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Abstract

Symbolic computation of NURBS plays an impor-
tant role in many areas of NURBS-based geometric com-
putation and design. However, any nontrivial symbolic
computation, especially when rational B-splines are in-
volved, would typically result in B-splines with high de-
grees. In this paper we develop degree reduction strate-
gies for NURBS symbolic computation on curves. The spe-
cific topics we consider include zero curvatures and critical
curvatures of plane curves, various ruled surfaces related
to space curves, and point/curve bisectors and curve/curve
bisectors.

Keywords: NURBS symbolic computation, degree reduc-
tion, zero curvature, critical curvature, torsion, evolute,
focal curve, tangent developable, normal scroll, binormal
scroll, rectifying developable, bisector curve, bisector sur-
face

1 Background

Symbolic computation of NURBS [15, 4, 3, 25]
refers to algebraic operations on one or more than one
NURBS, resulting another NURBS. The operations typi-
cally include primitive ones such as sum/difference, mul-
tiplication/division1, differentiation, and composition, and
derived ones such as dot product, cross product (of 2
B-splines) and triple-scalar product (of 3 B-splines) in
R

3, and generalized cross product (of n − 1 B-splines)
and scalar product (of n B-splines) in R

n, etc. These
operations are essential to the construction of complex
NURBS models from simple ones, and more importantly
to curve/surface interrogation [4, 7, 20, 8, 24]. NURBS

∗contact author: xchen@cs.utah.edu
1the division is a closed operation on rational B-splines, and it only

makes sense when the divisor is a scalar B-spline. Notice that this is com-
pletely different from the division operator defined in [15], where sym-
bolic computation on Bézier polynomials is investigated, and division of
two polynomials results in a quotient and a remainder, both being polyno-
mials.

symbolic computation has also been used in various other
areas such as computing bisectors [9, 10, 11], blending
surfaces [18] and offsetting curves [6]. Actually, with
the help of rational constraint solvers [27, 12], NURBS
symbolic computation plays a fundamental role virtu-
ally in every area of geometric computation on free-form
curves/surfaces. However, there is one critical problem that
severely restricts the power of NURBS symbolic computa-
tion - the rapidly increasing degree of the derived NURBS,
which is especially true when rational B-splines are in-
volved.

Let us first review briefly symbolic computation on
polynomial B-splines. To symbolically add/subtract two
polynomial B-splines, both degree elevation and knot vec-
tor refinement have to be done so that both operands
have the same degree and knot vector, and then addi-
tion/subtraction is simply applied point-wise to their con-
trol polygons. Dividing a polynomial B-spline by an-
other polynomial scalar B-spline basically follows the same
procedure, except that the final step is division and the
derived B-spline is rational. Differentiation of a poly-
nomial B-spline is simple and has the favorable prop-
erty of decreasing the degree by one. Multiplication of
two B-splines, though, is complicated with different ap-
proaches [22, 4, 28]; what is of concern to this paper is
that polynomial B-spline multiplication results in another
polynomial B-spline with a degree that is the sum of the
degrees of the two operands.

In contrast, rational NURBS symbolic computation is
a completely different situation. Every operation on ratio-
nal B-spline(s) is derived rather than primitive, and is im-
plemented typically as more than one primitive operations
on the denominator(s) and numerator(s). As a result, ad-
dition/subtraction/division raises the degree just like multi-
plication does, and differentiation doubles the degree 2!

Because any operation on rational(s) either adds to-
gether or doubles the degree(s), any nontrivial symbolic
computation on rational B-splines, especially when higher
order differentiation is involved, would quite likely become
impractical because of the huge degree of the derived B-

2The rational addition and subtraction can be reduced to the polyno-
mial case if the denominators are the same B-splines.



spline. For example, the derivative of the squared curvature
of a quadratic rational curve has a degree of 96 (see Fig. 2)!

