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ABSTRACT 
 

We present a scheme to construct C1 continuous toolpath for 5-axis pocketing of high speed 
machining.  A continuous toolpath synthesis is proposed, that forms out circular segments of 
maximally inscribed sizes and linear segments connecting these circular segments. 
Extending earlier work that employed the Medial Axis Transform to compute these maximally 
inscribed circles for 2D planar pockets, this work examines general pockets in ℜ3 represented 
as NURBS surfaces, and in 5-axis machining setup. 
Results are demonstrated by employing the proposed scheme toward the machining of 
impellers.  Possible extensions toward a C2 continuous toolpath is discussed as well. 
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1. INTRODUCTION 
NC machining is one of the most common manufacturing scheme available nowadays [1-3],[10-12],[15],[17-
18],[20]. For example, forming die-cavities [2] is one such application. It requires machining at different levels of 
several parallel cutting planes that define various pockets.  A closed shape  denoted the outline of the pocket, is 
prescribed in a pocketing operation, possibly with islands, and a toolpath is generated to machine the interior of 
the shape, cleaning it to a prescribed depth  In some applications, the bottom of the pocket is assumed planar.  A 
more complex scenario necessitates the support of freeform shaped bottom of pocket, a case common in molding. 

Two major approaches exist to generate toolpaths for pocketing operations.  The first is based on the intersection 
of the outline of the pocket with parallel and equally spaced planes.  By connecting the parallel adjacent segments 
that trim the pocket domain into a zig-zag motion, a complete toolpath is constructed [1],[11],[17-18].  This 
approach is similar to the scan conversion scheme used in computer graphics to render polygonal domains and fill 
them with pixels [9]. The different scanline segments are then connected into a C0 continuous zigzag toolpath. 

The second approach offsets the outline(s) of the pocket by equally spaced offset distances, and employs these 
successive offsets to derive a toolpath [3],[10],[15].  Offsets of a C1 continuous outline can yield C1 discontinuities 
in regions where the radius of curvature of the curve is smaller than the offset distance. Then, self-intersections 
might occur and the trimming of these self-intersections introduces C1 discontinuities.  Hence, in general, this 
offset-based toolpath is also only C0 continuous. 

Other related works on NC pocket operations have attempted to look at optimization issues.  Examples include 
consideration of successive application of tools with decreasing radii [20], so as to reduce the overall machining 
time, or alternatively, minimizing the number of retractions in zigzag [1], [17-18]) and offset [3] type toolpaths.  
The latter has an exponential-expected time complexity due to the ability of reducing the toolpath traversal 
problem to the Traveling Salesman Problem (TSP). 

Some work could be found on NC machining of pockets over freeform geometry.  Typically, either a ball end must 
be used or the tool must be oriented so as to minimize the scallop residue, such as the curvature matched 
machining [13] approach.  All such schemes, again, use the offset schemes over the surface, employ parallel 
planes' intersections, or alternatively, exploit the surface parametrization and extract isoparametric curves to 
guide the tools.  In this work, we propose another approach, one that employs as-large-as-possible circular 
controlled motions over the freeform geometry. 

High speed machining (HSM) is an NC machining procedure that is becoming more and more common [14],[16], 
[19]. Unfortunately, both the zigzag toolpath and the offsetting toolpath generation approaches introduce multiple 
C1 discontinuities into the toolpath, making it unsuitable for high speed machining applications. Recently, several 
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attempts have been made to alleviate these difficulties. One approach employs a spiral motion that starts at the 
center of the pocket and spirals out until it reaches the outline [14],[16].  If the spiral starts at the center, the spiral 
toolpath will present an infinite curvature, at the limit  Furthermore, it is unclear how to initialize the spiraling 
process as well as bring the tool to its proper cutting depth. While the spiraling scheme can work reasonably well 
in almost circular pockets, it also becomes arbitrarily inefficient when elongated pockets are considered. Similar 
difficulties might result when pockets with complex shapes are considered.  Other approaches include trochoidal 
milling [19] where the toolpath is following a trochoidal path.  This scheme is used mainly to handle local C1 
discontinuities in the outline of the pocket, converting C1 discontinuities into small loops that continuously 
connect the adjacent pieces, thereby forming a C1 continuous toolpath. 

