
Tracking Point-Curve Critical Distances⋆

Xianming Chen, Elaine Cohen, and Richard F. Riesenfeld

School of Computing, University of Utah, Salt Lake City, UT 84112, USA,

Abstract. This paper presents a novel approach to continuously and
robustly tracking critical (geometrically, perpendicular and/or extremal)
distances from a moving plane point p ∈ R

2 to a static parametrized
piecewise rational curve γ(s) (s ∈ R). The approach is a combination of
local marching, and the detection and computation of global topological
change, both based on the differential properties of a constructed implicit
surface; it does not use any global search strategy except the initialization.

Implementing the mathematical idea from singularity community, we en-
code a particular critical distance as a point ps = (p, s) in the so-called
augmented parametric space R

3 = R
2 × R, and the totality of point ps’s

(when p moves over the whole plane R
2) as an implicit surface I in R

3.
In most situations, when p is perturbed in the plane, all of its corre-
sponding critical distances, are only evolved, without structural change,
by marching on a sectional curve on I. However, occasionally, when the
perturbation crosses the evolute of γ, there will be a transition event
when a pair of p’s current critical distances is annihilated, or a new pair
is created and added to the set of p’s critical distances. To safely eliminate
any global search for critical distances, we develop robust and efficient
algorithm to perform the detection and computation of transition events.

Extra transition events due to various curve discontinuities are also in-
vestigated. Our implementation assumes B-spline representation for the
curve and has interactive speed even on a lower end laptop computer.

1 Introduction

Given a plane point p and a closed plane curve γ(s) : R → R
2, the squared

distance function f : R → R is defined as,

f = (γ − p)2. (1)

Following the convention of [5], we call a distance from the plane point ppp to the
curve foot point γγγ(s) an An distance, if f (n+1)(s) is the first non-vanishing
derivatives at s. An An distance is called a critical distance if n > 0, and it
is further classified as regular if n = 1, or degenerate with multiplicity n

⋆ This work was supported in part by ARO (DAAD19-01-1-0013), NIH (571495),
NSF (EIA0121533), and NSF (CCR0310705). All opinions, findings, conclusions or
recommendations expressed in this document are those of the author and do not
necessarily reflect the views of the sponsoring agencies.

2

if n > 1 . We will generalize critical distances, later in Section 8, to include local
extremal distances from p to C0 break points on a piece-wise smooth curve. In
this paper, we encode a critical distance from p to the curve point γ(s) as (p, s),
and consequently regard it as a point in R

3 = R
2 × R (cf. Fig. 1b).

Critical distances, especially when generalized to those between a space point
and a surface, are of primary interest to many geometric computation including
minimal distance computation (e.g., [11, 12]), collision detection (e.g. [18, 19]),
and with applications in motion planning and haptic rendering. It also has close
relation to medial axis transformation [2] and Voronoi diagrams (e.g., see [6]
for the closed smooth curve case). In this paper, we consider two issues, namely,
computing all the topological changes to the critical distances, and evolving crit-
ical distances if there is no topological change. By topology of critical distances,
we mean the total number of critical distances, and the type of each one (i.e.,
whether it is local minimal, local maximal, or degenerate with certain multiplic-
ity). Notice that, to track the critical distances, it has to start with some given
initial plane point position and all the corresponding critical distances. This is
typically done by solving Eq. (2) (see Section 3) using some constraint solver as
discussed in [26, 8]. We will not go into more details on this, and simply assume
that the global initialization, with no missing critical distances, is given.

In this paper, we are especially interested in the topological change of critical
distances, called a transition event. Mathematically, this is related to singu-
larity and catastrophe theories [1, 23, 14, 22]. In the computer community, most
recently, [5] defines the extended curve evolute to serve as the transition set of
critical distances on piecewise smooth curves, especially deriving algebraically all
the unfolding formulas for degenerate critical distances. This paper deals with
practical implementation issues, including especially the robust and efficient de-
tection of transition events. The totality of critical distances, for all moving
points, is formulated as an implicit surface I in the augmented parametric space
R

3 = R
2×R, and subsequently, the evolution and transition of critical distances

are performed using first and second order shape computation on I, respectively.

