
DRIVE: A SYSTEM FOR INTERACTIVE REVIEW

OF ENGINEERING DESIGNS

by

Brian Frank Loss

A thesis submitted to the faculty of
The University of Utah

in partial ful�llment of the requirements for the degree of

Master of Science

Department of Computer Science

The University of Utah

December 1997

Copyright c Brian Frank Loss 1997

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Brian Frank Loss

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Richard F. Riesenfeld

Elaine Cohen

Peter Shirley

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Brian Frank Loss in its �nal form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including �gures, tables, and charts are in place; and (3) the
�nal manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Richard F. Riesenfeld
Chair, Supervisory Committee

Approved for the Major Department

Robert R. Kessler
Chair/Dean

Approved for the Graduate Council

Ann W. Hart
Dean of The Graduate School

ABSTRACT

Computer aided design and manufacturing tools have allowed designers to enjoy

signi�cant reductions in the design cycle. A shorter design cycle is advantageous

for a number of reasons, including shorter time to market, reduced development

costs, and superior product design. Current CAD/CAM tools are mature and

provide comprehensive support for many individual stages of the design process.

A challenge lies in creating systems with uid support for all stages of the design

process, and support for the design process itself.

This thesis describes Design Review Interactive Viewing Environment, a �rst

step towards the goal of design process support. The Alpha 1 modeling system is

integrated with the World WideWeb, yielding an e�ective tool for interactive design

review. The design process is captured in a hypertext document that integrates

nongeometric information such as design rationale with interactive CAD mod-

els. Existing web browsers make it straightforward to include design descriptions,

sketches, pictures, and so on in a hierarchical document structure. A web browser

plug-in allows Alpha 1 model viewing and editing clients to be embedded directly

in hypertext documents. In addition, Alpha 1 is extended with model views, which

are speci�c presentations of a model. Hyper-links provide a mechanism for model

views to be linked to one another or to other web pages, thus allowing navigation

of a design hierarchy from within Alpha 1 clients or their plug-in counterparts.

CONTENTS

ABSTRACT : iv

LIST OF FIGURES : vii

ACKNOWLEDGMENTS : viii

CHAPTERS

1. INTRODUCTION : 1

1.1 Motivation : 2
1.2 DRIVE Overview : 5

2. BACKGROUND : 8

2.1 Alpha 1 : 8
2.1.1 The Two-View Interface : 9

2.2 Related Work : 10
2.2.1 Design Process Support : 10
2.2.2 Collaboration : 12
2.2.3 WWW Integration : 13

3. THE ENGINEERING DESIGN WEB : 15

3.1 Overview : 15
3.2 DRIVE Example : 17
3.3 Future Work : 22

4. THE DRIVE IMPLEMENTATION : 26

4.1 Overview : 26
4.2 Model Views : 29

4.2.1 The Alpha 1 Implementation of Model Views : : : : : : : : : : : : : : 30
4.2.2 The Alpha 1 Display Library : 31

4.3 Hyper Links : 32
4.4 Browser Integration : 33

4.4.1 Java : 33
4.4.2 VRML : 34
4.4.3 ActiveX : 36
4.4.4 Netscape Plug-in Architecture : 36
4.4.5 The Alpha 1 Plug-in : 38

5. CONCLUSIONS : 43

REFERENCES : 45

vi

LIST OF FIGURES

2.1 The Alpha 1 client-server architecture. : 8

2.2 Textual and graphical views of a model. : 9

3.1 A prototype EDW document. : 16

3.2 An example EDW document. : 18

3.3 Plug-in viewer control appears when the pointer is in the plug-in picture. 19

3.4 The plug-in picture is a full Alpha 1 viewer. Here, the model is viewed
from a di�erent vantage point. : 20

3.5 Model views can have links to other model views. : : : : : : : : : : : : : : : : 21

3.6 Model views can have links to other EDW documents. : : : : : : : : : : : : 22

3.7 Virtually any Alpha 1 Tcl/Tk script may be run as a plug-in. This is
the shape3d client, run as a plug-in. : 23

4.1 The Alpha 1 display library architecture. : 31

ACKNOWLEDGMENTS

This work was supported in part by DARPA (F33615-96-C-5621) and the NSF

Science and Technology Center for Computer Graphics and Scienti�c Visualization

(ASC-89-20219). All opinions, �ndings, conclusions or recommendations expressed

in this document are those of the author and do not necessarily reect the views of

the sponsoring agencies.

CHAPTER 1

INTRODUCTION

Computer aided design and computer aided manufacturing tools have revolu-

tionized mechanical design. The use of a CAD package during the later stages

of a product design is practically required if the designer is to succeed. However,

integrated CAD support for the early stages of the design process, as well as support

for the process itself is lacking [12]. A system capable of supporting the entire design

process in addition to individual stages of design could provide signi�cant further

reductions in the product design cycle.

This research provides a �rst step towards such a system. In particular, it focuses

on information integration through support for the design process itself. A �nished

design has much more information associated with it than just a CAD model. A

design goes through an evolution, often before any information is entered into a

CAD program. There are functional speci�cations, alternate design choices, and so

on. Furthermore, designs are often hierarchical in addition to iterative. That is,

a large design is recursively broken into smaller pieces. Each of these subdesigns

goes through a similar evolution as well.

This thesis develops a prototype system, integrated with the Alpha 1 Geometric

Modeling and Manufacturing Software System [3], that allows the user to de�ne

hierarchical \views" of a model created using Alpha 1. These \views" can then be

linked together in much the same way that World Wide Web documents are linked.

This furnishes the user with a convenient way to navigate through a design, as well

as focus on a manageable piece of a large or detailed model. The prototype system

also makes use of recent technology, thus allowing Alpha 1 viewing clients to be

2

embedded within the Netscape Navigator, a popular WWW browser program.1 An

advantage of this integration is that each view of a model can be associated with

nongeometric design information, thereby furnishing the designer with a method to

keep records of the design process itself.

1.1 Motivation

Due to the increasingly competitive marketplace, design engineers face the chal-

lenge of providing high quality designs in continually shorter periods of time. They

are further burdened by the task of supporting a wide variability of any given

design. Today's consumers have come to expect manufacturers to be able to meet

their specialized needs in a short period of time and for a relatively low cost. [2, 9]

A shorter design cycle helps a company gain a competitive edge for a number of

reasons.

Reduced development costs: Good designers are a valuable commodity, and

any reduction in the design cycle for a product means that the company is

either not paying for as much of the designers' time or that the designers are

available to work on other products.

Better timing of product releases: Often, the timing of a product's release is

a major factor in determining its success. The tastes of the marketplace can

change rapidly, and a product might be \out of style" if a product is delayed

because of problems in the design stage. Also, product releases are often event

driven. Christmas will not be delayed just because a company cannot get its

product out in time for the holiday shopping season. A shorter design cycle

means that designers are able to work with much more accurate assessments

of the market for their product. They can then tailor the product to meet the

current preferences of their customers. With a longer design cycle, it is more

likely that those needs will change at a point when the product design can no

1The browser plug-in can be used with any browser that supports the Netscape plug-in
architecture, so long as Alpha 1 is able to run on the operating system required by the browser.

3

longer be altered.

Reduced capital cost: Product development requires a substantial capital out-

lay, an investment that provides no return while the product is still in the

development and prototyping stages. Thus, there is a compelling �nancial

reason for introducing the product into the market as soon as possible. This

is analogous to the building contractor who starts renting completed oors of

a building even though other oors are still under construction.

Superior product design: A shorter cycle allows designers to make more modi-

�cations and improvements on the original design with no cost increase. The

designers can carry out more iterations toward the �nal design, and consider

more design alternatives.

Smaller lot sizes: Consumers have specialized needs. It is impossible for man-

ufacturers to satisfy everyone, but the decreased cost associated with the

shortened design cycle can make it cost e�ective for companies to produce

smaller runs of any given product. The ability to produce small numbers

of a wider variety of products can be advantageous for both the producer

and consumer. Smaller lot sizes may also be bene�cial from a marketing

standpoint. Auto makers, among others, have discovered that the words

\limited edition" can often increase the demand for a product.

