
 1 Copyright © 2004 by ASME

Proceedings of DETC2004:
2004 ASME Design Engineering Technical Conferences

 September 28-October 2, 2004, Salt Lake City, Utah USA

DETC2004/DAC-57461

UNIFIED DISTANCE QUERIES IN A HETEROGENEOUS
MODEL ENVIRONMENT

David E. Johnson
School of Computing, University of Utah

Salt Lake City, USA
dejohnso@cs.utah.edu

Elaine Cohen
School of Computing, University of Utah

Salt Lake City, USA
cohen@cs.utah.edu

ABSTRACT

Computing the minimum distance between two models in a
virtual scene is a fundamental operation useful in simulation,
path planning, haptics, and modeling. In an environment with
heterogeneous model representations, distance functions can be
difficult to formulate and may require multiple specialized
methods. In this paper, we demonstrate a generalized method
for finding the distance between models with different
representations and demonstrate it on a variety of models.

INTRODUCTION

Efficient computation of the minimum distance between
two virtual models is a needed and useful operation in many
applications, such as computer simulation[1], robotic path
planning[2], and haptics[10]. Typically, these tasks must occur
in a homogeneous model environment, so that the minimum
distance function can be specialized for the model
representation used. However, one can imagine wanting to do
tasks such as path planning on a NURBS model as it moves
through a polygonal environment, or even through a point
cloud environment taken directly from a 3D laser scan. These
types of tasks are restricted in current model environments, yet
we believe the need for heterogeneous interactions is growing
as new model acquisition technologies become available and
new simulation capabilities are developed.

For each type of model representation supported by the
environment, minimum distance functions from that model to
all the other model types must be written, an approach that
quickly leads to a large number of specialized functions.
Furthermore, it is not clear how some distance functions should
even be formulated, such as between an unstructured triangle
model and a NURBS surface.

In this paper, we develop and demonstrate a generalized
distance algorithm that works between any two types of
models. The models themselves just have to support a single,
simpler distance operation, so the number of distance functions
becomes linear in the number of model representations. This

generalized distance function can handle a wide variety of
model types, as shown in Fig. 1, and provides good
computational efficiency. This computational capability is
important to support realistic tasks in the mixed-model
simulation environments emerging today.

BACKGROUND
Prior research into distance algorithms typically has relied

upon different approaches depending on the model types being
queried. Distance algorithms for polygonal models have
favored geometric pruning methods, while algorithms for
parametric surfaces have focused on numerical techniques.

Another way of classifying prior work is by the type of
distance query they support. The distance query can return the
global minimum between the models, or it can find a local
minimum. A local minimum distance query is useful in

Figure 1: MINIMUM DISTANCES BETWEEN SPLINE, POLYGONAL, CSG
PRIMITIVE AND POINT CLOUD MODEL REPRESENTATIONS.

 2 Copyright © 2004 by ASME

temporally coherent applications and usually provides speed
advantages over global minimum methods.

The following subsections describe a few prevalent model
representations as well as the minimum distance approaches for
those representations in more detail.

Distance Queries for Polygonal Models
Polygonal models are typically composed of collections of

triangles, and most distance algorithms for polygonal models
deal with triangle primitives. The model may or may not
contain topological connectivity information. Models without
connectivity are known as a triangle cloud, and ones with are
properly described as a triangle mesh.

Lin[3] and Gilbert, Johnson, and Keerthi[4] developed fast
minimum distance methods for convex polygonal models.
Since local gradient search produces a global minimum for
convex objects, their algorithms can converge quickly.

Quinlan[5] developed a spherical bounding hierarchy for
general triangle clouds. The bounding hierarchy was used to
determine an upper bound on minimum distance between the
two models, and then to prune away portions of each model
with lower bounds on distance larger than the upper bound.

The PQP package, by Larsen et al.[6], followed the
successful application of oriented bounding boxes to collision
detection[7] by using swept sphere volumes as a bounding
hierarchy for triangle clouds. These volumes can control their
aspect ratio to more tightly bound contained geometry than
sphere bounds, which provided faster distance queries.

More recently, the distance methods for convex model
distance queries have been applied to convex decompositions
of triangular models[8]. Essentially, this method reduces the
number of leaf nodes by replacing triangles with convex
collections.

A different approach is taken by [9], which finds local
minima between triangular meshes by pruning their hierarchies
based on collinearity conditions, rather than distance bounds.
This approach has been extended in [10] to use local gradient
searches to update local closest point pairs in a haptic virtual
prototyping application.

In the methods for general polygonal models, the
predominant technique is to create a hierarchy of bounding
volumes, and the advancements have come mostly from
improving the tightness of the bounding volumes. This
approach differs markedly from techniques used for parametric
models.