Considering that most geometric modeling systems
abound with rational quadratic curves/surfaces (e.g., cir-
cles and spheres), the rapidly increasing degree can pose
a serious problem. A common practice in the CAD com-
munity to deal with this, or other similar problems caused
by the rational representation, is to approximate the ratio-
nal curve/surface with a polynomial one. On the one hand,
this really does not solve the problem at all, and also an
acceptable initial approximation error might be amplified
significantly in later stages of the design and modeling pro-
cess. On the other hand, even starting with a polynomial
curve/surface, many (like curvature related) interrogations
will turn into a rational one quickly.

In this paper, we develop degree reduction strategies
for symbolic computation on NURBS curves. Typically
we transform the considered B-spline in various ways into
one with reduced degree. In some situations, the derived
B-spline is different from the initial one, yet gives the ex-
act same solution to the considered problem (like critical
curvature inquiry); in other situations, the derived B-spline
represents the same geometry, but with a different parame-
terization (like the ruled bisector surface); in yet other sit-
uations, the parameterization is even the same, but some
redundant terms are eliminated (like the evolute curve).

Also, a few words are in order about parameteriza-
tion and the term “rational” or “non-rational”. Assuming
a curve (called primary curve) has a rational parameteriza-
tion in s, typically any derived curves (including scalar field
on the primary curve) are supposed to be parameterized in s

also. We call this natural parameterization. Throughout the
paper, when we say f is (non)rational, it should be under-
stood as (non)rational under this natural parameterization,
unless explicitly stated otherwise. We will also investigate
several 2-dimensional derived surfaces related to curves.
In some situations, like the bisector surface between two
space curves, we are still able to have a natural parameter-
ization. In other situations, however, a natural parameteri-
zation does not make as perfect sense, and we are left with
much flexibility in choosing the second parameter and/or
the iso-curves. This actually turns out to be a positive fac-
tor in the sense that we may choose an appropriate rational
parameterization or an appropriate rational parameteriza-
tion with lower degree. A trivial example is the tangent
developable of a rational space curve xxx. If it is parame-
terized as xxx(s) + ζT̄̄T̄T (s) (T̄̄T̄T is the unit tangent vector), the
developable is not even rational in general; if the parame-
terization is xxx(s)+ηx′x′x′(s), the developable is now rational;
and finally the same developable can also be represented as
xxx+λ D1

w(s) = ppp(s)+λD1(s)
w(s) (wherexxx = p

w
,D1 = p′p′p′w−pppw′;

cf. Eq. (2.2)), which has a lower degree3. Later in this
paper, this re-parameterization strategy is used to represent
the rational rectifying developable (Section 4) and the ruled
bisector surface (Section 5.2; see also Fig. 4 and Figure 5).

The rest of the paper is organized as follows. Adapted
from [1], Section 2 develops the various derivatives of a
rational B-spline. It shows that the derivatives can actu-
ally be expressed in some polynomial B-splines up to a
common divisor and some additive terms involving lower
order derivatives; this is a simple yet extremely important
observation for NURBS symbolic computation. Section 3
develops degree reduction strategies for two common tasks
of curve interrogations, namely finding the zero curvature
points and the critical curvature points; also discussed is the
derivation of a degree reduced representation of the evo-
lute of the primary curve. In Section 4, several derived
B-spline surfaces related to a space curve are investigated.
Section 5 develops a polynomial formulation of a linear
system defining the curve/curve bisector or point/curve bi-
sector and thus reduces the degree of the bisector that is the
solution to the linear system; moreover, a direct approach
to solving the ruled point/curve bisector from a 2×3 linear
system is proposed therein. Finally, the paper concludes in
Section 6.

2 Derivatives of Rational Curves

Suppose xxx = ppp

w
, where p is a polynomial B-spline

curve, and w is a polynomial B-spline function. The deriva-

3The example just serves as an illustration of the idea; the degree re-
duction, in this case, is only 1.