CAD tools have provided design engineers with the means to signi�cantly shorten

the design cycle. Design is an iterative process that often forces a considerable

amount of repetitive work [12]. CAD tools allow the designer to take advantage

of this by permitting simple modi�cations of an existing model and virtually elim-

inating the error prone process of copying a previous design. Current progress in

many areas of CAD notwithstanding, signi�cant problems still need to be solved.

Even though current CAD tools give the designer considerable exibility, they

still do not support the entire design process. In particular, adequate support

for the earlier stages of design is lacking. Although there is some support for

4

the earlier stages [4, 10], it is often divorced from downstream processes. For

example, early stage design tools such as sketching tools do not produce the detailed

three-dimensional models that current CAD systems require as their input. Such

models are usually not available until later stages of the design process. Since the

early stages make up a large portion of the whole process [12], designers stand to

gain considerably from improved computer support in these stages.

Current CAD tools have become highly specialized, providing designers with

a wide array of capabilities from computer aided drafting to realistic rendering

to �nite element analysis. Once again, there is a di�culty in that each of these

programs requires a highly speci�c type of input. This input is often incompatible

with that required by other programs. The end result is that no system provides

comprehensive and compatible computer support for all phases of design. Even

if tools that meet the designers needs are available, they are likely to be separate

packages or separate programs within one package.

This lack of integration is a serious de�ciency found in current systems. It can

make the di�erent programs tedious and ine�cient to use, as much of the user's time

is spent switching from program to program or converting a model among di�erent

formats. In general, it implies a lack of support for design as a process. The

individual stages of the design process are not as important as the whole process.

Although structural analysis, for example, can certainly be a critical component

of a design, the e�ects of this analysis on the rest of the design are even more

important. If the structural analysis indicates that a change needs to be made, the

user should be able to make the change and have the CAD system automatically

propagate it as necessary.

Fluid interaction among di�erent modules of the system is even more important

during the earlier stages of design, when many important design choices are made.

The system should allow for tracking and merging of alternatives that result from

either concurrent design or di�erent iterations of the design cycle. Ideally, the

system should also be able to apply tools that are normally intended for later

stages of design as early in the process as possible. Even if these tools are only

5

able to provide a rough estimate (because the model is not fully speci�ed at this

point), they can provide crucial information to the designer. For example, designers

working on an airplane would like to know as soon as possible if their component of

the design has exceeded a budgeted weight. If a rough estimate of the �nal weight

shows that the limit has been drastically exceeded, then the design needs to be

reworked. Clearly, this knowledge can save the designer a great deal of time if it is

available early in the process.

The next generation of CAD/CAM tools will begin to address these problems.

Now that many single-stage tools have matured, researchers are beginning to con-

centrate on making the technologies work together [6, 11, 13, 14, 16]. Designers will

have uid access to many di�erent design tools such as renderers, analysis packages,

and parts databases. The system will provide early stage design support|perhaps

a sketching program that allows the designer to sketch out a rough idea and then

�ll in the corresponding details in the CAD model. At any point in this process,

the model will be uidly usable by virtually any part of the system. In addition,

we will start to see more support for the design process itself. This will include

\process oriented" capabilities such as design alternative tracking.

Providing support for the design process uncovers a new set of problems. To

some extent, supporting the design process means unrolling the design loop. The

result is that an enormous amount of information can be associated even with

relatively small designs. With access to so much power and exibility, the user can

easily become overloaded with information. The system needs to provide a way for

the user to deal with the complexity of a large design as well as the complexity of

a large CAD package. If the user cannot readily access this \process" information,

an integrated design system will lose many of its advantages.

1.2 DRIVE Overview

TheDesign Review Interactive Viewing Environment DRIVE provides the frame-

work of an e�ective environment for distributed engineering design review. It

also provides the basic building blocks needed by The Engineering Design Web,

6

an integrated design environment consisting of \live" design documents. EDW

documents integrate text, graphics, Alpha 1 modeling clients, and other media in

a WWW-like document that can be the basis for a distributed collaborative design

session. A more detailed description of the EDW concept is provided in Chapter 3.

DRIVE provides two main additions to the Alpha 1 modeling system: Model

Views and an Alpha 1 Web Browser Plug-in. A model view contains information

about how to present a model to the user|what parts of the model are visible, a

view point, a view scale factor, display properties (shaded surfaces, surface normals,

etc.), and any other viewing information that is window-speci�c. Essentially, a

model view is an active model viewing client with persistent viewing state. This

state information is saved in the same way as other Alpha 1 model objects.

Model views can also be hyper-linked in much the same way as HTML docu-

ments. Selecting part of a model in a model view causes another model view to

be loaded, a URL to be loaded in a running web browser, or both. The user can

take advantage of this feature by linking together di�erent models from a design.

For example, a model view with rough geometry can be linked to other model

views that contain more detailed geometry. Those detailed models could in turn

be linked to even more detailed models, an so on. Such a hierarchy of linked model

views allows the user to e�ectively navigate, or browse, the design space simply by

clicking on parts of interest.

DRIVE also adds a web browser plug-in to Alpha 1. Based on the Netscape

plug-in architecture, the browser plug-in allows most Alpha 1 programs that utilize

the Tcl/Tk [8] user interface toolkit to be embedded in HTML documents. When

a browser supporting the plug-in architecture displays such a page, it activates the

plug-in and provides the user with an active Alpha 1 client that is e�ectively a part

of the page.

DRIVE represents a �rst step towards creating the next generation CAD sys-

tem described above. Alpha 1 is particularly well suited for this task because of

its unique implementation. It is a client-server model with a dependency graph

representation of the model. By taking advantage of Alpha 1�s ability to store

7

a persistent version of the model dependency information, DRIVE adds tools to

provide hierarchical \views" of a model and allows the user to navigate among

these views and their associated design information. In short, DRIVE brings some

\web" functionality to Alpha 1 through model views, and incorporates Alpha 1

into the web via the web browser plug-in.

CHAPTER 2

BACKGROUND

2.1 Alpha 1

Developed at the University of Utah, Alpha 1 is a parametric CAD system with

integrated CAM support [3]. The system stores geometry using a trimmed NURBS

boundary representation, thus allowing full three-dimensional modeling. Software

support allows the user to generate and simulate corresponding code for numerically

controlled machine tools. The system also supports nongeometric data in the form

of model attributes that are stored with the model, and quasigeometric objects

such as block diagram boxes and arrows.

Alpha 1 is designed according to a client-server architecture (Figure 2.1) where

model geometry is held by a server in a dependency graph representation. The

dependency graph representation allows parametric modeling. Most models are

created using the shape edit command language (SCL), a modeling language that

is parsed into dependency graph objects and then interpreted by dependency propa-

gation. The dependency propagation causes constructor functions, which generate

Model Graph

- constructor

 functions

- dependencies

- model structure

Object Graph

- geometry

- volatile

- displayable

Server (c_shape_edit)
Viewer

Viewer

Viewer

Figure 2.1. The Alpha 1 client-server architecture.

9

the actual model geometry, to execute on demand. Other client programs such

as model viewers obtain constructed geometry from a c shape edit server. The

server noti�es the connected programs when the model changes, then they can

request updated geometry from the server if necessary. Furthermore, all Alpha 1

programs can read and write binary \persistent object" versions of a model. In

fact, the server sends models to clients by writing them in binary form on a socket

connection.

Although much Alpha 1 modeling has been done using a text-based method for

specifying geometry, recent work (e.g., [10]) has begun to add support for graphical

geometry speci�cation. Graphical user interface clients construct objects and send

them, via the server, to other Alpha 1 clients. The next section describes some

unique capabilities of Alpha 1 that allow a graphical interface for model design to

work well in conjunction with the text-based interface.

2.1.1 The Two-View Interface

The client-server architecture of Alpha 1 leads to a highly modular system with

a central representation of the model. This organization provides some interesting

capabilities. In particular, it is possible for the system to generate SCL code from

the internal representation of a model. This yields a two way connection between

the graphical and textual representations of the model (Figure 2.2). The \two-view

interface," �rst suggested by Banks [1], thus gives the bene�ts of both text-based

rad : 5
origin :

(0,0,0)

Sphere
center = "origin"

radius = "rad"

Model

Figure 2.2. Textual and graphical views of a model.