Parametric Models
Parametric models are composed of smooth surface

patches, and typical models have fewer primitives than
polygonal models. The emphasis in research, then, has not been
on efficient means of pruning large numbers of primitives.
Instead, methods have explored various numerical methods for
quickly and reliably solving systems of equations that describe
minimum distance conditions between two parametric models.

The distance between two parametric models),(vuF and
),(tsG is the minimum magnitude of the vector difference

),(),(),,,(tsvutsvuD GF −= . (1)

The magnitude squared function D2(u,v,s,t) avoids the square
root, and extrema of that function occur at coincident zeros
from the set of its partial differentials, as in

()
()
()
() 0

0
0
0

=⋅−
=⋅−
=⋅−
=⋅−

t

s

v

u

GGF
GGF
FGF
FGF

. (2)

The system of equations for distance extrema have also been
variously defined as sets of cross-products[11] or augmented
with explicit normal collinearity conditions[12].

These extrema conditions have been solved by symbolic
computation[12], interval methods[13], and Newton-Rapheson
iteration[14]. This last technique has the advantage of high
speed and rapid convergence, and has been a practical choice
for many implementers.

In [15], NURBS surfaces were treated as geometric
entities, and a hierarchical pruning approach provided a
reasonable tradeoff between speed and robustness.
Furthermore, by sharing a common set of operations with
polygonal distance finding, it created a framework for unified
minimum distance computations. However, this unified
approach was not fully developed.

Limaiem[16] showed that alternating orthogonal projection
from a point on one surface to another would eventually yield
an intersection between the two surfaces. We build on this idea
as an approach for a unified minimum distance function.

Other Representations
Other model representations are also used as they provide

unique capabilities. Implicit models provide easy intersections
and Boolean operations. Since implicit models are the zero set
of a scalar function, evaluating that function at a point in space
is itself a type of distance function, even though it is not an
exact match to Euclidian distance. Ensz et al. has a discussion
of implicit functions that do provide a corresponding Euclidean
distance in the context of solid modeling[17].

CSG models are typically combinations of primitives, such
as spheres, cones, cubes, and tori. Each primitive needs a
custom distance function. Most CSG models are not made up of
large numbers of primitives, so efficient pruning methods aren’t
needed.

A representation which recently has become prevalent is
the point cloud, derived from laser scanning of physical models
or environments. Large number of points make up a detailed
model. Although there hasn’t been much effort at developing
efficient distance methods specifically for point clouds,
polygonal approaches are adaptable to this model
representation.

Discussion
While there have been approaches for minimum distance

methods between two objects of the same representation, or in
the same family, there has not been much effort in developing
general distance methods. This is probably due to the very
distinct approaches taken for the different representations, and
the difficulty in merging these styles.

 3 Copyright © 2004 by ASME

A UNIFIED DISTANCE APPROACH
Our approach is to use algorithms that compute the

distance from a point to a model as a basis for heterogeneous
model to model distance functions. This permits current
simulation and analysis techniques, which now only work on
similar representation models, to be applied to models of
different representations, such as models derived from different
processes. An object-oriented implementation allows these
point-model distance algorithms to be combined in a single
generic model-model distance function to compute the
minimum distance between two models of different
representations.

A Generic Model-Model Distance Function
The generic model-model distance function is based on the

observation that a local minimum in distance between two
models can be found by

1. finding the distance from a query point on the first
model to the second model,

2. using that closest point as a new query point and
finding the closest point to it back on the first model,

3. repeating this process until the minimum distance
converges.

Currently, we initialize this search by finding the closest
points between the two oriented bounding boxes containing the
models. The search uses the closest point on the first model’s
bounding box in a point-to-model distance query with the
second model. That query returns a point on the second model,
which can then be used in the iteration described above. This
heuristic for initializing the process works robustly, but there
may be other possibilities, such as using multiple initial points,
that perform better.

Figure 2 demonstrates this process on two spline models.
The alternating closest points are connected by lines showing
the convergence of the method. This approach is essentially a
point-sampled gradient search in the distance space of the two
models, rather than the more common gradient search on the
surfaces of the models.

