“without the use of the artificial variables z;. However, it
may be possible to delete a proper subset of the inequalities
with nonzero z; and still get this sort of solution. If the
number of nonzero z; is small, then it is relatively easy
{(by trying likely combinations) to find a locally optimal
solution. That is, a set of inequalities with nonzero z;
which cannot be reduced to a proper subset.

Regardless of the mathematical techniques used, the fol-
lowing general statement can be made. The coefficients ¢;
are chosen which give some sort of best fit to the data, and
the worst cases are given as feedback to help the pro-
grammer modify the distance function D. Although the
values of the ¢; are important to D, optimizing the ¢;
can only bring D to a level where it is limited by the quality
of the programmed d/s. We regard the mathematical
solution for the ¢;'s not so much as an effort to obtain “good
results” but more as a crucial part of our methodology.
We would like to point out some of the considerations
which led us to choose linear programming methods over
the other available techniques. First, the degree to which
a human subject perceives grouping cannot reliably be
measured. If a subject initially perceives slight grouping,
then that perception usually reinforces itself in the same
way that a shadowy figure in a fog will take on a concrete
form. Thus, the inequalities cannot easily be replaced by
measures of the strength of grouping. Second, the use of a
probabilistic measure of the percent of subjects which
group to one side or another was not used because it was
felt that, given the present state of the art, it was more
important for a grouping program to be able to handle the
cases which were obvious to human perception rather
than cases which were ambiguous to human perception.

Usually, the simplex algorithm will set many of the
¢’s to zero in the solution. This is usually an indication
that the corresponding d;’s are defective (they could have
the wrong sign) or wholly redundant. Once again this is
useful information for the programmer. The previously
mentioned mathematical methods [187, [197] could be
used to force the maximal number of ¢; to zero. This cor-
responds to the elimination of redundant cues and the
number of nonzero ¢;’s could be called the intrinsiec dimen-
sionality of the solution. This probably should not be done
on methodological grounds since one of the main goals of
this work is the incorporation of redundant cues into a
single mechanism. A closely related consideration is that
of selecting experiments to discriminate among the d;,
which if done would tend to increase the dimensionality of
the solution. These are but a few of the interesting mathe-
matical issues that can be raised.
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VII. RESULTS AND ASSESSMENT

The standard way to judge the success of a pattern rec-
ognition program is to measure its performance on test
data which was not used in any way for training. Thus,
the percentage of inequalities satisfied by optimizing
the ¢s can only be regarded as a training score anyway.
To obtain a test score, a “jack-knife’”’ method was em-
ployed. After separating the data into equal parts, the
program is trained on all of the parts but one, and then
a test score is obtained on that one part. The training in-
formation is then erased and this procedure is repeated for
each of the parts in turn, which gives the total test score.
Ten percent jack-knife means that one-tenth of the data
is tested at a time.

Table I shows the results for both grouping systems.
The training scoreis obtained by optimizing the coefficients
¢; over all of the data in the sample domain. Jack-knife
testing was done with those samples missed in full set
training removed. To give a fair comparison with standard
work in pattern recognition, the results in parentheses
count those removed samples as misses, although it should
be noted that they might not have been missed in the
jack-knife test.

The actual values shown in Table I are difficult to assess
since there is no precedent for them in the literature. Per-
haps it is most interesting to consider the results in the
context of other scene analysis or robot-vision work, under
the assumption that these are potential application areas.
The “region growing” or “boundary melting” techniques
operate by joining adjacent regions of a scene which are
close in some sense. When the joining process is iterated
to completion, the natural objects are supposed to be
identified. A distance function which takes texture, color,
and brightness into account could be used for this sort
of process. For example, primitive regions which are close
according to the distance function could be joined. More
complex methods such as the “phagocyte heuristic” or the
“weakness heuristic” (see [47]) can also be modified to use
a difference of texture, color, and brightness, since they
presently use a difference or brightness. For our experi-
ments, the use of multiple cues was guaranteed to be
superior to the use of a single cue, and it would be hoped
that the same would be true for more complex applications.