In our work, we propose a different scheme to handle high speed machining of arbitrary C1 continuous freeform 
surface pockets, in a 5-axis machining context.  The generated toolpath consists of arcs of circular arcs of as-large-
as-possible radii, and segments that connect between consecutive arcs.  This procedure automatically generated 
toolpaths that are especially suited for narrow and elongated pocket regions that are difficult to machine even 
using traditional toolpath generation schemes.  Further, the constructed toolpath is guaranteed to be C1 
continuous, maximizing the benefits that can be drawn from the high speed machining schemes  In [8], a scheme 
to support toolpaths formed out of arcs of as-large-as-possible circular arc was presented over flat bottom pockets.  
This work extends [8] to support arbitrary C1 continuous freeform surface pockets. 

The rest of this paper is organized as follows.  In Section 2, the basic toolpath generation algorithm is considered.  
In Section 3, several examples are presented, including NC machining tests we have conducted. Finally, in Section 
4, we consider possible extensions and conclude. 
 
2. THE 5-AXIS HSM TOOLPATH ALGORITHM 
Turbine blades and impellers are prime examples where 5-axis machining can serve well by allowing full access to 
the entire geometry, geometry that could be quite challenging (see Figure 1(a)).  Consider regular C1 continuous 
parametric surface S(u, v) : D ⊂ ℜ2 → ℜ3, D = [0, 1]2, and C1 vector field V(u, v) that prescribes and orients the 
tool at each location on the surface.  Further, assume S(u, v), as a one pocket of the impeller object, is open in one 
of its four boundaries.  Without loss of generality, let this open boundary be u = 0 or S(0, v); see Figure 1(b). 
 

 
                                 S(0, v)  

(a) (b) (c) 
Fig. 1. Given the impeller model in (a), consider one freeform surface pocket S to be high speed machined in 5-axis context (b).  
The composition of adjacent circular curves in the parametric space of S, yields adjacent rounded curves on the surface (c). 
 
Now consider parametric circle C1(t) = (u1(t), v1(t)), positioned in the parametric space of surface S, D.  The 
composition of S(C1) = S(u1(t), v1(t)) would yield a rounded shape in Euclidean space, over S, that is C1, because S 
is C1.  Position several such circles adjacent to each other in D, and in Euclidean space, one will get a sequence of 
rounded curves; see Figure 1(b).  By continuously connecting these rounded curves into one long toolpath, one is 
creating a complete C1 continuous toolpath that covers the entire domain of the freeform surface's pocket. 
In the coming subsections, we will expand on the necessary details of this approach.  In Section 2.1, we describe 
the composition process and possible alternatives to the composition computation.  In Section 2.2, these 
composed shapes will be combined into one long toolpath, discussing the bi-tangency computations and the 
meaning of offsets over surface S.  Finally, in Section 2.3, the tool orientation is considered, for both cylindrical 
and tapered tools. 
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2.1 The Composition Computation and Alternatives 
Given two polynomial/rational functions, f and g, their composition f o g is clearly a polynomial/rational (of 
multiple degree).  Hence, given a Bézier curve embedded in the parametric domain of a Bézier surface, their 
composition is also a Bézier curve on the surface.  This, since Bézier curves and surface are polynomials (or 
rationals).  Direct computation of the composition of Bézier freeforms has also been considered and discussed, for 
example in [6].  The composition of B-spline and NURBS freeform is not much more complex conceptually as one 
can always subdivide the piecewise polynomial/rational into its polynomial/rational pieces, compute the 
composition and reconstruct the final composed shape.  More on composition can be found in [4],[6]. 

