Evolving Real-Time Systems
using Hierarchical Scheduling
and Concurrency Analysis

John Regehr Alastair Reid
Kirk Webb Michael Parker Jay Lepreau

School of Computing, University of Utah

¢ Problem: Evolving real-time and
embedded software I1s hard

¢ Problem: Concurrent software Is
hard to write and debug

¢ Problem: Traditional task models
ignore some important detaills
about real systems

A Task Set

Key:
preemptive
non-preemptive

This Talk

¢ Introduces hierarchical
execution environments to
support analysis of:

» Concurrency

» Response times

» Blocking terms

» Dispatch overheads

¢ Results in solving real-time
problems on sensor network
nodes

Execution Environments

¢ A real-time or embedded system
usually supports multiple execution
environments

> Interrupts
> Bottom-half handlers

> a.k.a. DPCs, tasklets, deferred
handlers

> Event handlers
> Kernel threads
> User threads

An Execution Environment...

¢ Occupies a place in the
scheduling hierarchy

¢ Has particular performance
characteristics

¢ Has rules:

» About actions code running in it
may take

» About how to synchronize with
code In other environments

Related Work

¢ Hierarchical scheduling

» Lots of work: Deng et al., Feng & Mok,
Lipari et al., Regehr & Stankovic,
Saewong et al., Shin & Lee, ...

¢ Multiple execution environments
» Limited related work here

¢ Concurrency analysis

» Lots of work in PL and formal methods
communities — but none supporting
multiple execution environments

Goal: Evolving Systems

& Often desirable to move code
between environments

» “Promote” code to a higher priority
environment

» “Demote” code to a lower priority
environment

¢ Problem: How do we know when to
promote / demote code?

¢ Problem: Very easy to introduce
concurrency errors this way

» May be lots of code per environment

* o

Example System:

Sensor network nodes
Software based on
TinyOS

» Very simple “OS”

> No threads!

Motes are resource
constrained

> 4 MHz 8-bit RISC

> 4 KB SRAM, 128 KB
flash

Motes

Problem 1.:
Long-running

hi N1 tasks cause

IRQ =— int2 network

Key:
preemptive
non-preemptive

FA 13 errors

/ calc crc
7 _» sent

> recelved

\encrypt

decrypt

FIFO

10

Fixed TinyOS 1

IRQ — int2

hi o 1o int3
— CPU calc_crc

/!
. Z» Sent
'(\ hi » FIFOL [eceived

Key:
preemptive
non-preemptive 1

Results

25
Original TinyOS X
'g 0 k- Modified TinyOS ®
5
TismEAE E E = E E E ®
> H BN O HE ®E ©E =
= 10 - o3
g T
0 | | | |
0 50 100 150 200

Task Execution Time (ms)

Problem 2:

Misse_d SPI
o timer deadlines
cause packet
| IRQ_’SPI loss
hi 2 IO UART

—> CPU
t1

\
FIFO é t?,
.

Key: t4
preemptive
non-preemptive

13

Fixed TinyOS 2

el

IRQ —— vIRQ — soft_SPI

Nz o o™ UART
—> CPU

o tl
\ 12
FIFO < 5

.

Key: t4
preemptive
non-preemptive 14

Results

25
Original TinyOS X
"g 0 - Modified TinyOS ®
3
N
5 15?— i i I [
o~ X
E=
= 10 |- i
§ X
5 x
= 5 F X
X
0]] IIIIIII | | IIIIIII] 1 IIIIII*
10 100 1000 10000

Tasks Posted per Second

15

Problem: How do we know when to
promote / demote code?

Solution: Response time analysis

Problem: Very easy to introduce
concurrency errors this way

Solution: Concurrency analysis

16

Real-Time Analysis

¢ Problem: How to analyze
response times for hierarchies?

¢ Solution: Map to a problem that
we know how to solve

» Static priority scheduling
» Preemption threshold scheduling

& Hierarchies restricted to:

» Preemptive priority schedulers

> Leaf schedulers can be non-
oreemptive FIFO or priority

17

Real-Time Analysis

preemptive 10 us 2 US
non-preemptive ?

Concurrency Analysis

¢ Problem: How to check for race
conditions?

¢ Solution: Task scheduler logic

» Static analysis of concurrency
across a hierarchy of execution
environments

19

Task Scheduler Logic

Schedulers specify:

» Preemption relations among things
they schedule

» Locks they provide

Axioms propagate effects around
the hierarchy

TSL allows us to derive (potential)
preemption relations for each pair
of tasks In a system

Detalls Iin paper...

20

Concurrency Analysis

clock

IRQ I I gisk b
o Pl _
FIFOZ, o b

Key:
preemptive
non-preemptive

21

¢ o

Contributions

New notation for describing
structure of systems software

Heuristics for evolving systems

Algorit
and FI
> Who

nms for hierarchical priority
~0 schedulers:

e-program concurrency analysis

» Response time analysis
Experimental validation

22

Evolving Real-Time Systems
using Hierarchical Scheduling
and Concurrency Analysis

John Regehr Alastair Reid
Kirk Webb Michael Parker Jay Lepreau

School of Computing, University of Utah