10

and graphical interfaces without taking away any power from either. Operations

that make more sense to perform graphically, such as sketching and initial geometry

speci�cation can be performed that way. The same model can be modi�ed through

the SCL language when exact values for some dimensions are known, for example.

2.2 Related Work

DRIVE involves a number of di�erent research areas. Speci�cally the system

draws on previous work and generates new ideas for design process support, col-

laborative design, and WWW integration. A wide variety of research is available

in these areas, especially collaboration and WWW integration. However, relatively

little of this work involves the integration of these di�erent technologies to the

extent that DRIVE, and the EDW accomplish. We suspect that a number of

other researchers are working on similar problems, especially those involving the

integration of full strength applications with the WWW. As these areas continue

to grow, a much wider base of related work is expected to be available.

2.2.1 Design Process Support

Surprisingly little work has focused on supporting the entire design process and

providing tools to make the associated information available through one convenient

interface. Many researchers have concentrated on providing better CAD support for

various individual stages of design, but few seem to concentrate on linking support

for these stages together. For example, a number of reports [5, 10, 15] describe

systems to aid the early stages of design, when the designer tends to make rough

sketches. Most notably, the sketching tools described by Sturgill et al. [10] are

directly integrated with a CAD system. In general, however, these tools do not

take the rest of the design cycle into account.

The work presented by Tsai et al. [11] represents signi�cant progress in integrat-

ing later stages of design in a simulation-based design environment. The authors use

the interesting approach of presenting di�erent views of a model based on discipline,

such as reliability, maintainability, and so on. Unfortunately, the system described

requires a complete CAD model. In addition, although the authors discuss some

11

\process oriented" abilities such as tradeo� analysis, it is unclear if their system

provides any kind of history or record of the design process. It appears that this

system is useful for driving later stages of a design, and iterations of the design.

However, much of the design process takes place before the �rst CAD model is

created. This signi�cant portion of the design process must be recorded along with

the later stages.

The Dynamic Integration System [14] is a method for integrating and coordinat-

ing modules of engineering software. Modules make their needs and functionality

known, and the Dynamic Integration System uses special data structures, called

Dynamic Variables, and a dependency hierarchy to integrate various modules. This

intriguing concept is somewhat akin to a dataow system, and is not well suited

for the integration of some nongeometric design information such as speci�cations

and design rationale.

Krause et al. [6] present a work that begins to address the need for computer

support for the entire design process. Their system is based on \features," which

in the context of the authors' work are semantic objects that can carry information

related to the design process. The system treats features much like any other

ordinary design object, thus facilitating their integration in the design process.

Wang et al. [13] address the lack of communication between designers work-

ing in di�erent disciplines on the same product. Many electronic products are

eletro-mechanical, and require electrical as well as mechanical design. Typically,

designers in the two disciplines tend to ignore each other until very late in the design

process. The authors present a work that addresses some of the issues involved with

multi-disciplinary product design. Data sharing, the main hurdle to overcome in

a multi-disciplinary system, is accomplished through a scheme the authors refer

to as \Distributed Relevant Data Exchange." Rather than require a common �le

format or a common data location, data for each group of CAD tools in a given

domain maintain is stored in a common database. Some information is deemed

to be relevant to other domains, and is shared with them via a global database

manager. This type of data management could be useful for extending the design

12

web to handle multiple design disciplines.

2.2.2 Collaboration

Computer Supported Cooperative Work, or collaborative computer tools have

seen a recent surge in popularity. This area furnishes a great deal of research for

the EDW to draw on as it develops. DRIVE borrows some ideas from this area

in order to provide tools that will allow the EDW to be an e�ective collaborative

design environment.

One of the most common collaborative software tools available today is the

shared whiteboard. This is typically an enhanced paint program that allows mul-

tiple users to \share" a canvas. The participants can add text, draw �gures, and

paste images on the canvas as well as see and modify the object placed on the

canvas by other users. Such tools are often incorporated with audio and/or video

conferencing tools, other common collaborative tools. The InPerson software from

Silicon Graphics, Inc. is a typical example of such an application. While quite useful

in their own right, these tools run out of power quickly when used for collaborative

modeling. The lack of a full CAD model, or even three dimensional geometry is

the crippling factor.

DRIVEmakes a �rst pass at supporting collaborative design by allowing multiple

participants to view a design over the WWW. The \shared" model can be changed

from a single server location (using the existing client-server capabilities of Alpha 1)

and the change propagated to all viewers. Although many other applications allow

shared display of three-dimensional geometry (e.g., [7]), none that the author is

aware of integrate the viewing client with a complete CAD system as the DRIVE

system does. The most common form of distributed viewing supported by current

CAD systems is an option to export to VRML, a three-dimensional model �le

format supported by most WWW browsers (or plug-ins for those browsers). While

DRIVE currently adds little or no functionality over that provided by these systems,

we feel the CAD system integration provided by DRIVE will allow it to quickly

outpace competing systems as development continues.

13

2.2.3 WWW Integration

With the explosive growth of the WWW, the desire to make it more interactive

has expanded. Browser plug-ins, ActiveX, and Java are all results of the huge e�orts

to allow the WWW to be more than just a medium for viewing static HTML

documents. Although these technologies are barely one year old, the number of

ActiveX controls and Netscape plug-ins available is already quite large and growing

rapidly every day.

Despite the fact that WWW integration is such a popular idea, relatively few

plugins have encapsulated existing full applications. Most available plug-ins that we

have seen are lightweight viewers of some kind, usually with limited functionality.

One example of this is VRML viewers such as the Live3D viewer distributed with

the Netscape Navigator WWW browser or the Cosmo player from Silicon Graphics,

Inc.

One reason that plug-ins are generally not encapsulating large scale applications

is the limited bandwidth of the WWW. Even users with a fast connection will

not tolerate waiting for multi-megabyte applications to download with their web

pages. Also, much of the web integration technology is quite new and developers

have either not had a chance to integrate existing applications, or are not able to

because the integration strategy will not support it. Java, for example, is a new

language with limited support for making native calls to C or C++ methods. This

makes it di�cult for a developer to write a Java version of an existing application

without completely re-writing it.

DRIVE avoids these issues by utilizing the Netscape plug-in architecture for

the Alpha 1 browser plug-in. In short, the plug-in architecture provides hooks

for plug-in functionality, so integrating an existing code base is relatively simple.

The bandwidth is not much of an issue because the plug-in must be stored locally

rather than downloaded on demand when a page requiring it is loaded. Although

less exible than the run-time download options provided by other languages such

as Java or ActiveX, we feel this limitation is acceptable given the intended use of

14

DRIVE and the EDW. The Netscape plug-in architecture and its use with DRIVE

are explored in Section 4.4.

CHAPTER 3

THE ENGINEERING DESIGN WEB

3.1 Overview

The Engineering Design Web is, in part, an extension of the two-view concept

described in Section 2.1.1. It is also one of the future directions for the Alpha 1

system. Providing more powerful modeling capabilities, the two-view interface

integrates the textual and graphical representations of a model. Although the

model is certainly a critical part of a design, it is not the entire design. There are

many other equally important aspects of a design, including:

� functional speci�cations

� block diagrams relating functions

� mapping of functions to parts

� part assembly interfaces

� initial sketches

� design alternatives

� design analysis information

Computer support for these design components does exist. However, by support-

ing just one or two design areas, current packages force speci�c design process

boundaries on the designer. The designer must explicitly move data among the

di�erent tools. A long-term goal of the EDW is to remove these arti�cial design

process boundaries, making the tools more transparent and freeing the designer to

concentrate more on the design.

16

One starting point for achieving this integration is to encapsulate all of the

design information mentioned above in a \live," hierarchical design document whose

structure looks much like a formatted HTML document (Figure 3.1). Information

such as speci�cations, design notes, or related formulae and calculations could be

mixed with graphical and textual displays of a model. As with HTML documents,

this EDW document would contain hyper-links that point to other EDW documents

(a more detailed speci�cation and model of part of the entire design, for example) or

other sources of information such as a parts catalog. The document is \live" in that

embedded models can be fully interactive, as opposed to static pictures of models.

