
Evolving Real-Time Systems
using Hierarchical Scheduling

and Concurrency Analysis

John Regehr Alastair Reid
Kirk Webb Michael Parker Jay Lepreau

School of Computing, University of Utah



2

� Problem: Evolving real-time and
embedded software is hard

� Problem: Concurrent software is
hard to write and debug

� Problem: Traditional task models
ignore some important details
about real systems



3

A Task Set
t1
t2

FIFO
t3

t4

thread t7

IRQ
hi

lo
CPU

hi

lo FIFO
t5
t6

Key:
preemptive
non-preemptive

hi

lo t8



4

This Talk
� Introduces hierarchical

execution environments to
support analysis of:
� Concurrency
� Response times
� Blocking terms
� Dispatch overheads

� Results in solving real-time
problems on sensor network
nodes



5

Execution Environments

� A real-time or embedded system
usually supports multiple execution
environments
� Interrupts
� Bottom-half handlers
� a.k.a. DPCs, tasklets, deferred

handlers
� Event handlers
� Kernel threads
� User threads



6

An Execution Environment…

� Occupies a place in the
scheduling hierarchy

� Has particular performance
characteristics

� Has rules:
� About actions code running in it

may take
� About how to synchronize with

code in other environments



7

Related Work
� Hierarchical scheduling

� Lots of work: Deng et al., Feng & Mok,
Lipari et al., Regehr & Stankovic,
Saewong et al., Shin & Lee, …

� Multiple execution environments
� Limited related work here

� Concurrency analysis
� Lots of work in PL and formal methods

communities – but none supporting
multiple execution environments



8

Goal: Evolving Systems
� Often desirable to move code

between environments
� “Promote” code to a higher priority

environment
� “Demote” code to a lower priority

environment

� Problem: How do we know when to
promote / demote code?

� Problem: Very easy to introduce
concurrency errors this way
� May be lots of code per environment



9

Example System: Motes

� Sensor network nodes
� Software based on

TinyOS
� Very simple “OS”
� No threads!

� Motes are resource
constrained
� 4 MHz 8-bit RISC
� 4 KB SRAM, 128 KB

flash



10

CPU

IRQ

FIFO

int1

int2

sent
calc_crc

received

hi

hi lo

lo

int3

encrypt

Problem 1:
Long-running
tasks cause
network
errors

decryptKey:
preemptive
non-preemptive



11

Fixed TinyOS 1

CPU

IRQ

FIFO2

int1

int2

encrypt
decrypt

hi

hi lo

lo

int3

AvrX

FIFO1

calc_crc
sent

hi

lo

received

Key:
preemptive
non-preemptive



12

Results



13

CPU

IRQ

FIFO

timer

SPI

t2
t1

t3

hi

hi lo

lo

UART

t4

Problem 2:
Missed SPI
deadlines
cause packet
loss

Key:
preemptive
non-preemptive



14

Fixed TinyOS 2

CPU

IRQ

FIFO

SPI

t2
t1

t3

hi

hi lo

lo

t4

vIRQ

timer

soft_SPI
hi

lo UART

Key:
preemptive
non-preemptive



15

Results



16

� Problem: How do we know when to
promote / demote code?

� Solution: Response time analysis

� Problem: Very easy to introduce
concurrency errors this way

� Solution: Concurrency analysis



17

Real-Time Analysis
� Problem: How to analyze

response times for hierarchies?
� Solution: Map to a problem that

we know how to solve
� Static priority scheduling
� Preemption threshold scheduling

� Hierarchies restricted to:
� Preemptive priority schedulers
� Leaf schedulers can be non-

preemptive FIFO or priority



18

Real-Time Analysis

CPU

IRQ

thread

FIFO

clock
disk

disk_bh

eth_bh

event
t1

t3

hi

hi lo

lo

e2
e3

e1

Key:
preemptive
non-preemptive

(0,0)
(1,1)

(2,2)

(2,2)

(3,3)

(7,7)

(4,4)
(5,4)
(6,4)

2 us10 us

2 us

5 us



19

Concurrency Analysis

� Problem: How to check for race
conditions?

� Solution: Task scheduler logic
� Static analysis of concurrency

across a hierarchy of execution
environments



20

Task Scheduler Logic

� Schedulers specify:
� Preemption relations among things

they schedule
� Locks they provide

� Axioms propagate effects around
the hierarchy

� TSL allows us to derive (potential)
preemption relations for each pair
of tasks in a system

� Details in paper…



21

Concurrency Analysis

CPU

IRQ

thread

FIFO

clock
disk

disk_bh

eth_bh

event
t1

t3

hi

hi lo

lo

e2
e3

e1

Key:
preemptive
non-preemptive



22

Contributions

� New notation for describing
structure of systems software

� Heuristics for evolving systems
� Algorithms for hierarchical priority

and FIFO schedulers:
� Whole-program concurrency analysis
� Response time analysis

� Experimental validation



Evolving Real-Time Systems
using Hierarchical Scheduling

and Concurrency Analysis

John Regehr Alastair Reid
Kirk Webb Michael Parker Jay Lepreau

School of Computing, University of Utah