2



tives are,

x′x′x′ =
p′p′p′w − pppw′

w2
,

x′′x′′x′′ =
(p′p′p′w − pppw′)′

w2
+ (p′p′p′w − pppw′)(

1

w2
)′

=
p′′p′′p′′w − pppw′′

w2
+ (p′p′p′w − pppw′)(

1

w2
)′

x′′′x′′′x′′′ =
p′′′p′′′p′′′w − pppw′′′

w2
+

p′′p′′p′′w′ − p′p′p′w′′

w2
+

(p′′p′′p′′w − pppw′′)(
1

w2
)′+

(p′′p′′p′′w − pppw′′)(
1

w2
)′ + (p′p′p′w − pppw′)(

1

w2
)′′

=
p′′′p′′′p′′′w − pppw′′′

w2
+

p′′p′′p′′w′ − p′p′p′w′′

w2
+

2(p′′p′′p′′w − pppw′′)(
1

w2
)′+

(p′p′p′w − pppw′)(
1

w2
)′′.

By introducing the notations 4,

D1 = p′p′p′w − pppw′

D2 = p′′p′′p′′w − pppw′′

D3 = p′′′p′′′p′′′w − pppw′′′

D21 = p′′p′′p′′w′ − p′p′p′w′′

(2.1)

the derivatives are rewritten as

x′x′x′ = 1
w2 D1

x′′x′′x′′ = 1
w2 D2 −

2w′

w3 D1

x′′′x′′′x′′′ = 1
w2 D3 + 1

w2 D21 −
4w′

w3 D2 + 6w′2−2ww′′

w4 D1

(2.2)

Remark 1 All D’s with various subscriptions are all poly-
nomial B-splines. The most common expression in D’s,
with their degrees in B-spline representation, are (cf.
Eq. (2.1)),

D1 2d − 1
D2 2d − 2
D3 2d − 3
[D1 D2] 4d − 3
[D1 D2 D3] 6d − 6

where d is the degree of the considered rational B-spline xxx.

4 For consistent notations, we should have used D10 ,D20, and D30

instead of D1,D2, and D3, respectively. The simpler notations are
adopted due to space consideration and also because that D21 is the only
situation where double subscripts are required.

In the above, for any two plane vectors aaa and bbb, [a ba ba b] de-
notes the determinant of the matrix consisting of the two
column vectors. Geometrically, [a ba ba b] is the signed area
of the parallelogram formed out of the two vectors in the
plane, and it is also easy to see that

[a ba ba b] = ar ··· bar ··· bar ··· b,

where, ararar means the 90 degree counter-clock-wise rota-
tion of aaa. On the other hand, for any three space vectors aaa,
bbb and ccc, [a b ca b ca b c] is the well-known triple scalar product.

Remark 2 It is proved in [1] that for a space curve xxx, D21,
as defined in Eq. (2.1), is spanned by D1 and D2. There-
fore, by Eq. (2.2), the i-th (i = 0, 1, 2) order derivative of a
rational B-spline xxx is essentially the polynomial Di up to
the same scale factor 1

w2 , and some additive terms involv-
ing lower order derivatives.

3 Symbolic Computation on B-Spline Plane
Curves

The inquiry of zero curvature points and critical cur-
vature points (i.e., κ′ = 0) of a plane curve are two fun-
damental issues in geometric design and modeling. The
signed curvature scalar field [x′x′x′ x′′x′′x′′] and the derivative of
the squared curvature (κ2)′ are used in [8], respectively, to
perform these two important interrogations. We will trans-
form the first B-spline into a degree reduced one. For the
second one, we will present a direct formulation of the crit-
ical curvature problem without even squaring the curvature
and thus achieve significant degree reduction for the final
B-spline. Also discussed in this section is the evolute of
a plane curve, which has topological significance for dis-
tances to the curve [17], and is intimately related to offset
curves [14]. The evolute is first observed to have a rational
B-spline representation in [5]. We will eliminate several re-
dundant terms implicitly involved in the original represen-
tation of the evolute of a rational primary curve and thus
transform the evolute into a B-spline of lower degree.