A live model can be manipulated using whatever mechanism the document plug-in

functional
specs

design
description/

rationale

interactive
viewer

block
diagrams

Figure 3.1. A prototype EDW document.

17

provides. This might be just view manipulation, or maybe full editing capabilities

provided by an underlying CAD system.

DRIVE represents a �rst step in this new direction for CAD systems. DRIVE

implements enough of the EDW as described above to allow Alpha 1 models to

be embedded in HTML documents. The models are viewed or edited from within

the document using plug-in versions of standard Alpha 1 modeling clients. Fur-

thermore, the models themselves can contain links that point to other models or

HTML documents. A number of approaches for achieving this integration were

considered. They are discussed in Chapter 4 along with the DRIVE infrastructure.

3.2 DRIVE Example

This section presents a brief example of the EDW concept, as implemented by

DRIVE. The following images show a real design of the spindle for a numerically

controlled milling machine.1 The design has been documented using the DRIVE

system.

Figure 3.2 shows the top level EDW document, which looks no di�erent from

most other HTML documents at �rst glance. The document contains text describ-

ing the high level approach to the spindle design, links to background information

and terms that some readers might not understand, and a rough picture of the NC

machine's main moving parts.

When the user moves the pointer into the picture, we discover that the picture

is not just a picture (Figure 3.3). The picture is in fact, an instance of the Alpha 1

plug-in. Moving the pointer into the plug-in window causes the model viewer user

interface to appear. The user can use all of the features that are in the stand alone

version of the viewer. Figure 3.4 shows the same window after the user has rotated

the model to a di�erent viewpoint.

The initial view in the plug-in window is an example of a model view. The

model view contains information to indicate the the model is displayed using shaded

surfaces, that one portion of the model is selected (shown in red in Figure 3.3). The

1Spindle design data courtesy of Bridgeport.

18

Figure 3.2. An example EDW document.

19

Figure 3.3. Plug-in viewer control appears when the pointer is in the plug-in
picture.

20

Figure 3.4. The plug-in picture is a full Alpha 1 viewer. Here, the model is viewed
from a di�erent vantage point.

21

viewpoint is also stored with the model view. Reloading the EDW document will

cause the default view associated with the document to be reloaded by the plug-in.

Another feature of model views is the ability to add links to other model views

or EDW documents. The selected portion of the model shown in Figure 3.3 has

a link to a more detailed model of that portion of the NC machine. In this case,

the more detailed view is a model of the spindle. The user clicks on the selected

portion of the model to load the new model view, shown in Figure 3.5.

A single document can contain multiple plug-in instances, if multiple models or

multiple views of the same model are to be shown. Scrolling through the example

EDW document reveals a second plug-in instance (Figure 3.6). This plug-in also

contains a view of the spindle model. The surrounding text describes the model

in some detail. This text, and the model view associated with it could have been

placed in a separate EDW document. For larger designs, or even a more complete

description of the spindle design, this would most likely be the case.

Figure 3.5. Model views can have links to other model views.

22

Figure 3.6. Model views can have links to other EDW documents.

The model view shown in Figure 3.6 has a link to another EDW document. In

this case, the document is an HTML page with a single plug-in instance (Figure 3.7).

This instance executes the shape3d Tcl script, which implements a model editor.

EDW documents can use this mechanism to allow the user to edit models.

3.3 Future Work

DRIVE is a �rst generation prototype, and a number of areas are open for

continued work on the concept. Although DRIVE allows the designer to record

some of a design history, it needs some improvements. First, the design document

is not automatically generated. It would be useful to remove the burden of setting

up model views, setting up the HTML documents with the Alpha 1 plug-in, and

so on from the designer. Any automation that can be introduced means less time

that the designer will have to spend on it. This has obvious advantages in both

decreased design time and the likelihood of the designer creating a more complete

document.

Second, the ability to track design alternatives as well as just a history is another

desirable feature. Often during a design many alternatives are explored. The �nal

design may result from choosing one path, or combining the strengths of many

alternatives. The EDW is a good place to record this information. Another area for

continued work on the EDW is the development of the prototype into a full-edged

design system. The Alpha 1 plug-in is a good �rst step. However, the plug-in and

23

Figure 3.7. Virtually any Alpha 1 Tcl/Tk script may be run as a plug-in. This is
the shape3d client, run as a plug-in.

24

the integration of Alpha 1 with the web need to be advanced to the point where the

EDW can be an e�ective design environment as well as a design review tool. This

includes additions to Alpha 1 such as the design alternative tracking mentioned

above. It also includes the addition of distributed design capabilities that would

allow designers at separate locations to collaborate on a design.

Third, the Alpha 1 plug-in needs to evolve along with the EDW. That is, the

prototype plug-in provided by DRIVE must be enhanced to meet the needs of the

EDW as it grows. In particular, support for the MIME types described in this

thesis but not implemented for DRIVE need to be completed. Another problem

with the plug-in is its size. Alpha 1 is a large system, and a signi�cant portion of

it must be included in the plug-in. Even though the overall size of the library or

libraries may be relatively �xed, the cost of initializing the plug-in can be reduced.

Currently, each instance of the plug-in maintains its own Tcl interpreter. Thus,

when an instance of a plug-in is initialized, a new interpreter is created and all of

the Alpha 1 extensions to Tcl are added to it. One potential method for reducing

the cost of initializing a plug-in instance is to modify the plug-in so that all instances

share a single interpreter.

Fourth, DRIVE will require some form of security if it is to be used in the

EDW. An EDW document may contain proprietary information that the designers

do not want to allow just anyone to access. Some people may be allowed access

only to speci�c sections of a design. Others may be allowed to look at the design

documents but not edit them or the embedded models. If the EDW is ever to

become a general tool that sees widespread use, then these issues will become

critical. Existing security implemented by most HTTP servers should prove useful,

but it is certainly not an entire solution.

Finally, the EDW will need its own server. DRIVE relies heavily on existing

WWW server technology to provide its documents. This is acceptable for the �rst

pass, but the limitations of the existing technology will quickly be reached. The

next step is to combine the Alpha 1 c shape edit server with an existing HTTP

server, such as Apache. A combined server enables a much more exible overall

25

system. EDW document text can be stored with models (either directly with the

model, or associated with the model in the same manner as display properties) and

then used to generate an appropriate HTML document when it is requested from

the server. In this scenario, the designer creates all the components of the document

using potentially many di�erent tools. The server puts the components together

into a �nal product when the document is requested. This assembly can di�er

based on who is requesting the document. For example, the server can take user

preferences into account and generate the document based on each user's needs.

The server can exclude information to which the requesting party is not allowed

access.

Perhaps the most useful feature made possible by the combined server idea is

that the document can be served in a form appropriate to the level of technology

available to the requester. That is, the server can generate a document that contains

only images of the model if the user making the request does not have the Alpha 1

plug-in installed. Or, perhaps a VRML model could be substituted for an Alpha 1

model is the browser has a VRML viewer but not the Alpha 1 plug-in.

CHAPTER 4

THE DRIVE IMPLEMENTATION

4.1 Overview

One of the main purposes of DRIVE is to capture more of the design process

than current CAD systems. Capabilities of most systems include the ability to work

well with geometry, relationships/constraints, features, and text attributes. This

research concentrates on two aspects of the design process that are not handled

well, or at all, by current systems:

1. nongeometric design information,

2. design process history.

Nongeometric design information can include design speci�cations, parts cat-

alogs, model analysis data from techniques such as �nite element analysis, and

design rationale. All of this information is essential to the successful completion

of a design. Designers can bene�t from having this information readily available

through the CAD system itself rather than from other sources such as paper notes.

Such a system will make it easier for the designer to record nongeometric design

information, thus giving the designer more time to provide a more detailed design

rationale.