A crucial property of the composition operation is that if both f and g are Ck continuous so is f o g.  Hence, any 
shape C(t) that is C1 continuous and is composed with a C1 continuous surface S would yield a C1 continuous curve 
on S. Specifically, when we compose circles with S, the rounded curve over S would be C1 continuous at every 
location for which S is C1.  The fact that S is not an isometry (distance preserving, see [5]) means that circles are 
not preserved under the mapping.  Ideally, and since the first fundamental form [5] measures distance changes 
due to the S mapping, one should derive the inverse of the first fundamental form function, denoted ℑ-1, as a pre-
warping function from ℜ2 to ℜ2 and pre-warp circles Ci through ℑ-1 only to be mapped through S to yield good 
approximation of circular arcs on the surface of S, as S(ℑ-1(Ci)).  While ℑ-1 is not the inverse function of S but 
rather compensates for the non-isometric behavior of S, reversing the effects of stretch and scale in S, this process 
is extremely demanding computationally.  Fortunately, we are not really in need of having precise circles on S.  We 
are only required that: 

1. the mapped shape, S(Ci), will be C1 continuous  
2. the mapped shape, S(Ci), will be close to its adjacent shape, S(Ci+1), with a bounded distance. 

Requirement 1 is already established, provided S and C are C1. In order to handle Requirement 2, we should 
establish a bound on the relative distance change between the parametric domain from (u0, v0) to (u1, v1) and the 
Euclidean space from S(u0, v0) to S(u1  v1).  The first fundamental form again provides the answer here, and 
bounds on the coefficients of the first fundamental form also bound the distance changes one can expect between 
the parametric and Euclidean spaces of S.  Therefore, and provided S is a Bézier or a NURBS surface, one could 
compute 
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as (piecewise) rational Bézier or NURBS fields and use the extreme coefficients of E, F, and G as the established 
distance-change bounds.  Let these extreme distance-change bounds be (amin, amax).  That is, an arbitrary small 
step δ in the parameter domain of S, D, would be mapped to a path on S of an arc-length between δamin and δamax. 
Denote by d(P1, P2) the Euclidean distance between P1 and P2, and let Dh denote the Hausdorff distance between 
two curves Ci(t) and Ci+1(r), 
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Then, the Hausdorff distance between two curves on S, S(Ci(t)) and S(Ci+1(r)), is bounded to be between Dh(Ci(t), 
Ci+1(r))amin and Dh(Ci(t), Ci+1(r))amax.  By placing adjacent circular shapes in the parametric space of S so that their 
Hausdorff distance is bounded by δ, the δamin to δamax bounds will hold.  Bounding the Hausdorff distance 
between two curves in the parametric domain is a simpler problem as the domain is planar now.  Herein, however, 
the problem is even simpler.  If the curves, Ci, are circles, then the Hausdorff distance between two circles is trivial 
to compute.  Furthermore, even if Ci is not a circle, Ci and Ci+1 are typically going to be the same shape of curves, 
affinely transformed.  Hence, a bound on the Hausdorff distance could be computed from this transform. 

Seeing the tool path shown in Figure 1(c), it is clear the tool is going to be in contact with material and actually 
machining only for about half of the time.  Hence, one can, for instance, cut and round the back half of the circular 
arc, in each circle, making the tool return to its next cutting position faster  Figure 2 presents several possibilities 
for rounded curves that can be used. In (c), the cut and rounded back half circle shape just proposed is presented. 
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(a) (b) (c) 

Fig. 2. Several examples of rounded shapes one can use to compose and map through S to yield C1 continuous toolpath.  
Compare with Figure 1(c), which is the result of composing circles 
 
The precise composition yields a piecewise polynomial or rational  Very few NC machine controllers support the 
direct processing of spline curves.  In fact, few are supporting the helical motions that are necessary for following 
the piecewise-arcs approximations of 5-axis toolpaths.  If the toolpath is to be approximated as a piecewise linear 
curve, then the composition could clearly be approximated by simply sampling points along the curve C(t), at ti, i 
= 1,...,n, only to be then evaluated through S as S(C(ti)), i = 1,...,n. 

In the next section, we consider two additional problems that must be solved in order to make the set of rounded 
composed shapes into a complete toolpath: how to connect adjacent rounded shapes into one complete C1 
continuous toolpath and how to offset this toolpath. 
 