3.1 Curvature Zero Set of a Rational Plane Curve

The curvature of a B-spline plane curve xxx is [23],

κ =
[x′x′x′ x′′x′′x′′]

|x′x′x′|3
, (3.1)

Except for a special class of Pythagorean-hodograph
curves [16], κ, as expressed in Eq. (3.1), is generally not
a rational due to the radical in the denominator. The zero
set of κ, however, is only related to its numerator (the de-
nominator is always non-zero for a regular curve). If xxx is a
polynomial B-spline plane curve of degree d, f0 = [x′x′x′ x′′x′′x′′]
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is a polynomial scalar B-spline of degree 2d− 3. If xxx is in-
stead a rational B-spline, f0 is a rational B-spline of degree
6d because the degree is doubled each time a differentiation
is applied to a rational B-spline.

For the rational case, the direct symbolic computation
of f0 = [x′x′x′ x′′x′′x′′] involves much wasted effort. By Eq. (2.2),
the zero set of f0 is identical to that of f1 = [D1 D2]. By
Eq. (2.1),

f1 = [p′p′p′w − pppw′ p′′p′′p′′w − pppw′′],

= [p′p′p′ p′′p′′p′′]w2 − [ppp p′′p′′p′′]w′w − [p′ pp′ pp′ p]ww′′, (3.2)

where we have also used the fact that [p pp pp p] = 0. Eliminat-
ing the common factor w, the original curvature zero set
problem is transformed into the zero set of a polynomial
B-spline f2,

f2 = [p′p′p′ p′′p′′p′′]w − [ppp p′′p′′p′′]w′ − [p′ pp′ pp′ p]w′′,

which is of degree 3d− 3, a reduction of 3d+3 from 6d of
the brute force approach.

3.2 Curvature Critical Set of a Plane Curve

Because the curvature κ of a B-spline plane curve xxx

is generally not rational, further NURBS symbolic com-
putation can not be applied to the curvature function. A
common way to get around of this difficulty and to apply
symbolic computation and subdivision strategy to find the
critical curvature is to square κ [8] and then take the deriva-
tive. For the convenience of discussion, let us call this the
squaring approach. The squaring approach works fine, ex-
cept raising the degree of the final B-spline considerably,
and also requiring a post-processing to delete the inflection
points introduced by the squaring of κ. Specifically, we
start with the curvature function in Eq. (3.1). Taking the
square turns it into a rational B-spline function,

κ2 =
[x′x′x′x′′x′′x′′]2

|x′x′x′|6
. (3.3)

κ2 is a rational B-spline of degree 6d − 6 if xxx is a polyno-
mial of degree d, and of degree (2d+4d)∗2+2d∗6 = 24d

if xxx is a rational of degree d. The critical and zero curva-
ture set of xxx is the roots of the numerator of (κ2)′, which,
if computed algorithmically, has a degree of (6d− 6) ∗ 2 =
12(d − 1) or 24d ∗ 2 = 48d if xxx is polynomial or rational,
respectively.

Observing that we are actually interested in κ′ rather
than κ2, there is a direct way to find the critical curvature
points. Instead of squaring κ and make it representable as
a NURBS right away, we take the derivative first and then
see what need to be done to transform the final result into a

NURBS. By the curvature formula (Eq. (3.1)),

κ′ =

(

[x′x′x′ x′′x′′x′′]

|x′x′x′|3

)′

=
[x′x′x′ x′′′x′′′x′′′] |x′x′x′|3 − |x′x′x′|3

′
[x′x′x′ x′′x′′x′′]

|x′x′x′|6

=
(x′x′x′ ··· x′x′x′)[x′x′x′ x′′′x′′′x′′′] − 3(x′x′x′ ··· x′′x′′x′′)[x′x′x′ x′′x′′x′′]

|x′x′x′|5
.