Nongeometric design information is closely tied to the design, and to the eventual

CAD model that results. However, this information is needed at various points

during the design process. For example, a parts catalog may be used to select some

standard parts, such as bearings or screws, for a model. However, the exact speci�-

cations of the parts need not be known until fairly late in the process. It would be

counter-productive to require the designer to specify too much information during

27

early stages of the design, when the designer often does not have all the details.

Furthermore, a system that requires the designer to enter too much information

will interfere with the conceptualization of the design. Functional speci�cations, on

the other hand, come into play right from the start. Many requirements must be

clari�ed before the design can progress at all. Since nongeometric information is so

pervasive throughout the design process, it is not su�cient to provide the designer

with a separate tool to record it. Ideally, the system should not require or even ask

for any information before it is necessary in the design process. The EDW must

take this into account by allowing nongeometric information to be fully integrated

and readily available at any time.

Design is an iterative process. Virtually every signi�cant design goes through

an evolution before it is complete. Speci�cations change, analysis shows that

some speci�cations have not been met, catalog parts are not always available and

customer needs change. This means that a design undergoes many changes before

it is complete. Some parts may be redesigned completely. Other parts may be

designed by multiple teams, and the best approach (or maybe a combination of

multiple approaches) is used. The history of a design is a hierarchy that the EDW

must encapsulate.

DRIVE satis�es these requirements for the portions of the EDW it implements

by integrating existing Alpha 1 clients with WWW browsers and hyper-linked

HTML documents. The idea of a live hyper-linked document matches up well

with the above requirements. The integration of CAD resources and nongeometric

information is just the type of multimedia that WWW browsers support well.

Design speci�cations can be included as HTML text. Early paper sketches or

artistic renderings of the �nal product can be included as images. Animations that

depict the manufacture, assembly, or use of the product can be included as movies.

Parts catalogs can be hyper-linked, thus allowing easy integration and updating of

outside information. Finally, plug-in technology allows external applications to run

directly within a page.

28

Hyper-linked documents also form a natural hierarchy. This implicit hierarchy

is well suited to maintaining a design history. Links from documents describing

the product goals and requirements might point to documents that contain early

sketches of the design. This in turn contains links to designs for the major compo-

nents of the design. These are, in turn, entire hierarchies that describe the history

of the design of each component.

WWW technology appears to be an appropriate medium for integrating all the

pieces of DRIVE (and the EDW). Other technologies may also meet the above

requirements, but we feel that the WWW is a good choice for some additional

reasons. First, by using existing WWW browsers and plug-ins, one can leverage

\commercial o�-the-shelf" software. Although the technology is not exactly what

the EDW needs, it is close enough that the time saved by not \re-inventing the

wheel" is a worthwhile trade-o�. Second, it is possible to take advantage of the

existing wide range of capabilities o�ered by the WWW. For example, a design

that uses catalog parts might include a link to the company's web page so that up

to date catalog information is readily available. Finally, the WWW is pervasive so

distributing DRIVE to a wide user base is possible.

Another important step in realizing DRIVE, and the EDW, is making Alpha 1

work with the other components. Once again, one would like to maximize code

reuse. Although one option is to reimplement Alpha 1 in some other web enabled

programming language such as Java or VRML, this would require a signi�cant

redesign of the system. Such redesign can be limited by using browser plug-ins

instead. However, Alpha 1 must still be modi�ed to work with the browser plug-in.

A plug-in will allow Alpha 1 clients to run within a WWW browser, but this is not

enough. It is also necessary to add some knowledge of the WWW to Alpha 1 _The

next sections explore the required modi�cations to Alpha 1 as well as some of the

other technology that makes DRIVE possible.

29

4.2 Model Views

One component of an EDW document is a model. That is, the document has

a picture of an model, along with the associated Alpha 1 model object graph,

embedded in the document along with other design information. Alpha 1 display

clients are quite capable of displaying a model, but an embedded model in an EDW

document will usually have some additional restrictions placed on it. For example,

the designer may want to show only certain parts of the model. The document

may contain information explaining a portion of the model, and the picture should

be from a speci�c viewpoint as a result. Perhaps the description refers to the

highlighted portion of the model.

Thus, embedded models in an EDW document require additional information

that is not speci�c to the model itself. Display properties such as the current

viewpoint, what parts of the model are selected, highlighted, or visible, and so on

apply only to the model when viewed in this speci�c EDW page. One method

a designer can employ to capture this information is to run a viewer, set up the

viewpoint and display qualities as desired, and capture a screen dump for use in the

EDW document. Although feasible, this approach does not yield a \live" model in

the document.

The ability to interact with models from within a document is an important

aspect of the EDW. Many documents will contain information, such as descriptions

of certain pieces or qualities of a design, that dictate a particular presentation of the

model. However, such a presentation is only an initial one to provide a context or

point of reference for the nongeometric information in the document. The user can

also bene�t from being able to interact with the model, to change its presentation.

For example, it may be impossible to see all important features of a model from one

viewpoint. Interactivity allows the user to rotate, translate, and scale the model so

that he or she can view any features that are obscured in the initial presentation.

The requirement of model interactivity means that static images of a model

embedded in an EDW document will not su�ce. An actual Alpha 1 viewing client

must be directly embedded in the document. The technology that allows this is

30

discussed in Section 4.4. This is only part of the solution. The viewer must still be

modi�ed to show an initial presentation of the model as speci�ed by the designer.

In order to satisfy this requirement, DRIVE implements Model Views for Alpha 1

viewing clients.

A model view is an encapsulation of the information necessary to provide a

speci�c presentation of a model. This includes a model and all of its inherent

information such as color, texture, and surface materials. It also includes view

speci�c information such as a camera location, scale, and information about which

parts of the model are visible. Finally, a model view includes display properties that

have been applied to the model. Display properties are properties that a viewer can

apply to a model, but are not inherent to the model itself. Each user might want to

apply di�erent display properties to a model. Some examples of display properties

are visibility of surface normals, surface shading, and visibility of NURBS curve

and surface control structures.

4.2.1 The Alpha 1 Implementation of Model Views

Model views are implemented within the Alpha 1 display library; therefore all

viewing clients have support for them. A model view consists of state information

that is maintained within a display library window object. Display properties

such as surface shading, surface normals, etc., are window-speci�c and therefore

must be stored with each window. A window also needs to know which models

it is displaying as well as the current camera position. Inherent properties of a

model such as color and texture are also known, since these qualities are stored as

attributes attached to the model graph. We notice that a model view is e�ectively

an instance of a window object at a given time. The system supports model views

by providing methods to read and write the state information stored by a window.

In fact, the window itself is a �rst class persistent object that can be read and

written via the Alpha 1 binary input/output mechanism.

31

4.2.2 The Alpha 1 Display Library

The Alpha 1 display library is closely tied to model views. During the period

when model views were under development, the display library was redesigned to

eliminate redundant structures and provide more power to viewing clients. This

yielded an excellent opportunity to built model views directly into the display

library as opposed to placing them on a separate layer above the library.

The new Alpha 1 display library is completely centered around the model graph.

Actions such as drawing and picking are supported via traversals of the model graph.

Properties inherent to the model (e.g., color and texture) are stored using the model

attribute capabilities of Alpha 1 models. Other model display properties that are

speci�c to a window are stored with the window itself, and are accessed via a table

that associates the properties with the model objects.

The display library also takes advantage of the powerful binary input/output

mechanism of Alpha 1 by making windows objects that can be read or written just

like any model. This greatly simpli�es the implementation of model views, since a

model view is just a window object. In other words, most of the model views im-

plementation is really built in as part of the display library itself. The architecture

of the display library is shown in Figure 4.1. Generic window functions and display

traversal are handled by the device independent portion of the library. This portion

Window / Model View
(Device Independent

Display)

OpenGL X11

Device Specific
Display

A1 Modeling Libraries

A1 Binary I/O

Figure 4.1. The Alpha 1 display library architecture.

32

of the display library also handles all management of window properties along with

any other data that is required for model views. The generic portion is designed

in a manner that allows the Alpha 1 binary I/O library to read and write windows

objects. Device dependent operations such as the actual execution of drawing code

are passed through the generic portion to a device manager object. The device

managers implement display for OpenGL and X11.