2 Motivation

We will present a set of algorithms to exactly, continuously, and robustly track
point-curve critical distances. For our implementation, the user is allowed to
move the point (by mouse) on the plane without any restriction, especially no
predefined trajectory, and the critical distances from the point to the static
curve are updated interactively. The tracking of critical distance is exact in the
sense that there is no polygonization of the curve as is the dominating tradi-
tional approach for distance and collision queries. While point-curve distance
is important on its own, we are mostly motivated by its future extension to
the surface case, that is, tracking the point-surface or surface-surface critical
distances, and our ultimate goal is the continuous distance tracking between
two trimmed NURBS models both under either rigid motion or more general
deformation. The current state-of-the-art in either haptics rendering or motion

3

planning is mainly of discrete and approximate nature [9, 20, 13]. [10, 21] did
work directly on continuous NURBS models, however, just like the situation of
polygonal models, global minimal distance search still has to be conducted con-
currently (or periodically for the consideration of computation cost, and with
the risk of possible wrong haptic rendition).

The transition event of critical distances is important for two reasons namely,
robustness and efficiency. If every transition event is detected, and the corre-
sponding topological change of critical distances is computed subsequently, we
are guaranteed of not missing any critical distances, and assured of robustly
reporting the global minimum or maximum. Furthermore, this also eliminates
typically expensive (compared to local updating) global search, which gives us
efficiency benefit.

For the point-curve case, the transition set is identified either with the evo-
lute of the curve if the considered curve is piecewise smooth with at least C2

continuity at its break points [14], or with the extended evolute if the piecewise
smooth curve has its break points of at least C0 continuity [5]. For the point-
surface case, the transition set is the two focal surfaces [15, 22]. More complex
situations arise for the point-model case, when the model consists of multiple
trimmed NURBS surfaces with C0 continuity between surfaces, and for the even
more difficult surface-surface and model-model cases. On the other hand, we
believe that the basic idea of replacing the global extremal distance search with
a robust transition detection and computation, has a straightforward extension
to higher dimension, and we present the current work as a first step toward that
more ambitious goal.

The rest of the paper is organized as follows. Section 3 presents the prob-
lem formulation in the augmented parametric space R

3. Section 4 performs the
evolution of the critical distance by marching locally on a sectional curve Iδ on
I. An osculating circle based correction algorithm is presented in Section 4.1.
Section 5 computes the newly created pair of critical distances by contouring the
local osculating parabola to Iδ. Exploiting the fact that the evolute has rational
B-spline representation, the robust and efficient detection of transition events
is investigated in Section 6 using bounding volume tree of the curve evolute.
Section 7 presents a simple way to classify the transition event by looking at the
sign of κκ′. To apply our approach to realistic curve models, Section 8 develops
algorithms for extra transition events due to various curve discontinuities. After
examples in Section 9, conclusions are presented in Section 10.

3 Implicit Surface Formulation in the Augmented

Parametric Space

The condition for critical distances between point p ∈ R
2 and plane curve γ(s) ∈

R
2 is,

f ′ = (γ(s) − p) · γ(s)′ = 0. (2)

4

Regarding the LHS of Eq. (2) as a function of g = f ′ : R
3 → R, the locus of all

critical distances, as points (p, s) in R
3, is the zero set of g. The Jacobian of g,

(a) (b) (c)

Fig. 1. Implicit Surface Formulation of Point-Curve Critical Distances
(a) shows the normal bundle to a parabola curve; also shown are 4 plane points with
their corresponding critical distances (shown as perpendicular lines to the curve). From
left to right, they have one regular critical distance (CD), one regular plus another de-
generate (with multiplicity 2) CD’s, 3 regular CD’s, and a degenerate (with multiplicity
3) CD to the curve, respectively. Lifting into the 3-space, in (b), the corresponding ver-
tical lines pierce I once, pierce once and touch once (on the fold), pierce three times,
and pierce once (at the cusp of the fold), respectively. Finally a sectional curve of I is
shown in (c).

