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ABSTRACT 

Computing the minimum distance between two models in a 
virtual scene is a fundamental operation useful in simulation, 
path planning, haptics, and modeling. In an environment with 
heterogeneous model representations, distance functions can be 
difficult to formulate and may require multiple specialized 
methods. In this paper, we demonstrate a generalized method 
for finding the distance between models with different 
representations and demonstrate it on a variety of models. 

 
INTRODUCTION 

Efficient computation of the minimum distance between 
two virtual models is a needed and useful operation in many 
applications, such as computer simulation[1], robotic path 
planning[2], and haptics[10]. Typically, these tasks must occur 
in a homogeneous model environment, so that the minimum 
distance function can be specialized for the model 
representation used. However, one can imagine wanting to do 
tasks such as path planning on a NURBS model as it moves 
through a polygonal environment, or even through a point 
cloud environment taken directly from a 3D laser scan. These 
types of tasks are restricted in current model environments, yet 
we believe the need for heterogeneous interactions is growing 
as new model acquisition technologies become available and 
new simulation capabilities are developed. 

For each type of model representation supported by the 
environment, minimum distance functions from that model to 
all the other model types must be written, an approach that 
quickly leads to a large number of specialized functions. 
Furthermore, it is not clear how some distance functions should 
even be formulated, such as between an unstructured triangle 
model and a NURBS surface. 

In this paper, we develop and demonstrate a generalized 
distance algorithm that works between any two types of 
models. The models themselves just have to support a single, 
simpler distance operation, so the number of distance functions 
becomes linear in the number of model representations. This 

generalized distance function can handle a wide variety of 
model types, as shown in Fig. 1, and provides good 
computational efficiency. This computational capability is 
important to support realistic tasks in the mixed-model 
simulation environments emerging today. 

BACKGROUND 
Prior research into distance algorithms typically has relied 

upon different approaches depending on the model types being 
queried. Distance algorithms for polygonal models have 
favored geometric pruning methods, while algorithms for 
parametric surfaces have focused on numerical techniques.  

Another way of classifying prior work is by the type of 
distance query they support. The distance query can return the 
global minimum between the models, or it can find a local 
minimum. A local minimum distance query is useful in 

Figure 1: MINIMUM DISTANCES BETWEEN SPLINE, POLYGONAL, CSG 
PRIMITIVE AND POINT CLOUD MODEL REPRESENTATIONS. 
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temporally coherent applications and usually provides speed 
advantages over global minimum methods.  

The following subsections describe a few prevalent model 
representations as well as the minimum distance approaches for 
those representations in more detail. 

Distance Queries for Polygonal Models 
Polygonal models are typically composed of collections of 

triangles, and most distance algorithms for polygonal models 
deal with triangle primitives. The model may or may not 
contain topological connectivity information. Models without 
connectivity are known as a triangle cloud, and ones with are 
properly described as a triangle mesh. 

Lin[3] and Gilbert, Johnson, and Keerthi[4] developed fast 
minimum distance methods for convex polygonal models. 
Since local gradient search produces a global minimum for 
convex objects, their algorithms can converge quickly. 

Quinlan[5] developed a spherical bounding hierarchy for 
general triangle clouds. The bounding hierarchy was used to 
determine an upper bound on minimum distance between the 
two models, and then to prune away portions of each model 
with lower bounds on distance larger than the upper bound.  

The PQP package, by Larsen et al.[6], followed the 
successful application of oriented bounding boxes to collision 
detection[7] by using swept sphere volumes as a bounding 
hierarchy for triangle clouds. These volumes can control their 
aspect ratio to more tightly bound contained geometry than 
sphere bounds, which provided faster distance queries.  

More recently, the distance methods for convex model 
distance queries have been applied to convex decompositions 
of triangular models[8]. Essentially, this method reduces the 
number of leaf nodes by replacing triangles with convex 
collections.   

A different approach is taken by [9], which finds local 
minima between triangular meshes by pruning their hierarchies 
based on collinearity conditions, rather than distance bounds. 
This approach has been extended in [10] to use local gradient 
searches to update local closest point pairs in a haptic virtual 
prototyping application.  

In the methods for general polygonal models, the 
predominant technique is to create a hierarchy of bounding 
volumes, and the advancements have come mostly from 
improving the tightness of the bounding volumes. This 
approach differs markedly from techniques used for parametric 
models. 

Parametric Models 
Parametric models are composed of smooth surface 

patches, and typical models have fewer primitives than 
polygonal models. The emphasis in research, then, has not been 
on efficient means of pruning large numbers of primitives. 
Instead, methods have explored various numerical methods for 
quickly and reliably solving systems of equations that describe 
minimum distance conditions between two parametric models.  

The distance between two parametric models ),( vuF  and 
),( tsG  is the minimum magnitude of the vector difference  

),(),(),,,( tsvutsvuD GF −= .                           (1) 

The magnitude squared function D2(u,v,s,t) avoids the square 
root, and extrema of that function occur at coincident zeros 
from the set of its partial differentials, as in  
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The system of equations for distance extrema have also been 
variously defined as sets of cross-products[11] or augmented 
with explicit normal collinearity conditions[12]. 