4.3 Hyper Links

A model view is essentially an \instance" of a model. While this is su�cient

to allow the designer to present a model within an EDW document, it is not an

entire solution. A design is typically represented hierarchically. The entire design is

broken into components, each of which is recursively broken down further. In order

to capture this hierarchy, individual EDW documents must be linked together. For

example, an initial document might contain a version of the model with no detail,

and only the main components. Each of the components would then be linked to

individual pages which provide more detail for that component.

WWW documents are easy to link together. However, a model view is embedded

within a WWW document and therefore must provide a mechanism to activate links

to other model views or EDW documents. Hyper links are built into the Alpha 1

display library in order to support this capability. The user is able to associate

links with model objects using the Alpha 1 attribute mechanism. When a portion

of a model that has a link associated with it is activated, DRIVE will load either a

new model view or an entirely new EDW document as speci�ed in the link.

Hyper links are supported through existing Alpha 1 features called model at-

tributes. Model attributes allow nongeometric information to be associated with

any Alpha 1 model data structure. The display library handles intersection detec-

tion since it is already needed to support basic viewing actions such as selection.

Custom user-interface code checks for a link attribute when the user selects a model.

If a link attribute is attached to the selected model, then DRIVE carries out the

action speci�ed in the link.

33

4.4 Browser Integration

One of the interesting features of DRIVE is that live models can be mixed with

other information in a WWW document. This capability could have been provided

by implementing a WWW browser within Alpha 1 _However, this is not an attractive

approach since it would not allow DRIVE to take advantage of the pervasiveness of

existing WWW browsers. A better method is to leverage existing WWW browser

technology and embed Alpha 1 in a web browser.

The growth of the WWW is nothing short of explosive. Such a rapid increase

in user base has spawned the development of a number of languages and other

capabilities, such as the Netscape Plug-in Architecture, Java, and VRML, that are

designed to ease the integration of user applications with web browsers. These

technologies are new; there is no clear standard. Instead, one must look at each

and use the one that is best suited to the requirements of the EDW. Since Alpha 1

is such a large system, one of the main goals for integrating it with the web is to

minimize the amount of code that must be rewritten.

4.4.1 Java

Java is an Internet ready language that was designed by scientists at Sun Mi-

crosystems. Java is quite similar to C++, the language in which most of Alpha 1 is

written. Its designers attempted to improve or remove some of the less frequently

used and more confusing features of C++. Furthermore, Java is designed to be

used over a network. It is compiled to a virtual machine byte code, which is then

interpreted appropriately on each platform. The result is a highly portable language

that has built-in support by nearly every web browser available today.

Java seems like an appropriate choice for integrating Alpha 1 with the Web, but

there are a number of reasons why this has not been chosen in the current approach.

First, Java is essentially an interpreted language. The virtual machine byte code

does run faster than interpreted C++ would, but Java still runs signi�cantly slower

than compiled C++. This limitation is being addressed, as is evidenced by the

emergence of \just in time" compilers that compile Java byte code to native machine

code on the y. However, the versions of such compilers that available today have

34

not improved performance enough to make Java a viable language for an application

as large as Alpha 1 _Second, sophisticated graphical user interface toolkits are not

yet available for Java. Although Java does provide a toolkit, the Abstract Window

Toolkit, it is generally considered to be the weakest part of Java. The AWT simply

lacks the power and exibility that Alpha 1 programs have come to rely on. Finally,

Alpha 1 viewers make heavy use of hardware accelerated three dimensional graphics

libraries such as OpenGL. Bindings for these libraries are not yet available for Java.

Java is a promising language that has the potential to be as widespread as C

and C++ are today. However, its future is still uncertain. Although the web is

now proliferated with thousands of Java \applets," the author is unaware of any

applications on the scale of Alpha 1 that have been written using Java. For these

reasons, the reimplementation of Alpha 1 in Java is a long-term project that should

be considered once Java is slightly more mature.

4.4.2 VRML

The Virtual Reality Modeling Language is a standard that was designed in order

to bring three-dimensional graphics to the web. The �rst revision, VRML 1.0, was

based on the Open Inventor format, produced by Silicon Graphics, Inc. Open

Inventor is a C++ class library that provides generalized modeling capabilities.

Open Inventor models are scene graphs made up of Open Inventor nodes. In

addition to allowing user-de�ned nodes, the library prede�nes a large number of

nodes, actions that can be applied to those nodes, and engines that supply data to

graph nodes.

VRML 2.0 diverged somewhat from the Open Inventor framework. Most of the

changes involved adding nodes, actions, engines, etc. that give more animation

and sound capability. In addition, the standard was reengineered to allow for more

e�cient implementations on PC architectures. The underlying scene graph concept

still remains in VRML 2.0, and many of the nodes are still similar to their Open

Inventor ancestors. For the most part, the changes only add functionality, leaving it

possible to write a translator which can convert VRML 1.0 scene graphs to VRML

2.0.

35

On the surface, VRML appears to be a good candidate for integrating Alpha 1

with web browsers. The scene graph structure of VRML models is quite similar to

Alpha 1 models, which are also organized into a scene graph. However, the Alpha 1

model graph is also a dependency graph. Nodes in the graph store construction

information such as the function that constructed the node, their prerequisites|the

nodes that were needed in order to construct the geometry of a node, and their

dependents|the nodes that use this one when constructing their geometry. In

fact, the model graph is really a skeleton that de�nes the structure of a model.

The actual geometry is created by \�ring" constructor functions that are stored

with the model graph nodes. The result is somewhat volatile geometry nodes that

can change whenever the prerequisites of their creators change. This information is

somewhat di�cult to represent in VRML. Open Inventor engines might be suitable

for representing the dependency graph structure of Alpha 1 but not without sig-

ni�cant restructuring of the Alpha 1 model graph structures. Furthermore, Open

Inventor engines are not a part of VRML.

VRML provides the PROTO directive for extending the set of VRML nodes,

and the ROUTE directive for linking �elds together. However, this extension

mechanism is not as exible as the one available in Open Inventor. The underlying

problem is that VRML is little more than a behavioral speci�cation and �le format.

Since VRML �les are meant to be displayed on machines with many di�erent

architectures, there is no way to allow outside code to be plugged in. Any extensions

must be entirely contained within a VRML �le. The functionality of Alpha 1 simply

cannot be implemented using VRML alone.

Clearly VRML will not work for integrating Alpha 1 with the WWW. However,

VRML is quite suitable for exporting Alpha 1 to the web. That is, Alpha 1 can

support VRML as a �le format. Although the dependency information would not

be included, a VRML version of an Alpha 1 model can still be useful for distributing

to a wide audience. The EDW can take advantage of this by serving documents in

multiple formats. Users who do not have the Alpha 1 plug-in or a VRML browser

could be served EDW documents with static images in place of live models. If the

36

browser supports VRML and the user does not have the Alpha 1 plug-in installed,

then VRML versions of the Alpha 1 models would allow the user to see a three-

dimensional model that can be manipulated in a limited manner.

4.4.3 ActiveX

ActiveX is closely related to the Object Linking and Embedding technology

pioneered by Microsoft. Both are based on the underlying COM technology that

allows objects to communicate with applications in which they are embedded.

ActiveX provides many of the same features as OLE, but it is optimized for Internet

use. ActiveX controls are interactive objects that can be embedded in a web page,

thus allowing the integration of user applications with the world wide web.

ActiveX is a potentially good choice for allowing Alpha 1 applications to run

within a web browser for many of the same reasons as Netscape plug-ins. Netscape

plug-ins are described in Section 4.4.4, next. The main advantage that ActiveX

controls have over Netscape plug-ins is that they are not tied to the browser.

That is, an ActiveX control can be used directly in any application that supports

ActiveX. However, this advantage of ActiveX does not outweigh its shortcomings,

the most notable of which is the fact that it is not available for UNIX systems yet.

Microsoft has released the ActiveX technology to a standards committee, where it

will eventually be made open and ported to UNIX systems. At this time, though,

UNIX ports of ActiveX are only in development.