J = (∇g) =

−γ′
0

−γ′
1

(γ − p) · γ′′ + ‖γ′‖2

 , (3)

always has full rank (i.e., 1) under the assumption that γ is regular; thus,
especially with a regular value of 0, the zero set of g is a 2-manifold in R

3,
denoted as I hereafter. Geometrically, I is the lifted normal bundle to the
curve (Fig. 1 (a)&(b)), and is called the catastrophe surface in [14].

Notice that the normal to I actually has the same expression as the RHS of
Eq. (3), and can be succinctly written as

NI = −γ′ + Des. (4)

where es is the unit vector along the vertical s-axis in R
3, γ′ ∈ R

2 is regarded
as γ′ ∈ R

3 in a natural way (i.e., the last component is 0), and D = (γ − p) ·
γ′′ + ‖γ′‖2.

Finally, we recall a few identities which are used later in this paper.

es × a = ar, a × b = (ar ··· b)es, (ar)r = −a, ar ··· br = a ··· b (5)

where a and b are vectors in R
2, and the subscript r denotes 90 degree rotation

around positive s-axis.

5

4 Evolution

Given any perturbation of p, δp , we want to evolve all critical distances corre-
sponding to p to those corresponding p̂ = p+ δp. Geometrically, critical distance
(p, s)’s, for a fixed p, are the intersection points of I with the vertical line pass-
ing through p, while the critical distance (p + δp, s + δs)’s are the intersection
points of I with the vertical line passing through p̂ = p + δp (cf. Fig. 1b). In the
following, we only consider locally a particular critical distance (p, s).

First, construct the sectional curve, Iδ, on I, that is, the intersection of I
with a vertical plane P passing through both plane points p and p+ δp (Fig. 1c).

By Eq. (4), and since P has normal N
P

= (δp)r, the tangent to Iδ is,

T = N
P
× NI = (δp)r × (−γ′ + Des) = −(δp)r × γ′ + D(δp)r × es.

By Eq. (5),

T = (δp ··· γ
′) es + D δp. (6)

Therefore, the critical distance (p, s) is evolved to (p + δp, s +
δp···γ

′

D
), assuming

that D does not vanish (otherwise, there has to be a transition event, which is
discussed later in Section 5).

4.1 Correction

The local evolution of critical distances, as just described, essentially uses tangent
plane approximation to the implicit surface I, and there will be accumulated er-
ror over time. We develop a curvature-based correction algorithm in this section.

F
F ’

p

C

F F ’

p

Fig. 2. Circle/Tangent Approx.

The basic idea is to approximate
the local curve with its osculating cir-
cle (Fig. 2(a)). Suppose, for a plane
point p, one of its approximate critical
distances, under consideration, has a
foot point F . However, p is not really
on the normal line to F ; instead, it
deviates from the normal line by an
angle dα = ∠FCp, where C is the cur-
vature center corresponding to F . Re-
call that, for a plane curve, the signed
curvature is the rate of change α with

respect to arc length, i.e., κ = 1
‖γ′‖

dα
ds

; so,

ds =
dα

κ‖γ′‖
. (7)

If F is near a curvature zero point, we replace the osculating circle based cor-
rection algorithm by a tangent based one (Fig. 2(b)),

ds =
‖F ′ − F‖

|γ′‖
=

(p − F) ··· γ′

‖γ′‖2
. (8)

6

5 Transition

If D = 0, Iδ is locally vertical at the considered (p, s) ∈ R
3 (cf. Eq. (6)), then

there is no way of evolving (p, s) to the next approximate critical distance by
following Iδ tangentially. Mathematically, the locus of such points (p, s) forms
the fold singularity of projection of I on s-axis. For C2 curve case, the projection
of the fold is actually the evolute of γ [14].

When the plane point moves across a point on the evolute, there will be a
transition event, i.e. some structural change of the critical distances. Therefore,
all points on the evolute (or the extended evolute, for piecewise smooth curves
later in Section 8) are called transition points. At a transition point, the
corresponding critical distance, is degenerate with multiplicity 2. Away from the
transition point, the critical distance disappears completely in one direction, and
unfolds into a pair of critical distances in the other direction. They are called an
annihilation event and a creation event, respectively. Notice that the created
pair of critical distances have to be of opposite types (one minimum, and the
other maximum). [5] gives detailed algebraic derivations related to transition
events.