With this in mind, the results in Table I can be appre-
ciated somewhat. For a robot-vision system to obtain
satisfactory results, the joining process has to be correct
in almost 100 percent of the cases since the correct identi-
fication of objects is due to a sequence of decisions. The
cues for the joining process can be divided into primitive
cues such as color, texture, and brightness and “semantic”
cues such as a priori knowledge of the shape of things.
Thus, the results in Table I may be improved in any parti-
cular application which is able to make use of other types
of information.

Though this paper has treated color, texture, and bright-
ness in a symmetric fashion, there is one distinction that
will eventually become important as practical systems
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TABLE 1
TEsT REsULTS FOR BoTH SYsTEMS
10% 50%
Sample Domain M Jack-knife Jack-knife Training
Natural Textures:
normalized 31 96.8% 93.5% 100%
un-normalized 38 84.6% 89.7% 100%
both 69 88.1% (85.5%) 91.0% (88.4%) 97.1%
Artificial Textures 32 85.2% (71.9%) 81.5% (68.8%) 84.4%

are built. Color and brightness can be measured at a point,
but texture is a statistical property of an area of inde-
finite size. In a more comprehensive report on this re-
search [207], one of the authors has developed methods for
determining the minimum size over which a texture can
be identified.

APPENDIX A

The textures are composed of arrays of stick figures as
shown in Fig. 7. The stick figures are stored internally as a
list of lines specified by the coordinates of their end points.
Each of the distance functions was written to operate on a
pair of stick figures, and it was assumed that such distance
functions could simulate perceptual grouping of arrays of
figures (even though this is against the spirit of the original
Beck experiment). For a pair of stick figures, the seven
elementary distance functions are as follows:

1) Distance between centers of gravity of the two
figures.

2) Minimum distance between the two figures.

3) Touching distance: 0 if touching, 1000 if not touch-
ing.

4) Total length difference

| Ty — T.|
———— X 1000

T+ T,
where T'; is the total length of lines in one of the stick
figures.

5) Height-to-width ratio difference

| Ry — Ry |
B+ R, X 1000
where R, is the ratio of height to width in one of the stick
figures.
6) Orientation difference: a cross-correlation between
the angular distribution of lines in the figure.
7) Subtended area difference:

| 81— 8|
S 1S, X 1000
where S; is the area subtended by one of the figures rela~
tive to the center of gravity.
Table II shows the coefficients which resulted from
training on the full set of data. Since all of the distance
functions were scaled between 0 and 1000, these coefficients
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TABLE II
CoErrictents REsULTING FROM FULL SET TRAINING, ARTIFICIAL
: TEXTURES
Feature Coefficient
2., Minimum length .045
4, Total length .68
5. Height-width ratio 062
6. Orientation .13
7. Subtended area .083

are an indication of which features were most crucial.
Total length, which on a graphics display is actually a
measure of brightness, had the highest coefficient. Orien-
tation seems to be the most potent textural cue.

APPENDIX B

There are a number of well-known natural image fea-
ture measures in the literature. By calculating a given
measure for two regions, the absolute value of the dif-
ference can be considered to be a distance between those
regions. A large number of features were computed from
the spatial gray-level dependence matrices defined by the
image [217-[23], which have been used in a number of
pattern classification applications [227,[24].

The spatial gray-level dependence matrix may be de-
fined as

Pog = Poa(i,)

where P,4(4,7) is the relative frequency of a pixel (picture
element) of level 7 and a pixel of level j separated by dis-
tance d and an orientation a. The distance d is measured
in pixels. The angle a is allowed to take on the value 0°, 45°,
90°, and 135°. By symmetry, a = 180° is the same as a =
0°. All images were quantized to 16 levels of gray scale.
Thus each P,;is a 16 X 16 symmetric matrix.