An Object-Oriented Implementation
This approach yields a clean implementation in a

heterogeneous model environment. For each type of model
representation, a point to model distance function needs to
implemented. Then, a generic model-model superclass function
can call these specific implementations. Alternately, if the
models are not derived from a common class object, template
programming can be used to achieve the same result. A pseudo-
code implementation of the superclass approach would look
like the following.

class geometry_object {
 real model_model_distance(geometry_object m1,
 geometry_object m2)
}

Sample code for some model representations would
contain

class polygon_model : geometry_object {
 point point_model_distance(point query)
}

class spline_model : geometry_object {
 point point_model_distance(point query)
}

class CSG_model : geometry_object {
 point point_model_distance(point query)
}

Since all the representations inherit from geometry_object,
the geometry_object model_model_distance method calls the
consistently named point_model_distance methods for each
representation being queried. Each of those functions only has
to know about its own representation, so specialized distance
functions accounting for all possible model-model interactions
aren’t needed. C++-style pseudo-code for the generic model-
model distance method looks like

point

 geometry_object::model_model_distance(
 geometry_object m1,
 geometry_object m2) {
 point pt2, pt1 = m1.closest_pts_bbox(m2); // initialize
 real last_distance = INFINITY,
 distance = -1.0;
 bool first = true; // model are we querying
 while (distance != last_distance) {
 if (first)
 pt2 = m2.point_model_distance(pt1);
 else
 pt1 = m1.point_model_distance(pt2);
 last_distance = distance;
 distance = pt1.distance(pt2);
 first = !first; // switch models
 }

where models m1 and m2 can be any model representation that
derives from geometry_object and has a point_model_distance
method.

Local Distance
This technique does not guarantee a global minimum,

although the result often is a global minimum. The result is

Figure 2: BY ALTERNATING POINT-TO-MODEL MINIMUM DISTANCE
QUERIES, THE DISTANCE CONVERGES TO A MODEL-MODEL MINIMUM

DISTANCE.

 4 Copyright © 2004 by ASME

properly characterized as a local minimum distance. Most local
methods do a local gradient descent in the regions around the
initial estimated minimum distance points, which constrains the
result to be in those regions as well. However, unlike these
local minimum distance functions, our method can “jump”
regions on the models. This because the gradient search is not
along the surfaces of the models, but instead in the distance
space of the two models.

Convergence
The method converges to a local minimum because each

alternating step must yield a point-to-model distance that is
closer or the same as the previous step. The prior step provides
an upper bound on the minimum distance between the two
models, with proof by existence from the query point on the
one model and its closest point on the other. The method stops
because there is a minimum to distance between models, so
eventually the new step must be the same distance as the last
and the points are locally closest points. Of course, this
argument depends on the convergence of each point to model
minimum distance step.

RESULTS
We have implemented the unified distance function

approach within our CAD research testbed, Alpha_1. This
system supports a number of model representations, for which
we implemented point to model minimum distance methods.
These point to model methods use a variety of approaches,
described in Table 1.

The method reliably converges to a minimum distance
between models, even in difficult model configurations. In Fig.
3, the top graph shows slowed convergence as the method
traverses a concave portion of one model (see the models in
Fig. 2). The lower graph of Fig. 3 shows rapid initial
convergence, followed by slower convergence caused from
nearly parallel model geometries (Fig. 4). However, in each
case, the method still converged in relatively few steps. In the
example configuration of Fig. 1, the worst case took twelve
steps to converge and the best took three.

We tested the characteristics of this type of search on two
polygonal bunny models translated apart from each other. The
test randomly locally rotated each model before calling the
heterogeneous distance query and a comparison globally
convergent distance query. After 1,000 queries, the
heterogeneous distance query had the same result 95% of the
time. The other tests converged, but to a local minimum rather
than the global solution. The results that failed to reach a global
minimum were evenly split between results that were a small
fraction of the distance off from a global minimum, indicating
the iteration became trapped in a small bump near the correct

solution, and results that were further off, indicating an iteration
that converged on the wrong large-scale feature.

These results compare reasonably to convergence rates of
common numerical methods for parametric models. In addition,
greater global reliability could be obtained by sampling more
initial points, similar to current practice for numerical methods.
Additionally, higher rates of global convergence should be
obtainable in simulations with coherence, where the last
solution initializes the new iteration. We are exploring these
issues in further work.

DISCUSSION
We have focused on iteration steps over computation time,

because the computation time is highly dependent on the
individual point-to-model methods used. The linear search
implemented for the triangle cloud and point cloud models
means that the times in our system are not competitive with
specialized packages such as PQP. However, we can easily
replace any of the point-to-model packages with an accelerated
technique, and all distance queries to that representation will

1 2 3 4 5 6 7
0.6

0.8

1

1.2

1.4

1.6

Iterations

1 2 3 4 5 6 7
0.6

0.8

1

1.2

1.4

1.6
triangle − point cloud

spline − spline

D
is

ta
nc

e
D

is
ta

nc
e

Figure 3: CONVERGENCE RATES FOR TWO DIFFERENT MODEL-MODEL
INTERACTIONS. IN THE TOP GRAPH, CONVERGENCE IS SLOWED BY HAVING

TO CROSS A CONCAVE PORTION OF ONE MODEL. IN THE SECOND GRAPH,
DISTANCE INITIALLY DROPS QUICKLY, BUT THEN SLOWS IN NEARLY

COLPLANAR PORTIONS OF THE MODELS. HOWEVER, IN BOTH CASES, ONLY
A FEW ITERATIONS ARE NEEDED.