In this Section, we initialize the created pair of critical distances by second
order differential computation on Iδ, i.e, more specifically, by contouring the
local osculating parabola to Iδ.

Eq. (6) gives the tangent vector field on the curve Iδ, and it allows us to
compute the covariant derivative with respect to itself. At a singular point where
D = 0 and T = (δp ···γ

′) es +D δp = (δp ···γ
′) es (cf. Eq. (6)), the curvature of Iδ

is (we denote, generally, κ as the unit normal of the curve under consideration,
scaled by the signed curvature κ),

κκκ
Iδ

=
(T ×∇T T) × T

T 4
=

(

(δp ··· γ
′) es × (δp ··· γ

′)∂T
∂s

)

× (δp ··· γ
′) es

(δp ··· γ′)4

=

(

es ×
∂

(

(δp···γ
′) es+D δp

)

∂s

)

× es

δp ··· γ′
=

∂D

∂s

(es × δp) × es

δp ··· γ′
=

D
′

δp ··· γ′
δp (9)

where (see detail in [3]),

D
′ =

∂D

∂s
=

(

(γ − p) · γ′′ + ‖γ′‖2
)′

= −‖γ′‖2 κ′

κ
. (10)

Assume that p is originally at a transition point (i.e., on the evolute), with a
degenerate critical distance (p, s) of multiplicity 2, and assume further that p is

perturbed by δp. If D
′

(δp···γ′) > 0, then κκκ
Iδ

has the same direction as δp by Eq. (9),

or the perturbation direction is toward the curved side of Iδ; therefore, there
will be a pair of new critical distances to be created upon this perturbation (cf.
Fig 1c). Approximating the local curve of Iδ by its osculating parabola,

δp =
1

2
κκκ

Iδ
δ2
s =

1

2

D
′

(δp ··· γ′)
δ2
s δp,

7

so

1

2

D
′

(δp ··· γ′)
δ2
s = 1.

Therefore, the pair of critical distances are (p + δp, s + δs) and (p + δp, s − δs),
where δs is,

δs =

√

2(δp ··· γ′)

D′
. (11)

On the other hand, if the perturbation is away from the curved side of Iδ, the
original critical distance will disappear. The pair of critical distances to disappear
or annihilate is evident, given the fact that it is the unique neighboring critical
distances (p, s0) and (p, s1) with s ∈ (s0, s1).

Notice that, other than A2 (multiplicity-2) critical distances, there are also
A3 or even higher degenerate ones([5]). A3 critical distances correspond to iso-
lated ordinary cusps on the evolute. and therefore, due to numerical error and/or
intentional numerical perturbation, the creation events can be safely assumed to
be of only A2 type. However, for robust tracking algorithm, special implemen-
tation is required for the situation when the plane point is very close to a cusp
point (other type of cusps may also arise on an extended evolute, cf. Fig. 4).
See [3] for detail.

6 Detection of Transition Events

The detection of a transition event is, in principle, not more complicated than
a special curve-curve intersection problem [17, 16, 25, 24]. We use the interval
subdivision method [16] to do the subdivision, and, in addition, to construct a
bounding volume tree (BVT) 1 from the axis aligned bounding boxes resulting
from the interval subdivision. For most situations, the BVT allows the intersec-
tion algorithm to stop at a very early stage. In this section, the word “intersec-
tion” will mean line-diagonal intersection, while the word “hit” will refer to the
intersection of the line with the box edges.

Construct Evolute BVT by Interval Subdivision Interval subdivision re-
quires a pre-processing of breaking the initial curve at any point where a compo-
nent of the curve derivative vanishes. However, the evolute is not a regular curve,
and the pre-precessing also needs to split the evolute at both its asymptote and
cusp points (see Fig. 4). See [3] for more implementation details.