Five textural features were computed from the gray-
level dependence matrices:

n—1 n—1

Z Z i'j'pa.d(iaj)

=0 j=0

T1 (a,d) =

n—1n—1

Z Z (l - j)Zpa,d(z‘)j)

=0 j=0

Ty(a,d) =

n—1 n—1

PIDY

=0 j=0

pa.d(iyj)

Bl = L R T G-

n—1 n—1

P Pa,a(2,]) log pa,a(%,])

=0 j=0

Ti(a,d) =

n—1 n—1

Z Z ] T _.7 i pa.‘\d(firj)

=0 j=0

Ts(a,d) =

where 7 is the humber of gray levels.
Finally a set of measurements without explicit depend-
ence on ¢ was found:

My(d) = d' Y Ti(a,d)
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TABLE III
CorricieNts REsviming FroMm Furn Ser TRAINING, NATURAL
TEXTURES
Features
Used
M Ry Vi Dy
d=1 .87 (iej)
d=2
=1 (-3
d=2 .092 .0069
1
d=1 .0026 .0030 —
1+{i-j)

d=2 .018
d=1 L0021 plog P
d=2
a=1 Ji-31
d=2

0.0 cross correlation

0.0 mearn

0.0 va ﬁance

R;(d) = max T4 (a,d) — min Ty (a,d)
Vi(d) = 13 (Tu(a,d) — My(d))2

Each of these functions was evaluated for d = 1 and
d = 2. Thus, forty textural measurements were computed
for each individual region. Each of the features was used
to define a distance measure which represented the ab-
solute value difference between the given feature evalu-
ated for two different regions.

An additional set of measures was computed to assess
gross orientation differences. These are a function of a
pair of regions. Let a = 0,1,2,3 correspond to angles of
0°,45°,90°,135° respectively, and let d be the angular dis-
tance

1 lf l a; — Ay I =3
d{a,a,) =
la; — am|  otherwise.
Then let
Tv(a,d,l) = Ty(a,d) evaluated for region !
Rx(d) = Ry(d) evaluated for region !

Ar(dlm) = d(ay,an/max Ty(a,dl) = Ti(aydl),

max Ty (a,dm) = Ti(amdm)).

Then the gross orientation difference measures are given by

Evaluating for d = 1,2 and k = 1,---,5 gives ten more
distance functions.
Three additional distance measures were used:

Ma(ad) = | e —~ & |
Vd(a,b) = ! 0'a2 - 0'1,2 !
Ca(a,b) = 1/max R;(%,7)
5,4
where

f: = mean gray-level value of region 7
o = variance of gray-level distribution of region ¢
R is the cross-correlation function of regions ¢ and b.

All told, 43 measurements were available. Table III
shows the coeflicients which resulted from training on the
full set of data.

ACKNOWLEDGMENT

This work was made possible through the use of the
Image Processing Laboratory at the University of South~
ern California under the directorship of Prof. W. Pratt
and the University Computing Center under the director-
ship of R. Penne.



728

REFERENCES

{1] A. Guzman, “Decomposition of a visual scene into three dimen-
sional bodies,” in Fall Joint Comput. Conf., AFIPS Conf. Proc.,
vol. 33.  Washington, D. C.: Spartan, 1968, pp. 291-304.

[2] C. T. Zahn, “Graph-theoretical methods for detecting and
describing Gestalt clusters,” IEEE Trans. Comput., vol. C-20,
pp. 68-86, Jan. 1971.

[8] L. G. Roberts, “Machine perception of three-dimensional
solids,” in Optical and_ Electro-Optical Information Processing,
J. T. Tippett et ol., Eds. Cambridge, Mass.: M.LT. Press,
1965, pp. 159-197.

[4] C. R. Brice and C. L. Fennema, ‘“‘Scene analysis using regions,”
Artificial Intelligence, vol. 1, pp. 205-226, 1970.

[5] D. L. Waltz, “Generating semantic description from drawing
of scenes with shadows,” Massachusetts Inst. Technol., Cam-
bridge, M.I.T. AT Memo IR-271, 1972.

[6] Y. Yakimovsky, “Scene analysis using a semantic base for a
region growing,” Stanford Univ., Stanford, Calif., Stanford
AT Lab. Memo AIM-209, June 1973.

[7] C. A. Harlow and $. A. Eisenbeis, “The analysis of radiographie
te);tures,” IEEE Trans. Comput., vol. C-22, pp. 678-689, July
1973.

[8] R. M. Pickett, ‘“Visual analysis of texture in the detection and
recognition of objects,” in Picture Processing and Psychopictorics,
B. C. Lipkin and A. Rosenfeld, Eds. New York: Academic,
1970, pp. 298-308.

[9] A. Rosenfeld and M. Thurston, “Edge and curve detection for
visual scene analysis,” IEEE Trans. Comput., vol. C-20, pp.
562-569, May 1971.