Denoting the numerator as g0,

g0 = (x′x′x′ ··· x′x′x′)[x′x′x′ x′′′x′′′x′′′] − 3(x′x′x′ ···x′′x′′x′′)[x′x′x′ x′′x′′x′′], (3.4)

we have that the curvature critical set is identified with the
zero set of g0, an expression given earlier in [2] in coor-
dinate functions of the original plane curve 5. g0 can be
symbolically computed as a polynomial (rational) B-spline
if the curve xxx is a polynomial (rational) B-spline. If xxx is a
polynomial B-spline of degree d, g0 has a degree of 4d−6.
For a cubic polynomial curve, the final B-spline degree is
only 6, compared to 24, had the squaring approach been
taken6. See Figure 17 for detail.

Now let us focus on the rational situation. Because
x′x′x′,x′′x′′x′′ and x′′′x′′′x′′′ have degrees of 2d, 4d and 8d, respectively,
the first and second terms in Eq. (3.4) have degrees of
2d ∗ 2+ (2d+8d) = 14d and (2d+4d) ∗ 2 = 12d, respec-
tively. Therefore, g0 has a degree of 14d+12d = 26d. This
is already a significant degree reduction of 48d−26d = 22d

from the squaring approach. However, more reduction is
possible. Substituting Eq. (2.2) into Eq. (3.4), and elim-
inating the common factor 1

w4 transforms g0 into g1 with
the same zero set,

g1 = [x′x′x′ x′′′x′′′x′′′]|x′x′x′|2 − 3(x′x′x′ ··· x′′x′′x′′)[x′x′x′ x′′x′′x′′]

= [D1 D3]|D1|
2 + [D1 D21]|D1|

2 −
4w′

w
[D1 D2]|D1|

2

− 3
(

(D1 ··· D2)[D1 D2] −
2w′

w
|D1|

2[D1 D2]
)

= [D1 D3]|D1|
2 + [D1 D21]|D1|

2 +
2w′

w
[D1 D2]|D1|

2

− 3(D1 ···D2)[D1 D2]

Multiplying both sides by w does not change the zero set
of g1, and transforms g1 into a polynomial scalar B-spline
g2,

g2 = [D1 D3]|D1|
2w + [D1 D21]|D1|

2w+

2w′[D1 D2]|D1|
2 − 3(D1 ··· D2)[D1 D2]w (3.5)

By Remark 1, all four terms in the RHS of the above equa-
tion have the same degree of 9d − 6. Therefore, we fi-
nally have a transformed polynomial B-spline f with de-
gree 9d−6, which is a huge reduction from 48d of the brute

5Thank one of our reviewers for directing us to the relevant reference.
6This degree comparison, as well as the one on rational curve case

discussed shortly, is also tested with Irit version 9.5 [5], where κ2 and
(κ2)′ have degrees of 12 and 24 respectively for a cubic polynomial, and
72 and 144 respectively for a cubic rational.

7The curve model is from [21].
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(a) Curvature Critical Points

(b) Squaring Approach

(c) Direct Approach

Figure 1. Symbolically Computing Curvature
Critical Points (polynomial case)

(a) a cubic B-spline curve xxx, its evolute and six κ′ =0 pointsa.
(b) the graph of the numerator of (κ2)′, with degree 24, and 150

control points. Two extra roots are returned where κ = 0.
(c) the graph of g0 = [x′x′x′ x′′′x′′′x′′′]|x′x′x′|2 − 3(x′x′x′ ··· x′′x′′x′′)[x′x′x′ x′′x′′x′′], with degree

6 and 24 control points. f has exactly 6 roots, where κ′ = 0.
All control polygons are shown in light gray. Notice that (b) and (c)
are non-uniformly scaled and also trimmed to fit the space.

a There are actually 8 extreme curvature points (corresponding to 8 evolute
cusps), with the 2 extra ones (not shown on the primary curve) at the 2 ends
of the bottom segment (segments are in alternating colors), where the left and
right limit κ′ have different sign.

(a) Squaring Approach (b) Direct Approach

Figure 2. Symbolically Computing Curvature
Critical Points (rational case)

(a) the graph (top and bottom trimmed off to fit the space) of the
numerator of (κ2)′ of an ellipse xxx, with degree 96, 388 control
points. Vertically scaled down by 0.00001.