These extrema conditions have been solved by symbolic 
computation[12], interval methods[13], and Newton-Rapheson 
iteration[14]. This last technique has the advantage of high 
speed and rapid convergence, and has been a practical choice 
for many implementers. 

In [15], NURBS surfaces were treated as geometric 
entities, and a hierarchical pruning approach provided a 
reasonable tradeoff between speed and robustness. 
Furthermore, by sharing a common set of operations with 
polygonal distance finding, it created a framework for unified 
minimum distance computations. However, this unified 
approach was not fully developed.  

Limaiem[16] showed that alternating orthogonal projection 
from a point on one surface to another would eventually yield 
an intersection between the two surfaces. We build on this idea 
as an approach for a unified minimum distance function. 

Other Representations 
Other model representations are also used as they provide 

unique capabilities. Implicit models provide easy intersections 
and Boolean operations. Since implicit models are the zero set 
of a scalar function, evaluating that function at a point in space 
is itself a type of distance function, even though it is not an 
exact match to Euclidian distance. Ensz et al. has a discussion 
of implicit functions that do provide a corresponding Euclidean 
distance in the context of solid modeling[17].   

CSG models are typically combinations of primitives, such 
as spheres, cones, cubes, and tori. Each primitive needs a 
custom distance function. Most CSG models are not made up of 
large numbers of primitives, so efficient pruning methods aren’t 
needed. 

A representation which recently has become prevalent is 
the point cloud, derived from laser scanning of physical models 
or environments. Large number of points make up a detailed 
model. Although there hasn’t been much effort at developing 
efficient distance methods specifically for point clouds, 
polygonal approaches are adaptable to this model 
representation. 

Discussion 
While there have been approaches for minimum distance 

methods between two objects of the same representation, or in 
the same family, there has not been much effort in developing 
general distance methods. This is probably due to the very 
distinct approaches taken for the different representations, and 
the difficulty in merging these styles. 



 3 Copyright © 2004 by ASME 

A UNIFIED DISTANCE APPROACH 
Our approach is to use algorithms that compute the 

distance from a point to a model as a basis for heterogeneous 
model to model distance functions. This permits current 
simulation and analysis techniques, which now only work on 
similar representation models,  to be applied to models of 
different representations, such as models derived from different 
processes. An object-oriented implementation allows these 
point-model distance algorithms to be combined in a single 
generic model-model distance function to compute the 
minimum distance between two models of different 
representations. 

A Generic Model-Model Distance Function 
The generic model-model distance function is based on the 

observation that a local minimum in distance between two 
models can be found by 

1. finding the distance from a query point on the first 
model to the second model,  

2. using that closest point as a new query point and 
finding the closest point to it back on the first model,  

3. repeating this process until the minimum distance 
converges. 

Currently, we initialize this search by finding the closest 
points between the two oriented bounding boxes containing the 
models. The search uses the closest point on the first model’s 
bounding box in a point-to-model distance query with the 
second model. That query returns a point on the second model, 
which can then be used in the iteration described above. This 
heuristic for initializing the process works robustly, but there 
may be other possibilities, such as using multiple initial points, 
that perform better. 

Figure 2 demonstrates this process on two spline models. 
The alternating closest points are connected by lines showing 
the convergence of the method.  This approach is essentially a 
point-sampled gradient search in the distance space of the two 
models, rather than the more common gradient search on the 
surfaces of the models. 

An Object-Oriented Implementation 
This approach yields a clean implementation in a 

heterogeneous model environment. For each type of model 
representation, a point to model distance function needs to 
implemented. Then, a generic model-model superclass function 
can call these specific implementations. Alternately, if the 
models are not derived from a common class object, template 
programming can be used to achieve the same result. A pseudo-
code implementation of the superclass approach would look 
like the following. 

class geometry_object { 
    real model_model_distance( geometry_object m1, 
                                                   geometry_object m2) 
} 

Sample code for some model representations would 
contain 

class polygon_model : geometry_object { 
    point point_model_distance( point query ) 
} 

class spline_model : geometry_object { 
    point point_model_distance( point query ) 
} 

class CSG_model : geometry_object { 
    point point_model_distance( point query ) 
} 

Since all the representations inherit from geometry_object, 
the geometry_object model_model_distance method calls the 
consistently named point_model_distance methods for each 
representation being queried. Each of those functions only has 
to know about its own representation, so specialized distance 
functions accounting for all possible model-model interactions 
aren’t needed. C++-style pseudo-code for the generic model-
model distance method looks like 

 
point  

     geometry_object::model_model_distance(  
                                                       geometry_object m1, 
                                      geometry_object m2) { 
           point pt2, pt1 =  m1.closest_pts_bbox(m2);     // initialize 
           real last_distance = INFINITY,  
                           distance = -1.0; 
          bool first = true;                   // model are we querying 
           while ( distance != last_distance) { 
                  if (first)  
                       pt2 = m2.point_model_distance( pt1 ); 
                  else       
                       pt1 = m1.point_model_distance( pt2 ); 
                  last_distance = distance; 
                  distance = pt1.distance( pt2 ); 
                  first = !first;                                // switch models 
            } 
 
where models m1 and m2 can be any model representation that 
derives from geometry_object and has a point_model_distance 
method. 