Line Hits Axis Aligned Box The first stage of transition detection checks
if a parametrized line L(t), with L(0) = p and L(1) = p̂, hits an axis aligned
box. While this is essentially the typical ray tracing algorithm [27], more hit

1 Notice that the volume here is the 2-dimensional area on the plane.

8

information is required for the next stage algorithm; specifically, if there is a hit,
the algorithm should compute the following three pieces of information for both
near and far hit points.

1. the hit edge.
2. the ratio of hit point with respect to pp̂, i.e., parameter t of hit point.
3. the ratio of hit point with respect to the hit edge.

If both hit points are outside of pp̂, the line segment pp̂ can not intersect the
box diagonal in any case and therefore there will be no transition event, and
consequently, the algorithm stops.

Line Segment Intersects Box Diagonal A leaf node axis aligned box of
the BVT, is constructed simply from the two end points of the control polygon
resulting from interval subdivision. Throughout this section, by “diagonal”, we
mean only the diagonal that connects these two end points. Notice that the
diagonal segment is supposed to approximate the local curve, and has parameters
for both of its ends that are on the evolute.

The second stage of the transition detection checks if the line segment inter-
sects the diagonal of the hit box, and, if so, computes the ratio of the intersected
point with respect to the two end points of the diagonal. The intersection point
is an approximation to the real intersection point of pp̂ with the curve evolute,
and its parameter is interpolated from those of the two diagonal ends (instead
of the simple middle point approximation).

Remark 1 An interpolation based approach gives more accurate result than the
middle point approximation, which is highly desirable because, at a transition
point, a perturbation δp of the point p will cause a perturbation

√

‖δp‖ of the
foot point of the corresponding critical distance. For details see Lemma 1 in [5].

Three generic situations of line-diagonal intersection are illustrated in Fig. 3.
It is either a through-intersection, when the near and far hit points are on the
opposite edges, or a corner-intersection, when they are on the neighboring edges.
On the other hand, considering the relative orientation of the diagonal segment
qq′ with respect to the line segment pp′, it is either that qq′[i] has the same sign as
that of pp′[i] for both i = 0 and i = 1, or the sign relations are opposite for i = 0
and i = 1 (the boolean array diag[2] in Algorithm 1 keeps this information).

The ratio of intersection point w.r.t. the diagonal is computed, based on
this classification, and by constructing the auxiliary similar triangles (shaded in
Fig. 3). See details in Algorithm 1.

7 Classification of Transition Types

If Algorithm 1 returns true, then the line segment pp̂ (i.e., the perturbation) does
intersect the evolute and there is going to be a transition event. The transition
event is of creation type, if the perturbation is toward curved side of Iδ, and of

9

(a)

(b)

(c)

1 − r1

r0

1 − r0

r1

r1

1 − r0

r1

Fig. 3. Generic Line
Box-Diagonal Intersec-
tion

Input:

diag[2] box diagonal direction w.r.t. pp̂

(e0, t0, r0) near hit point
(e1, t1, r1) far hit point
Output: on true return,

t ratio of intersected point w.r.t. pp̂

r ratio of intersected point w.r.t. diagonal
Return:

true if intersected (i.e. t ∈ [0, 1]), false otherwise
Begin

If diag[0] 6= diag[1]
t ⇐ (1 − r0)/(1 − r0 + r1)
i ⇐ is horizontal (e0) ? 0 : 1
diag[i] ⇐ ! diag[i]

Else

If corner cut situation Return false

t ⇐ r0/(r0 + 1 − r1)

r ⇐ t ⇐ (1−r)t0+rt1
If t /∈ [0, 1] Return false

If case (c) in Fig. 3 r ⇐ r ∗ r1
If(! diag[0]) r ⇐ 1 − r

Return true

End

Algorithm 1. Line Segment Intersects Box Diagonal

annihilation type otherwise (cf. Fig. 1c). By Eq. (9), the perturbation direction
is toward the curved side of the sectional curve Iδ, or κκκ

Iδ
has the same direction

as δp, if and only if D
′(γ′ ··· δp) > 0; hence, evaluation of D

′ and γ′ ··· δp at the
transition point will determine the exact transition type. However, by Eq. (10),
D

′ only changes sign at isolated curve points where κκ′ changes sign; therefore,
the evaluation of D

′, which involves the third order derivative, is not necessary
at run time, provided that all the sign flipping points of κκ′ are already pre-
computed.