Figure 4: NEARLY PARALLEL GEOMETRIES CAUSES SLOWED
CONVERGENCE.

TABLE I. POINT TO MODEL METHODS

Model Representation Point to Model Method
NURBS surface Nodal mapping followed by

Newton-Rapheson

Triangle cloud Linear search

Point cloud Linear search

CSG primitive Specialized function

 5 Copyright © 2004 by ASME

get an equivalent boost in speed. This code modularity makes
experimentation and piecewise acceleration much easier.

CONCLUSION
Current modeling and VR systems typically use

homogeneous model types, or only allow limited interaction
between supported types. The approach demonstrated here is
very flexibly applied to different model representations. This
type of computation is a critical component of heterogeneous
model environments that can support new technologies for
model acquisition and the need for specialized representations
during analysis. Our hope is that it can facilitate new modes of
interaction between different types of models without having to
resort to model conversion. The unified distance approach can
be very competitive with specialized distance functions, as long
as the underlying point-to-model functions are optimized.

ACKNOWLEDGMENT
The authors would like to acknowledge support in part

from the following grants: NSF DMI9978603 and ARO DAAD
19-01-1-0013.

REFERENCES
[1] D. Baraff,. “Curved Surfaces and Coherence for Non-

penetrating Rigid Body Simulation,” Computer Graphics,
Vol. 24, No. 4, pp.19-28, 1990.

[2] J.E. Bobrow, “Optimal robot path planning using the
minimum-time criterion”, IEEE Journal of Robotics and
Automation, 4(4), pp. 443-450, Aug. 1988.

[3] M.C. Lin, Efficient Collision Detection For Animation and
Robotics, Ph.D. thesis, University of California, Berkeley.

[4] E. Gilbert, D. Johnson, S. Keerthi, “A Fast Procedure for
Computing the Distance Between Complex Objects in
Three-Dimensional Space,” IEEE Journal of Robotics and
Automation, pp. 193-203, April 1988.

[5] S. Quinlan, “Efficient Distance Computation between Non-
Convex Objects,” IEEE Int. Conference on Robotics and
Automation, pp. 3324-3329, 1994.

[6] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha., “Fast
Distance Queries using Swept-Sphere Volumes,” Proc.
IEEE International Conference on Robotics and
Automation , 2000.

[7] S. Gottschalk, M.C. Lin, and D. Manocha, “OBBTree: A
Hierarchical Structure for Rapid Interference Detection,”
Computer Graphics Proceedings, Annual Conference
Series, 1996, pp.171-180.

[8] S. Ehmann and M. Lin. “Accurate and Fast Proximkity
Queries between Polyhedra using Surface Decomposition,”
Computer Graphics Forum (Proc. Eurographics), 2001.

[9] D.E. Johnson and E. Cohen, "Spatialized Normal Cone
Hierarchies," in 2001 ACM Symposium on Interactive 3D
Graphics, ACM SIGGRAPH, March 2001.

[10] D.E. Johnson, and P. Willemsen, "Six Degree-of-Freedom
Haptic Rendering of Complex Polygonal Models," in Proc.
2003 Haptics Symposium , 2003.

[11] M. Mortenson, Geometric Modeling, John Wiley & Sons,
New York pp. 305-317, 1985.

[12] M.C. Lin and D. Manocha, “Fast Interference Detection
Between Geometric Models,” The Visual Computer, pp.
542-561, 1995.

[13] J. Snyder, “Interval Methods For Multi-Point Collisions
Between Time-Dependent Curved Surfaces”, Computer
Graphics, 27(2). pp. 321-334, Aug. 1993.

[14] D. Nelson, D.E. Johnson, and E. Cohen, “Haptic
Rendering of Surface-to-Surface Sculpted Model
Interaction,” in Proc. 8th Annual Symp. on Haptic
Interfaces for Virtual Environment and Teleoperator
Systems, (Nashville, TN), ASME, November 1999.

[15] D.E. Johnson and E. Cohen, "A framework for efficient
minimum distance computations,'' Proc. IEEE Intl. Conf.
Robotics & Automation, Leuven, Belgium, May 16-21,
1998, pp. 3678-3684.

[16] A. Limaiem and F. Trochu, “Geometric Algorithms for the
Intersection of Curves and Surfaces”, Computer &
Graphics, Vol. 19, No. 3, pp.391-403, 1995.

[17] M. Ensz, D. Storti, and M. Ganter, “Implicit Methods for
Geometry Creation”, Int. Journal of Computational
Geometry & applications, Vol. 8, Nos. 5-6 (1998), pp. 509-
536.