(b) the ellipse xxx, and the graph of g2 in Eq. (3.5), with degree 12 and
52 control points. Vertically scaled down by 0.3.

Control polygons are shown in green in both images. Notice that there
are actually only 4 roots for each graph, because the rightmost one
identifies with the leftmost one by periodic condition. Also notice that
both graphs are smooth but with C−1 B-spline representation.

force squaring approach. For a cubic rational curve, the fi-
nal B-spline is only degree 21, compared to 144, had the
squaring approach been taken. Fig. 2 shows the compari-
son on finding the 4 critical curvature points of an ellipse
represented as a C0 quadratic rational B-spline.
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3.3 The Evolute of a Plane Curve

The evolute of a plane curve xxx is [26, 19],

EEE(x) = xxx +
1

κ
N̄̄N̄N,

where κ = |x′x′
x′|3

[x′x′
x′ x′′x′′

x′′]
is the signed curvature w.r.t. the unit

normal N̄̄N̄N =
x′

r
x′

r
x′

r

|x′

r
x′

r
x′

r
|

8. It can be transformed into,

EEE(x) = xxx +
|x′x′x′|3

[x′x′x′ x′′x′′x′′]

x′
r

x′
rx′
r

|x′
r

x′
rx′
r|

= xxx +
|x′x′x′|2

[x′x′x′ x′′x′′x′′]
x′

r
x′

rx′
r, (3.6)

which is rational of degree 3d − 3 if xxx is a polynomial of
degree d, and of degree 13d if xxx is a rational of degree d.

For the rational case, based on the definition of D’s
(Eq. (2.1)), and its relation to the derivatives (Eq. (2.2)), we
are again able to transform EEE(x), achieving much degree
reduction. Specifically, substituting Eq. (2.2), and

x′
r

x′
rx′
r
=

(

D1

w2

)

r

=
D1r

w2
,

into Eq. (3.6), the evolute of a rational plane curve is re-
formulated as,

EEE(x) =
ppp

w
+

|D1|
2

[D1 D2]

D1r

w2
=

[D1 D2]w ppp + |D1|
2
D1r

[D1 D2]w2
,

with a final degree of 6d − 3 (cf. Remark 1). Fig. 3 shows
the evolute of an ellipse, comparing initial representation
to the transformed and degree reduced one.

Notice that we are able to reduce the degree consid-
erably because (cf. Remark 2) the xxx(i)’s can be replaced
with the Di’s and the algebraic operations on the common
divisor w2 result in some high degree terms that can be
canceled out.

4 Symbolic Computation on Space B-Spline
Curves

For a space curve, a local orthogonal basis is,

{

TTT = x′x′x′

BBB = x′x′x′ ×x′′x′′x′′

NNN = BBB ×x′x′x′ = (x′x′x′ ×x′′x′′x′′) ×x′x′x′
(4.1)

The normalized one, called the Frenet frame, is,

{ T̄̄T̄T = x′x′
x′

|x′x′
x′|

B̄̄B̄B = x′x′
x′×x′′x′′

x′′

|x′x′
x′×x′′x′′

x′′|

N̄̄N̄N = NNN
|NNN | = (x′x′

x′×x′′x′′
x′′)×x′x′

x′

|x′x′
x′×x′′x′′

x′′| |x′x′
x′|

(4.2)

8 The same evolute is defined if the Frenet-frame normal (and conse-
quently always positive κ) had been used.

(a) EEE(x) = xxx +
|x′
x
′

x
′|2

[x′
x
′

x
′

x
′′

x
′′

x
′′]

x′
r

x′
rx′
r, degree = 26, # ctrl pnts = 108

(b) EEE(x) = xxx +
|D1|

2

[D1 D2]
x′

r
x′

rx′
r, degree = 9, # ctrl pnts = 40

Figure 3. Evolute of an Ellipse

Curvature We will not go into the details on curvature
zero set and critical set computation. Instead, we would
like to point out that although κ is not rational in general,
both κN̄̄N̄N and 1