The following simple algorithm determines the sign of κκ′, without even
evaluating κ′ at any point.

Algorithm 2 Pre-computing signs of κκ′

1. Split the curve at all its zero curvature points, critical curvature points, and
all break points with continuity C(<3),

2. Evaluate only curvature at all split points. The evaluation may be not nec-
essary, if the point is zero curvature point; and it may have to be performed
twice for left and right limit evaluations, for a C(<2) break point.

10

Fig. 4. Flipping Points of κκ′ of a
quadratic B-spline curve

κ′ = 0κ′ = 0κ′ = 0 : 1, 3, 5, 7, 9, 11
vertices on the curve, ordinary cusps
on the extended evolute.

κ′

lκ
′

r < 0 and κ−κ+ > 0κ′

lκ
′

r < 0 and κ−κ+ > 0κ′

lκ
′

r < 0 and κ−κ+ > 0: 2, 8, 10, 12
C1 breaks on the curve, cusps on the
extended evolute.

κ′

lκ
′

r > 0 and κ−κ+ < 0κ′

lκ
′

r > 0 and κ−κ+ < 0κ′

lκ
′

r > 0 and κ−κ+ < 0: 4, 6 C1

breaks on the curve, asymptotes on
the extended evolute.

11

2

2

3

3
4

5

5

6

7

78

8

9
9

10

10

11

11
12

12

3. For each segment, tag the sign of κ the same as that of any of its non zero
curvature end point, and the sign of κ′ the same as the difference of κ at its
two end points.

The algorithm requires as input the zero and critical curvature points, which
are computed using NURBS symbolic computation [7], with degree reduction
strategy detailed out in [4]. Fig. 4 shows all the flipping points of κκ′ for a
quadratic B-spline curve.

8 Extra Transition Events at Curve Break Points

In this section, we make extension to our algorithms so that critical distances
can be tracked across curve break points of at least C0 continuity. Notice that
the corresponding C(−1) situation is not any more difficult, and is omitted here
under the consideration that any curve, as a boundary to some 2D shape, has
to be closed.

C
2 Break Points First, observe that, by Eq. (6), Eq. (7) and Eq. (11), as

long as the curve is C3, the algorithms are valid. The requirement, however,
can be relaxed to C2. A C2 point of the curve corresponds to a C1 point on
the implicit surface I, and so does not affect evolution algorithm. On the other
hand, it does affect the transition computation based on κκκ

Iδ
, because κκκ

Iδ
is

C−1 by Eq. (9). A simple solution is to evaluate the left and right limits of
Eq. (11). However, observing that there are only isolated transition points on
the evolute corresponding to curve C2 break points, this could rarely happen
due to numerical error.

C
1 Break Points Usually only one point of any lifted normal line is on the

fold of I, and the projection of that point to R
2 is on the evolute, or it is the

curvature center (cf. Fig. 1b). However, if the considered normal line corresponds

11

to a C1 curve point, there will be a whole segment of it being on the fold of I, and
there will be a creation or an annihilation of a pair of new critical distances when
the perturbation crosses any point of that segment. The normal line segment,
serving as extra transition points, is either the line segment connecting the two
(left limit and right limit) curvature centers, or the compliment of it with respect
to the whole normal line (see [5] for more details). The important thing to note,
though, is that the apparent transition event is actually because of two evolution
events, one performed on the left segment and the other performed on the right
segment. Therefore, the following straightforward algorithm will compute the
(apparent) transition event or evolution event at a point (p, s) where γ is C1 at
s, given a perturbation of δp. In the rest of the paper, a subscript of l (r) denotes
the left (right) limit evaluation.

Algorithm 3 Transition/Evolution at C1 Break

1. If (δs)l =
δp···γ

′

Dl
< 0, (p + δp, s + (δs)l) is a perturbed critical distance.

2. If (δs)r =
δp···γ

′

Dr
> 0, (p + δp, s + (δs)r) is a perturbed critical distance.