2.2 Making a Complete Toolpath 
Given two adjacent rounded shapes on S, Ci = S(Ci) and Ci+1 = S(Ci+1), one needs to connect the two (and all other 
adjacent shapes) into one long toolpath.  Any bi-tangent line segment, Li,i+1 in D, between Ci and Ci+1 could serve 
as the bridge connection between the two shapes, that is C1 continuous in the parametric domain.  Then, and since 
S is C1 continuous, Li,i+1 = S(Li,i+1) is going to be tangent to both Ci and Ci+1 over S, or the toolpath Ci, Li,i+1, Ci+1 is 
going to be C1 continuous. 

Two disjoint convex planar shapes have four common bi-tangents:  two crossing bi-tangents and two bi-tangents 
on two different sides.  Two intersecting convex shapes will only have two bi-tangents on the sides; see Figure 3. 
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(a) (b) 

Fig. 3.  (a) Two disjoint planar convex shapes have four bi-tangents  (b) Two intersecting planar convex shapes can have two bi-
tangents only. 
 
In our case, two adjacent rounded shapes are interesting and hence we should expect two bi-tangents on two 
different sides.  One can explicitly solve for these bi-tangents by solving for the two polynomial constraints of 
0 = 〈Ci(t) – Ci+1(r), Ni(t)〉, 
0 = 〈Ci(t) – Ci+1(r), Ni+1(r)〉, 
and two unknowns, t and r, where Ni denotes the normal field of the curve Ci.  This approach is clearly feasible 
(see [7] and, in fact, the bi-tangents in Figure 3 were derived by explicitly solving Equations (1). However, in our 
case, this can be unnecessary, at times.  The two adjacent rounded shapes are, in many cases, tangent to the 
boundary of S.  This holds, due to the fact that we place the rounded shapes in the parametric domain of S so that 
they cover maximum domain and hence make them tangent to the boundaries.  Hence, one can simply use 
segments of the boundary curve of S to bridge between adjacent rounds, in a C1 manner.  This simplified tangency-
to-the-boundary approach was employed in the impellers' examples shown in this work. 

Another difficulty we must handle before having a valid toolpath, stems from the need to perform offsets of the 
toolpath away from the boundary of the pocket, by the tool radius.  One can foresee several options.  One option is 
for the original surface pocket S to be properly clipped at all boundaries, by the offset radius, before we apply the 
presented approach.  The problem with this first solution is that now S must be represented as a trimmed surface 
as the offset edges, in the parametric domain, could be quite arbitrary. 

An alternative approach would directly offset points on S(Ci) that are too close to the boundary.  For each location 
along the toolpath  find the closest location to one of the boundaries and determine the direction of the offset, in 
the tangent plane of S, away from that boundary.  If S is regular, the offset direction could be expressed in terms of 
the partial derivatives of S and hence the offset, in terms of parametric coordinates, could be determined as well. 

To determine the minimal distance to one of the boundaries, one is required to compute geodesic distances over S.  
One typically initiates the process by building a discrete distance map over the D domain.  Starting from the 
boundaries themselves with zero distance, a breadth first search (BFS) is applied to the discrete distance map 
until all distances are determined.  Interestingly enough, the offset amount should be such that after the offset 
operation, the tool will no longer collide with the boundaries.  This means that any point that is far from the 
boundaries more than the tool radius need not move. In practice, we found that while boundary points should be 
moved an amount that is equal to the tool radius, better and more stable behavior is achieved if interior points are 
moved an amount that is proportional to their distance to the boundary, with points along the bisector (that are 
equally distant from two opposite boundaries) are indeed left stationary; see Figure 4 for an example.  The next 
section considers another question one must address, in the context of 5-axis machining, and that is the question 
of orienting the tool. 
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(a) (b) (c) 

Fig. 4. The machined impeller using the proposed tool path scheme and a cylindrical tool.  The original tool path (a) is being 
offset 1mm in (b) and 2mm in (c) from the boundary  Note this offset is varying and only points near the boundary are moved 
the full amount. 
 