4.4.4 Netscape Plug-in Architecture

The Netscape Plug-in Architecture was developed by Netscape Communications

to allow the integration of their web browser, Netscape Navigator, with client

applications. The Netscape Plug-in Architecture is an application programmer's

interface that speci�es a series of functions that the browser will call when a plug-in

is to be initialized, viewed, and unloaded. The plug-in architecture also speci�es

a new HTML tag, \EMBED." that indicates the location, size, and arguments to

a plug-in. When the browser starts, it initializes all shared libraries in its plug-in

search path by calling an initialization function that each plug-in must de�ne. Each

37

plug-in uses this initialization function to declare the MIME type(s) it supports in

addition to any initialization that needs to be conducted for all instances of the

plug-in.

An instance of the plug-in is created when the browser loads a page containing

an EMBED tag. The embed tag must contain enough information for the browser

to determine the MIME type of the plug-in to be instantiated. The MIME type

must be either explicitly declared using the TYPE option of the embed tag, or

determined by the server based on the �le extension of the URL listed in the SRC

option of the embed tag. Once the MIME type is known, the browser calls a

function de�ned by the plug-in associated with the previously determined MIME

type to create an instance of itself. Any arguments speci�ed in the EMBED tag are

passed along. When the browser is no longer displaying the page with the EMBED

tag, the instance of the plug-in is deleted by calling another function de�ned by the

plug-in. Finally, a shutdown function is called when the last instance of a plug-in

is deleted. If another instance of the plug-in is created, then the plug-in global

initialize function is called once again and the process repeats.

The Netscape Plug-in Architecture has a shortcoming in that plug-ins are created

for a speci�c machine architecture and are therefore not as portable as Java applets.

Also, the library or libraries associated with a plug-in must be stored locally. This

does not facilitate automatic updating when a newer version of the plug-in is

available. However, the advantage to storing the plug-in locally is that it has

to be downloaded only once. This can be a big win for plug-ins that are large, as is

the Alpha 1 plug-in. VRML �les and Java applets are both stored in the browser's

cache. Were Alpha 1 to take advantage of either of these technologies, the data

to be downloaded and stored in the cache is likely to be quite large. Since most

browsers allocate a �xed size cache, the data downloaded for the document would

occupy a signi�cant portion of the cache. The browser would probably either not

cache the data at all, or ush it from the cache prematurely as other newer data

needed the cache space.

Since the Alpha 1 plug-in is so large, local caching is not an e�ective option

38

and integration strategies that rely on browser caching would su�er because of

this. Thus, local storage of the plug-in is actually a bene�t for its regular users.

Occasional users can also bene�t form local storage of the plug-in. However, these

users might not want to download such a large plug-in just for occasional use.

Although DRIVE does not support this feature, the EDW could accommodate

such users by serving, upon request, VRML models or static images instead of

documents referencing the Alpha 1 plug-in.

Although the Netscape Plug-in Architecture is not as portable an integration

option as Java or VRML, it is used in DRIVE for the following signi�cant reasons.

First, the plug-in is stored locally. The Alpha 1 libraries are very large, so this

is a big win in terms of download time. The performance of DRIVE would be

unacceptable if the entire plug-in library had to be downloaded regularly if, for

example, it got ushed from the browser cache like a Java applet. Second, the lack

of portability is not much of a problem since Alpha 1 is already under concurrent

development for four di�erent operating systems (IRIX, HP-UX, Solaris, and Win-

dows NT). Little extra work, if any, is required to create versions of a plug-in for

each of these architectures. Third, plug-in code is native application code (C++

in the case of Alpha 1). Therefore, the system su�ers little performance penalty

when running as a plug-in. Finally, the Netscape Plug-in Architecture is the best

trade-o� of ease of integration versus portability and level of integration. Most

of the other integration options require signi�cant modi�cation and rewriting of

Alpha 1 source code. This may be acceptable for longer term work on the EDW,

but in the prototyping stages for which DRIVE is designed, ease of integration and

modi�cation is a must. The Netscape Plug-in Architecture provides this. However,

some modi�cations to Alpha 1 are still required with this approach. More details

on these modi�cations are provided in Section 4.4.5.

4.4.5 The Alpha 1 Plug-in

The Netscape Plug-in architecture is the web integration method with the best

trade-o�s for the prototyping stages of the EDW. Although this method does not

39

require as much modi�cation to Alpha 1 as any of the other integration methods,

some changes need to be made in order to create a plug-in version of Alpha 1.

The requirements for the Alpha 1 plug-in are that it must be exible, expandable,

and be designed with the future of the EDW in mind. For example, as the EDW is

realized, the network integration technology might no longer be a Netscape plug-in.

Therefore, the plug-in design avoids making use of any esoteric features of the

plug-in architecture.

One of the biggest challenges of making an Alpha 1 plug-in is mixing the event

models of the web browser and the Alpha 1 viewing clients. The Netscape Navigator1,

for example, utilizes the Motif widget set, which controls the application using its

own set of widgets and event loop. Alpha 1 viewers, on the other hand, use the

Tk [8] toolkit, which requires its own widgets and event control loop. Even if

Alpha 1 and Netscape used the same interface toolkits, the Alpha 1 plug-in would

still need to be separated from the browser in case it ever needs to be used with a

browser built on top of a di�erent UI toolkit. Fortunately, a recent release of the

Tk toolkit, developed to support a Tcl/Tk plug-in written by researchers at Sun

Labs, allows Tk applications to be embedded within other applications that utilize

di�erent user interface toolkits. Using the Tcl/Tk plug-in from Sun as a model, the

Alpha 1 plug-in takes advantage of this improvement to the Tk library. Netscape

gives each plug-in a window within its own window hierarchy. This window must

then become the top level window for the Tcl/Tk application that the plug-in

manages. Note that each instance of the plug-in holds its own Tcl interpreter, thus

preventing namespace conicts that might otherwise arise from multiple instances

of the plug-in attempting to load the same Tcl script.

The other area where the toolkits used by the Netscape browser and the Alpha 1

plug-in must communicate is events. Each toolkit has its own event processing

mechanism that it uses to respond to user input for toolkit widgets. Unfortunately,

1The Netscape Navigator is likely to be the web browser that is used with the EDW prototype
most often. However, other browsers such as the Microsoft Internet Explorer do support the
Netscape Plug-in architecture, and could be used with the EDW.

40

these toolkits are both design for event driven applications, where the toolkit

maintains control of the main thread and waits for the user to interact with one of

the widgets on the screen. The Netscape browser uses just such a toolkit, Motif.

The main event loop of the browser application is not accessible to the plug-in, so

it cannot merge in the Tcl/Tk event handlers. The only way to allow Tcl/Tk to

respond reasonably well to user input is for the plug-in to get control from Netscape

on a regular basis and handle any outstanding Tcl/Tk events that are waiting. This

is accomplished by using the timer feature of the Motif toolkit.2 The plug-in sets

a Motif timer to execute a callback function regularly. The callback satis�es all

outstanding Tcl/Tk events, up to some prede�ned maximum number, by calling

a non-blocking version of the Tcl/Tk event handlers. The number of events that

are handled at one time is limited, since it is possible for the user to generate new

events as fast as the event handler can process them. If the maximum limit was not

enforced, then the timer callback function might never return, or not return for an

unreasonable amount of time. This would make the browser unresponsive to user

input, even as the plug-in is happily processing user events.

The next issue to be addressed is the plug-in interface. The EMBED tag is

the primary mechanism for initial communication between EDW documents and

the Alpha 1 plug-in. The MIME types and additional arguments supported by

the plug-in are of concern here. Alpha 1 provides two main functions for DRIVE.

First, it provides modeling via the scl eval parser function called from Tcl/Tk

user interface scripts. Second, it provides interactive viewing via the a1 canvas Tk

widget that is built on top of the Alpha 1 display library. The main goal of DRIVE

is to permit interactive viewing of a design and its history, so the Alpha 1 plug-in

needs to support at least display of models and model views.

The plug-in architecture allows for a plug-in to translate multiple MIME types.