A creation/evolution/annihilation event happens if two/one/none perturbed dis-
tances are returned from the algorithm.

C
0 Break Points At a C0 curve break point, there are two normal lines, and

each of the lifted ones has some segment on the fold of the implicit surface I. We
could have done transition computation directly for C0 break points. However,
as suggested by [5], a C0 break point can be converted into two (collapsed)
C1 break points by inserting an arc with 0-radius in between the two unfolded
break points. The arc has tangent continuity at both its ends, and has positive
(negative) infinite curvature if the two tangents at the left and right ends form a
right (left) hand rotation. Notice that this is essentially assigning a whole span
of normal lines to a C0 point, generated by right (left) rotating the left limit
normal to the right limit normal; consequently, there will be an extra critical
point if the plane point is on any of these normal lines.

9 Examples

The two examples in this section are snapshots taken from dynamically tracking
critical distances from a moving (user interactive with a mouse) point to a static
curve. Demo videos are accessible by following the link
http://www.cs.utah.edu/∼xchen/papers/more.html

Fig. 5 gives an example of continuously tracking critical distances on a cubic
B-spline curve, with 6 snapshots taken from the animation. The plane point is
shown in dark square box, and foot points are shown in filled circles, while the
corresponding points on the evolute (light gray colored) are shown in non-filled
circles. There are 5 transition events occurred at some point between each pair of
neighboring snapshots. The first transition annihilates a pair of critical distance,

http://www.cs.utah.edu/~xchen/papers/more.html

12

Fig. 5. Example 1: Tracking Critical Distances on a C2 B-spline Curve

Fig. 6. Example 2: Tracking Critical Distances on a C0 B-spline Curve

13

while the last one is actually two transition events, each of which annihilates a
pair of critical distances. All the rest of the transitions create a pair of critical
distances. The pair to be annihilated is shown in boxes, while the created pair
in larger filled circles.

Fig. 6 shows the extremal distance tracking on a C0 B-spline curve. Only
part of the extended evolute curve is shown in very light color (see [5, 3] for
details).

10 Conclusion

In this paper, we have formulated the totality of critical distances from a plane
point to a curve, as an implicit surface I in the augmented parametric space. The
evolution and the transition of critical distances are achieved by first and second
order differential computation on I, respectively. The detection of transition is
robustly and efficiently implemented using bounding volume tree of the curve
evolute. Extra transition events, corresponding to curve break points, are also
computed.

So far we have not mentioned global minimal/maximal distance tracking
because, to robustly track global minimal/maximal distance, all the local criti-
cal distances have to be tracked. Because critical distances always comes with
alternating types 2(cf.Section 8), the global minimal/maximal distance can be
computed at run time by searching and comparing every other current critical
distance.

Notice that global minimal distance tracking might also be done using medial
axis transformation (MAT) on the curve, and probably more efficiently. This is
a possible topic for our future work.

With this continuous tracking of point-curve critical distances efficiently
achieved using local marching, robust transition detection, and occasional tran-
sition computation, without any traditional global searching, our future agenda,
is to extend the approach to and design robust algorithms for the point-model
case and the model-model case.

References

[1] V. Arnold, Catastrophe Theory, 3 edition, Springer-Verlag, 1992.

[2] H. Blum, “A transformation for extracting new descriptors of shape,” Models for

the perception of speech and visual forms. 1967, pp. 362–380, MIT Press.

[3] X. Chen, “Dynamic Geometric Computation by Singularity Detection and Shape
Analysis,” Ph.D. Thesis Manuscript, 2006.

[4] X. Chen, R. Riesenfeld, and E. Cohen, “Degree Reduction Strategies for NURBS
Symbolic Computation,” Proceedings of IEEE Shape Modeling and Applications

2006: 182-193, 2006.

2 a degenerate critical distance of neither minimum nor maximum could never happen
in practical implementation due to numerical error or by intentional ǫ-perturbation

14

[5] X. Chen, R. Riesenfeld, and E. Cohen, “Extended Curve Evolute as the Transition
Set of Distance Functions,” Under submission, 2006.