2.3 Orienting the Tool 
The presented approach can employ arbitrary tool orientation scheme  The simplest can be to employ the surface 
normal to orient a flat end tool.  Yet, in many cases the surface normal is not the proper orientation to use.  For 
example, the use of surface normals to orient the tool in the case of the impeller model, in Figure 1, would yield 
walls of varying thickness  Better accessibility in complex environments might demand a tailored tool orientation 
field.  Similarly, curvature matched machining [13] is another motivation to use an orientation field, other than 
the surface normals' field. 

A more general orientation prescription scheme allows for arbitrary setting of a vector field, V(u, v), to govern the 
tool orientation  In the impeller case, V(u, v) is derived as the difference surface between the top pocket surface 
and the base pocket surface; see Figure 5. 
 

  
(a) (b) 

Fig. 5. Two views on the vector field that is computed to orient the tool, as the difference of the top and bottom surfaces of the 5-
axis machined pocket.  Note this field can be different from the normal field of the bottom pocket surface, S, as is the case here. 
 
If the used tool is tapered, further measures must be taken to ensure the tool is property tangent to the side walls 
of the pockets.  Much like the variable offset we used in the previous section, herein, one can use variable 
rotations.  Let the tapered angle be θ. Then, tool orientation vectors that are on the boundary will be rotated in 
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(around the tangent vector of the boundary curve) by θ degrees.  Interior tangents will be rotated less and less 
until the bisector locations at which no rotations take place. 

In the next section, we present the results of using the proposed toolpath scheme, in machining impeller models, 
one of which is from Figure 1. 
 
3. 5-AXIS HSM EXAMPLES 
In order to machine the impellers, which were 125mm in diameter, two types of tools were used.  The first was a 
5mm (diameter) cylindrical (rounded) flat end tool and the second was a (rounded) flat end 4mm (diameter) 
tapered tool with 3 degrees tapering. 

The toolpath was created with a 1/3 of a mm size steps yielding a very good finish.  Figure 6 shows the final 
generated toolpath for the impeller in Figure 1, and using a cylindrical flat end tool.  Figure 7 shows the actually 
machined impeller, from two different views  Figure 8 shows a similar, six-blade impeller that was machined 
using the tapered tool, from two different views. 
 

  
 (a) (b) 

Fig. 6. The final tool path for the impeller in Figure 1, using a cylindrical flat end tool.  In (a), the toolpath before the offset is 
shown whereas (b) presents the tool path after the (variable) offset was applied. 
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(a) 

 
(b) 

Fig. 7. The machined impeller using the proposed tool path scheme and a cylindrical tool. 
 

 
(a) 

 
(b) 

Fig. 8. A different, 6 blades, impeller machined using the proposed tool path scheme and a tapered tool. 
 
4. DISCUSSION, FUTURE WORK AND CONCLUDING REMARKS 
This work presented an approach to construct C1 continuous toolpaths that are highly suitable to high speed 
machining.  By connecting the adjacent rounded shapes by bi-tangent lines, C1 continuity has been achieved. 
One can consider the use of higher order contact curves between adjacent rounded shapes.  For example, by using 
a quintic Hermite to bridge between adjacent rounded shapes, one can construct a C2 continuous toolpath.  
Composed over a C2 surface, the resulting toolpath will be C2 as well. 

Another open basic question could be found in the construction of the rounded shapes of the toolpath.  Better 
distance bounds, than globally using the first fundamental form, to bound the distance changes and Dh, must be 
sought.  One clear alternative is to try and get estimates on the distance changes in the local neighborhood instead 
of globally.  Such local bound is likely to be tighter. Similarly, better ways to control the rounded shape after it is 
composed with S should be sought as well.  One possibility would be to prewarp curve Ci so that S(Ci) would 
achieve the desired result. 

Yet another clear deficiency of the presented scheme is that in about half the time, the tool is in free motion, 
cutting nothing.  Yet  since this free motion is easily identifiable, being the back half portion of every rounded 
curve S(Ci), one can make the tool move along these half back portions much faster.  In effect, the time now spent 
in free motion will be minimized. 
 
The presented approach could be combined with other techniques to minimize the scallop height such as 
curvature matched machining [13].  The quality of this result closely depends on the maximal distance between 
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adjacent toolpaths, herein, adjacent composed circular shapes and should probably be compared to other toolpath 
generation schemes. 
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