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¢ Problem: Evolving real-time and
embedded software I1s hard

¢ Problem: Concurrent software Is
hard to write and debug

¢ Problem: Traditional task models
ignore some important detaills
about real systems



A Task Set

Key:
preemptive
non-preemptive



This Talk

¢ Introduces hierarchical
execution environments to
support analysis of:

» Concurrency

» Response times

» Blocking terms

» Dispatch overheads

¢ Results in solving real-time
problems on sensor network
nodes



Execution Environments

¢ A real-time or embedded system
usually supports multiple execution
environments

> Interrupts
> Bottom-half handlers

> a.k.a. DPCs, tasklets, deferred
handlers

> Event handlers
> Kernel threads
> User threads



An Execution Environment...

¢ Occupies a place in the
scheduling hierarchy

¢ Has particular performance
characteristics

¢ Has rules:

» About actions code running in it
may take

» About how to synchronize with
code In other environments



Related Work

¢ Hierarchical scheduling

» Lots of work: Deng et al., Feng & Mok,
Lipari et al., Regehr & Stankovic,
Saewong et al., Shin & Lee, ...

¢ Multiple execution environments
» Limited related work here

¢ Concurrency analysis

» Lots of work in PL and formal methods
communities — but none supporting
multiple execution environments



Goal: Evolving Systems

& Often desirable to move code
between environments

» “Promote” code to a higher priority
environment

» “Demote” code to a lower priority
environment

¢ Problem: How do we know when to
promote / demote code?

¢ Problem: Very easy to introduce
concurrency errors this way

» May be lots of code per environment
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Example System:

Sensor network nodes
Software based on
TinyOS

» Very simple “OS”

> No threads!

Motes are resource
constrained

> 4 MHz 8-bit RISC

> 4 KB SRAM, 128 KB
flash

Motes




Problem 1.:
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Fixed TinyOS 1
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Problem 2:
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Fixed TinyOS 2
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Problem: How do we know when to
promote / demote code?

Solution: Response time analysis

Problem: Very easy to introduce
concurrency errors this way

Solution: Concurrency analysis
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Real-Time Analysis

¢ Problem: How to analyze
response times for hierarchies?

¢ Solution: Map to a problem that
we know how to solve

» Static priority scheduling
» Preemption threshold scheduling

& Hierarchies restricted to:

» Preemptive priority schedulers

> Leaf schedulers can be non-
oreemptive FIFO or priority
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Real-Time Analysis

preemptive 10 us 2 US
non-preemptive ?



Concurrency Analysis

¢ Problem: How to check for race
conditions?

¢ Solution: Task scheduler logic

» Static analysis of concurrency
across a hierarchy of execution
environments
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Task Scheduler Logic

Schedulers specify:

» Preemption relations among things
they schedule

» Locks they provide

Axioms propagate effects around
the hierarchy

TSL allows us to derive (potential)
preemption relations for each pair
of tasks In a system

Detalls Iin paper...

20



Concurrency Analysis
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Contributions

New notation for describing
structure of systems software

Heuristics for evolving systems

Algorit
and FI
> Who

nms for hierarchical priority
~0 schedulers:

e-program concurrency analysis

» Response time analysis
Experimental validation
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