[6] J. J. Chou, “Voronoi diagrams for planar shapes,” IEEE Computer Graphics and

Applications, vol. 15, no. 2, 1995, pp. 52–59.
[7] G. Elber, “Free Form Surface Analysis using a Hybrid of Symbolic and Numeric

Computation,” Ph.D. thesis, University of Utah, Computer Science Department,
1992.

[8] G. Elber and M.-S. Kim, “Geometric constraint solver using multivariate rational
spline functions,” ACM Symposium on Solid Modeling and Applications, 2001, pp.
1–10.

[9] A. Gregory, M. C. Lin, S. Gottschalk, and R. Taylor, “A Framework for Fast and
Accurate Collision Detection for Haptic Interaction,” IEEE VR 1999, 1999.

[10] T. V. T. II and E. Cohen, “Direct Haptic Rendering Of Complex Trimmed NURBS
Models,” ASME Proc. 8th Annual Symp. on Haptic Interfaces for Virtual Envi-

ronment and Teleoperator Systems, Nov. 1999.
[11] D. Johnson and E. Cohen, “A framework for efficient minimum distance com-

putations,” Proc. IEEE Intl. Conf. Robotics and Automation, May 1998, pp.
3678–3684.

[12] D. Johnson and E. Cohen, “Bound Coherence for Minimum Distance Computa-
tions,” IEEE Proc. International Conference on Robotics and Automation, 1999.

[13] D. E. Johnson, P. Willemsen, and E. Cohen, “A Haptic System for Virtual Pro-
totyping of Polygonal Models,” DETC 2004, 2004.

[14] J.W.Bruce and P.J.Giblin, Curves And Singularities, 2 edition, Cambridge Uni-
versity Press, 1992.

[15] J. J. Koenderink, Solid Shape, MIT press, 1990.
[16] P. Koparlar and S. P. Mudur, “A new class of algorithms for the processing of

parametric curves,” Computer-Aided Design, vol. 15, 1983, pp. 41–45.
[17] J. M. Lane and R. F. Riesenfeld, “A theorectical development for the computer

generation and display of piecewise polynomial surfaces,” IEEE Trans. PAMI,
vol. 2, 1980, pp. 35–46.

[18] M. C. Lin, “Efficient Collision Detection for Animation and Robotics,” Ph.D.

thesis, University of California, Berkeley, 1993.
[19] M. C. Lin and D. Manocha, “Collision and proximity queries,” Handbook of

discrete and computational geometry, 2004, pp. 787–807.
[20] W. A. McNeely, K. D. Puterbaugh, and J. J. Troy, “Six Degree-of-Freedom Haptic

Rendering Using Voxel Sampling,” SIGGRAPH 1999, 1999, pp. 401–408.
[21] D. D. Nelson, D. Johnson, and E. Cohen, “Haptic Rendering of Surface-to-Surface

Sculpted Model Interaction,” ASME Proc. 8th Annual Symp. on Haptic Interfaces

for Virtual Environment and Teleoperator Systems, Nov. 1999.
[22] I. R. Porteous, Geometric Differentiation: For the Intelligence of Curves and

Surfaces, 2 edition, Cambridge University Press, 2001.
[23] P. T. Saunders, An Introduction to Catastrophe Theory, 2 edition, Cambridge

University Press, 1980.
[24] T. W. Sederberg and T. Nishita, “Curve intersection using Bézier clipping,”

Computer-Aided Design, vol. 22, 1990, pp. 538–549.
[25] T. W. Sederberg and S. R. Parry, “A comparison of curve-curve intersection

algorithms,” Computer-Aided Design, vol. 18, 1986, pp. 58–63.
[26] E. C. Sherbrooke and N. M. Patrikalakis, “Computation of the solutions of non-

linear polynomial systems,” Computer Aided Geometric Design, vol. 10, no. 5,
1993, pp. 379–405.

15

[27] P. Shirley and R. K. Morley, Realistic Ray Tracing, 2 edition, A K Peters Ltd.,
2003.

	Tracking Point-Curve Critical Distances
	Xianming Chen (University of Utah), Elaine Cohen (University of Utah) Richard F. Riesenfeld (University of Utah)