[10] W. Ellis, Ed., A Sourcebook of Gestalt Psychology. London,
England: Routledge and Kegan Paul, 1938.

[11] M. Hertz, ‘“Figural perception in the jaybird,” in A Sourcebook
of Gestalt Psychology, W. Ellis, Ed. London, England: Rout-
ledge and Kegan Paul, 1938.

[12] D. O. Hebb, The Organization of Behavior. New York: Wiley,

h 1949

[13] M. Wertheimer, “Laws of organization in perceptual form” in
A Sourcebook of Gestalt Psychology, W. Ellis, Ed. London,
England: Routledge and Kegan Paul, 1938.

[14] J. Beck, “Effect of orientation and shape similarity on perceptual
grouping,” Percepiion and Psychophysics, vol. 1, pp. 300-302,
1966.

[15] B. Julesz, “Binocular depth perception without familiarity
cues,” Science, vol. 145, pp. 356362, 1964.

f16] , ‘‘Visual pattern discrimination,” IRE Trans. Inform.
Theory, vol. IT-8, pp. 84-92, Feb. 1962.

{171 R. M. Pickett, “The perception of a visual texture,” J. Ezxperi-
mental Psychology, vol. 68, pp. 13-20, 1964.

[18] J. B. Rosen, “Minimal and basic solutions to singular linear
systems,” J. Soc. Ind. Appl. Math., vol. 12, pp. 156-162, Mar.
1964.

[19] R. E. Warmack and R. C. Gonzalez, “An algorithm for the

* optimal solution of linear inequalities and its application to
pattern recognition,” IEEE Trans. Comput., vol. C-22, pp.
1065-1075, Dec. 1973. .

[20] W. B. Thompson, “The role of texture in computerized scene
analysis,” Comput. Sci. Program, Univ. Southern California,
Los Angeles, Jan. 1975.

IEEE TRANSACTIONS ON COMPUTERS, JULY 1975

[21] A. Rosenfeld and E. Troy, ‘“Visual texture analysis,” Univ.
Maryland, College Park, Tech. Rep. 70-116, June 1970.

[22] R. M. Haralick, K. Shanmugan, and 1. Dinstein, “Textural
features for image classification,” JEEE Trans. Syst., Man,
Cybern., vol. SMC-3, pp. 610-621, Nov. 1973.

[23] D. A. Ausherman, “Textural discrimination within digital
im?zgery,” Ph.D. dissertation, Univ. Missouri, Columbia, Dec.
1972,

[24] R. P. Kruger, W. B. Thompson, and A. F. Turner, “Computer
diagnosis of pneumoconiosis,” IEEE Trans. Syst., M an, Cybern.,
vol. SMC-4, pp. 2049, Jan. 1974.

Albert L. Zobrist (8'69-M’71). was born
in Seattle, Wash., in February 1942. He re-
ceived the B.S. degree in mathematics from
the Massachusetts Institute of Technology,
Cambridge, in 1964, and the M.S. degree in
mathematics and the Ph.D. degree in com-
puter science, both from the University of
Wisconsin, Madison, in 1966 and 1970, re-
spectively.

From 1966 to 1967 he was a member of
the technical staff, Aerospace Corporation,
El Segundo, Calif. Since 1970 he has served as Assistant Professor of
Electrical Engineering and Computer Science at the University of
Southern California, Los Angeles (presently on leave). From 1973 to
1974 he was also a member of the research staff of the University of
Southern California Information Sciences Institute. He is presently
Associate Professor of Computer Science at the University of Arizona,
Tucson.

William B. Thompson (S8'72-M’74) .was
born in Santa Monica, Calif., in August 1948.
He received the Sc.B. degree in physics from
Brown University, Providence, R.I., in 1970,
and the M.S. and Ph.D. degrees in computer
science from the University of Southern
California, Los Angeles, in 1972 and 1975,
respectively. ‘

He is presently a Research Associate with
the Image Processing Institute at the Uni-
versity of Southern California, Los Angeles.
His interests are in the fields of artificial intelligence and data ex-
traction from imagery, including scene and texture analysis.

Dr. Thompson is & member of Eta Kappa Nu and the Association
for Computing Machinery.