The Alpha 1 plug-in takes advantage of this by mapping di�erent plug-in func-

2Most event-driven user interface toolkits provide some mechanism, such as a timer or an idle
callback function, for giving vontrol to an application on a regular basis. This event handling
method will work with any toolkit that provides such functionality.

41

tionality through di�erent MIME types. This approach will be useful as the EDW

evolves and more functionality is expected of the plug-in. The use of multipleMIME

types will allow a range of plug-ins that support di�erent levels of integration with

the EDW to be available. For example, a \lightweight" plug-in might only display

of Alpha 1 models. Such a plug-in could be much smaller, and more accessible for

the occasional user. This version of the plug-in supports only the model/x-a1 type.

At the other end of the spectrum is the fully functional Alpha 1 modeling plug-in

that supports viewing, interactive model creation, and anything else required by

the EDW. This plug-in would support all MIME types discussed here. The plug-in

created for DRIVE supports only the model/x-a1 type. For development of the

EDW, this plug-in also supports Alpha 1 model editing, but not through any special

MIME type.

The primaryMIME type used by documents in the DRIVE system is model/x-a1.

This MIME type tells the plug-in to load Alpha 1 object �les with the \.a1"

extension into a viewing window. The object �les are speci�ed as SRC parameters

in the embed tag and may contain arbitrary Alpha 1 objects, including model views.

Another MIME type supported by the plug-in is model/x-a1-objid. Although it

is not supported in the initial version of the plug-in, this type will allow the Alpha 1

unique object identi�er to be speci�ed as parameters in the embed tag. The unique

object id will allow the viewer to query a series of model servers in order to obtain

a copy of the object with the requested identi�er. This is essentially the same

as specifying an object �le, except that the data for the objects is not contained

in the �le itself. Finally, the MIME type application/x-a1-edit, also not yet

supported by DRIVE, will indicate that the plug-in should start a c shape edit

server in the plug-in window to serve as a rendezvous for distributed design sessions.

Users can then interactively execute modeling commands and send models to any

display clients which connect to the server. This can include other Alpha 1 clients

which are running as plug-ins.

Current Alpha 1 viewers and editors take advantage of the exibility of the

Tcl/Tk user interface toolkit. Tcl and Tk are extended with new commands

42

and interface widgets that access the underlying Alpha 1 libraries. The main

bene�t of this approach is exibility. The user-interface for Alpha 1 programs

is controlled through scripts which can easily be changed to allow for end user

customizations, experimentation, and rapid development of new interfaces. The

plug-in was designed to work with the Tcl/Tk toolkit so that this power and

exibility is not lost just because the application is embedded within a web browser.

Currently, the plug-in allows customization of the user interface through the

SCRIPT option to the embed tag. The user speci�es the name of a Tcl script

that describes the user interface to use for the plug-in instance. The name must

refer to a script that is stored locally within the plug-in installation. If the script

option is omitted, then the plug-in uses the standard viewer. The standard viewer,

when run as a separate client program, is known as tk3d. An alternative interface

which adds model construction and editing GUI controls for the two-view interface

is known as shape3d. This approach was chosen for both convenience and safety.

Since the scripts are referenced by name only, the user may customize these scripts

locally (i.e., the named script can contain any Tcl code), and any document that

references them will cause the plug-in to load and use the user-customized version

of the script. This approach is somewhat safer than allowing scripts to be arbitrary

URLs since the contents of the script can be any Tcl command, including �le access

commands. This is an acceptable limitation for DRIVE. As the EDW is developed,

however, it may be desirable to allow the document server to specify the script

along with the document itself.

CHAPTER 5

CONCLUSIONS

CAD/CAM systems have allowed designers to signi�cantly reduce the time

required by the design process, therefore allowing a number of possible advantages

including shorter time to market, timely product releases, reduced design cost,

reduced capital cost, superior product design, and smaller lot sizes. Although

highly e�ective, CAD/CAM systems can be improved by adding more support for

the design process itself in addition to the current support for individual stages of

the process. This research provides a �rst step in that direction.

DRIVE integrates Alpha 1, a powerful parametric CAD/CAM system, with the

World Wide Web through a plug-in version of Alpha 1 modeling and viewing

programs. The system, a prototype for the EDW, also brings some web-like

behavior to Alpha 1 with the addition of hyper-linked model views. Together,

these tools allow the designer to record a design history in an easily navigable

document. By utilizing existing WWW technology, the prototype is able to take

advantage of a number of useful features of the web. First, web browsers are well

suited to including the large amounts of nongeometric design information such as

speci�cations, formulae, sketches, and design rationale descriptions. Second, the

web is pervasive, and the familiarity that designers are likely to have with web

browsers makes DRIVE an intuitive tool. Finally, by making this information

available in a web browser, designers can easily distribute the design history docu-

ment to a wide range of people. The Alpha 1 plug-in with model views extends web

navigation into the Alpha 1 design system, thus allowing the designer to include

design history information such as levels of detail directly in the model.

DRIVE is a useful tool in its own right, but it was designed to be part of a larger

44

project. DRIVE is in e�ect a �rst generation prototype for the Engineering Design

Web. The plug-in and linked model views created for DRIVE are a framework for

the EDW. The EDW is a new concept, and it will most likely change considerably

as it becomes a reality. The building blocks provided by this research will help

advance the EDW to a point where researchers can begin to discover exactly what

it should be.

REFERENCES

[1] Banks, M. J. A user interface model and tools for geometric design. Master's
thesis, University of Utah, Salt Lake City, UT, 1989.

[2] Boothroyd, G. Product design for manufacture and assembly. Computer-Aided
Design 26, 7 (1994).

[3] Engineering Geometry Systems. Alpha 1 User's Manual. Salt Lake City, UT,
1992.

[4] Gui, J.-K., and M�antyl�a, M. Functional understanding of assembly modeling.
Computer-Aided Design 26, 6 (1994).

[5] Hwang, and Ullman. The design capture system: Capturing back-of-the-
envelope sketches. Journal of Engineering Design 1 (1990), 339{354.

[6] Krause, F.-L., Ciesla, M., Rieger, E., Stephan, M., and Ulbrich, A. Features|
semantic objects for the integration of tasks in the product development
process. In Proceedings of the Computers in Engineering Conference and the
Engineering Database Symposium (1995), ASME, ASME, pp. 667{685.

[7] Kress, H. Shared 3d viewer, May 1997. <http://www.igd.fhg.de/www/igd-
a2/applications/3dviewer e.html> (Nov. 1997).

[8] Ousterhout, J. K. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[9] Singh, N. Systems Approach To Computer-Integrated Design and Manufactur-
ing. John Wiley & Sons, Inc., 1996.

[10] Sturgill, M. M., Cohen, E., and Riesenfeld, R. F. Feature-based 3d sketch-
ing for early stage design. In Proceedings of the Computers in Engineering

Conference and the Engineering Database Symposium (1995), ASME, ASME,
pp. 545{552.

[11] Tsai, C.-S., Chang, K.-H., and Wang, J.-Y. Integration infrastructure for
a simulation-based design environment. In Proceedings of the Computers in
Engineering Conference and the Engineering Database Symposium (September
1995), ASME, ASME, pp. 9{20.

[12] Ullman, D. G. The Mechanical Design Process. McGraw-Hill, Inc., 1992.

[13] Wang, F.-C., Richards, B., and Wright, P. K. A generic framework for the
integration of mechanical and electrical cad tools for concurrent design of

46

consumer electronic products. In Proceedings of the Computers in Engineering
Conference and the Engineering Database Symposium (1995), ASME, ASME,
pp. 131{146.

[14] Woyak, S. A., Malone, B., and Myklebust, A. An architecture for creating
engineering applications: The dynamic integration system. In Proceedings
of the Computers in Engineering Conference and the Engineering Database
Symposium (1995), ASME, ASME, pp. 1{8.

[15] Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. Sketch: An interface
for sketching 3d scenes. In Computer Graphics (1996), ACM, ACM Press,
pp. 163{170.

[16] Zhang, S., Hou, X., and Wang, Z. Step application protocol interoperability
for cad/capp integration. In Proceedings of the Computers in Engineering
Conference and the Engineering Database Symposium (1995), ASME, ASME,
pp. 687{690.