Local Distance 
This technique does not guarantee a global minimum, 

although the result often is a global minimum. The result is 

 

 

Figure 2: BY ALTERNATING POINT-TO-MODEL MINIMUM DISTANCE 
QUERIES, THE DISTANCE CONVERGES TO A MODEL-MODEL MINIMUM 

DISTANCE. 
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properly characterized as a local minimum distance. Most local 
methods do a local gradient descent in the regions around the 
initial estimated minimum distance points, which constrains the 
result to be in those regions as well. However, unlike these 
local minimum distance functions, our method can “jump” 
regions on the models. This because the gradient search is not 
along the surfaces of the models, but instead in the distance 
space of the two models. 

Convergence 
The method converges to a local minimum because each 

alternating step must yield a point-to-model distance that is 
closer or the same as the previous step. The prior step provides 
an upper bound on the minimum distance between the two 
models, with proof by existence from the query point on the 
one model and its closest point on the other. The method stops 
because there is a minimum to distance between models, so 
eventually the new step must be the same distance as the last 
and the points are locally closest points. Of course, this 
argument depends on the convergence of each point to model 
minimum distance step. 

RESULTS     
We have implemented the unified distance function 

approach within our CAD research testbed, Alpha_1. This 
system supports a number of model representations, for which 
we implemented point to model minimum distance methods. 
These point to model methods use a variety of approaches, 
described in Table 1. 

The method reliably converges to a minimum distance 
between models, even in difficult model configurations. In Fig. 
3, the top graph shows slowed convergence as the method 
traverses a concave portion of one model (see the models in 
Fig. 2). The lower graph of Fig. 3 shows rapid initial 
convergence, followed by slower convergence caused from 
nearly parallel model geometries (Fig. 4). However, in each 
case, the method still converged in relatively few steps. In the 
example configuration of Fig. 1, the worst case took twelve 
steps to converge and the best took three. 

We tested the characteristics of this type of search on two 
polygonal bunny models translated apart from each other. The 
test randomly locally rotated each model before calling the 
heterogeneous distance query and a comparison globally 
convergent distance query. After 1,000 queries, the 
heterogeneous distance query had the same result 95% of the 
time. The other tests converged, but to a local minimum rather 
than the global solution. The results that failed to reach a global 
minimum were evenly split between results that were a small 
fraction of the distance off from a global minimum, indicating 
the iteration became trapped in a small bump near the correct 

solution, and results that were further off, indicating an iteration 
that converged on the wrong large-scale feature. 

These results compare reasonably to convergence rates of 
common numerical methods for parametric models. In addition, 
greater global reliability could be obtained by sampling more 
initial points, similar to current practice for  numerical methods. 
Additionally, higher rates of global convergence should be 
obtainable in simulations with coherence, where the last 
solution initializes the new iteration. We are exploring these 
issues in further work. 

DISCUSSION 
We have focused on iteration steps over computation time, 

because the computation time is highly dependent on the 
individual point-to-model methods used. The linear search 
implemented for the triangle cloud and point cloud models 
means that the times in our system are not competitive with 
specialized packages such as PQP. However, we can easily 
replace any of the point-to-model packages with an accelerated 
technique, and all distance queries to that representation will 
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Figure 3: CONVERGENCE RATES FOR TWO DIFFERENT MODEL-MODEL 
INTERACTIONS. IN THE TOP GRAPH, CONVERGENCE IS SLOWED BY HAVING 

TO CROSS A CONCAVE PORTION OF ONE MODEL. IN THE SECOND GRAPH, 
DISTANCE INITIALLY DROPS QUICKLY, BUT THEN SLOWS IN NEARLY 

COLPLANAR PORTIONS OF THE MODELS. HOWEVER, IN BOTH CASES, ONLY 
A FEW ITERATIONS ARE NEEDED. 

 

Figure 4: NEARLY PARALLEL GEOMETRIES CAUSES SLOWED 
CONVERGENCE. 

TABLE I.  POINT TO MODEL METHODS  

Model Representation Point to Model Method 
NURBS surface Nodal mapping followed by 

Newton-Rapheson 

Triangle cloud Linear search 

Point cloud Linear search 

CSG primitive Specialized function 

 



 5 Copyright © 2004 by ASME 

get an equivalent boost in speed. This code modularity makes 
experimentation and piecewise acceleration much easier. 

CONCLUSION 
Current modeling and VR systems typically use 

homogeneous model types, or only allow limited interaction 
between supported types. The approach demonstrated here is 
very flexibly applied to different model representations. This 
type of computation is a critical component of heterogeneous 
model environments that can support new technologies for 
model acquisition and the need for specialized representations 
during analysis. Our hope is that it can facilitate new modes of 
interaction between different types of models without having to 
resort to model conversion. The unified distance approach can 
be very competitive with specialized distance functions, as long 
as the underlying point-to-model functions are optimized. 
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