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� Problem: Evolving real-time and
embedded software is hard

� Problem: Concurrent software is
hard to write and debug

� Problem: Traditional task models
ignore some important details
about real systems
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This Talk
� Introduces hierarchical

execution environments to
support analysis of:
� Concurrency
� Response times
� Blocking terms
� Dispatch overheads

� Results in solving real-time
problems on sensor network
nodes
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Execution Environments

� A real-time or embedded system
usually supports multiple execution
environments
� Interrupts
� Bottom-half handlers
� a.k.a. DPCs, tasklets, deferred

handlers
� Event handlers
� Kernel threads
� User threads
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An Execution Environment…

� Occupies a place in the
scheduling hierarchy

� Has particular performance
characteristics

� Has rules:
� About actions code running in it

may take
� About how to synchronize with

code in other environments
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Related Work
� Hierarchical scheduling

� Lots of work: Deng et al., Feng & Mok,
Lipari et al., Regehr & Stankovic,
Saewong et al., Shin & Lee, …

� Multiple execution environments
� Limited related work here

� Concurrency analysis
� Lots of work in PL and formal methods

communities – but none supporting
multiple execution environments
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Goal: Evolving Systems
� Often desirable to move code

between environments
� “Promote” code to a higher priority

environment
� “Demote” code to a lower priority

environment

� Problem: How do we know when to
promote / demote code?

� Problem: Very easy to introduce
concurrency errors this way
� May be lots of code per environment
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Example System: Motes

� Sensor network nodes
� Software based on

TinyOS
� Very simple “OS”
� No threads!

� Motes are resource
constrained
� 4 MHz 8-bit RISC
� 4 KB SRAM, 128 KB

flash
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Fixed TinyOS 1
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Results
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Fixed TinyOS 2

CPU

IRQ

FIFO

SPI

t2
t1

t3

hi

hi lo

lo

t4

vIRQ

timer

soft_SPI
hi

lo UART

Key:
preemptive
non-preemptive



15

Results
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� Problem: How do we know when to
promote / demote code?

� Solution: Response time analysis

� Problem: Very easy to introduce
concurrency errors this way

� Solution: Concurrency analysis
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Real-Time Analysis
� Problem: How to analyze

response times for hierarchies?
� Solution: Map to a problem that

we know how to solve
� Static priority scheduling
� Preemption threshold scheduling

� Hierarchies restricted to:
� Preemptive priority schedulers
� Leaf schedulers can be non-

preemptive FIFO or priority
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Real-Time Analysis
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Concurrency Analysis

� Problem: How to check for race
conditions?

� Solution: Task scheduler logic
� Static analysis of concurrency

across a hierarchy of execution
environments
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Task Scheduler Logic

� Schedulers specify:
� Preemption relations among things

they schedule
� Locks they provide

� Axioms propagate effects around
the hierarchy

� TSL allows us to derive (potential)
preemption relations for each pair
of tasks in a system

� Details in paper…
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Concurrency Analysis
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Contributions

� New notation for describing
structure of systems software

� Heuristics for evolving systems
� Algorithms for hierarchical priority

and FIFO schedulers:
� Whole-program concurrency analysis
� Response time analysis

� Experimental validation
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