κ
N̄̄N̄N are rational just as in the plane curve

case. Recall that the curvature of a space curve is,

κ =
|x′x′x′ × x′′x′′x′′|

|x′x′x′|3
(4.3)
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and thus,

κN̄̄N̄N =
|x′x′x′ ×x′′x′′x′′|

|x′x′x′|3
N̄̄N̄N

=
|x′x′x′ ×x′′x′′x′′|

|x′x′x′|3
(x′x′x′ ×x′′x′′x′′) × x′x′x′

|x′x′x′ ×x′′x′′x′′| |x′x′x′|

=
1

|x′x′x′|4
(x′x′x′ ×x′′x′′x′′) × x′x′x′,

and,

1

κ
N̄̄N̄N =

|x′x′x′|3

|x′x′x′ × x′′x′′x′′|
N̄̄N̄N

=
|x′x′x′|3

|x′x′x′ × x′′x′′x′′|

(x′x′x′ × x′′x′′x′′) ×x′x′x′

|x′x′x′ ×x′′x′′x′′| |x′x′x′|

=
|x′x′x′|2

|x′x′x′ × x′′x′′x′′|2
(x′x′x′ ×x′′x′′x′′) × x′x′x′; (4.4)

that is, both κN̄̄N̄N and 1
κ
N̄̄N̄N are rationals.

Torsion The torsion of a space curve is [23],

τ =
[x′x′x′x′′x′′x′′x′′′x′′′x′′′]

|x′x′x′ × x′′x′′x′′|2
, (4.5)

and obviously it is a rational. If xxx is a rational of degree
d, τ , as defined above, is symbolically computed to be a
rational B-spline with degree (2d+4d+8d)+(2d+4d)∗2 =
26d. By Eq. (2.2) and Remark 2,

τ = w2 [D1 D2 D3]

|D1 ×D2|2
, (4.6)

which, by Remark 1, is a rational scalar B-spline with de-
gree 8d − 6. Moreover, the zero set of τ is identical to that
of the polynomial scalar B-spline,

f = [D1 D2 D3],

which has a degree of 6d− 6, compared to a degree of 14d

if computed directly from [x′x′x′x′′x′′x′′x′′′x′′′x′′′].

Tangent Developable DDDt, Normal Scroll DDDn and Binor-
mal Scroll DDDb, are all ruled surfaces, and are generated
on the same directrix xxx with generator vectors T̄̄T̄T , N̄̄N̄N and B̄̄B̄B,
respectively. The generators can be replaced by their un-
normalized counterparts in Eq. (4.1), and consequently we
have

DDDt = xxx + ζx′x′x′,

SSSb = xxx + ζ(x′x′x′ × x′′x′′x′′),

SSSn = xxx + ζ(x′x′x′ × x′′x′′x′′) ×x′x′x′,

where ζ is the parameter along the various ruled directions.
If xxx is rational of degree d, these ruled surfaces have degree

3d, 7d and 9d, respectively. However, the above generators
can be replaced once again by their counterparts of D’s
(cf. Eq. (2.1)); specifically, after some derivation (omitted
here), these ruled surfaces are re-parameterized (in λ) as,

DDDDDDDDDt =
ppp + λD1

w
,

SSSb =
ppp + λ(D1 ×D2)

w
,

SSSn =
ppp + λ(D1 ×D2) ×D1

w
,

with degrees 2d − 1, 4d − 3 and 6d − 4, respectively.

The Rectifying Developable DDDDDDDDDr is the developable sur-
face developed, on the directrix xxx, by the Darboux vec-
tor [19] DDD = τT̄̄T̄T + κB̄̄B̄B ; that is,

DDDDDDDDDr = xxx + ζ(τT̄̄T̄T + κB̄̄B̄B),

where ζ is the parameter of the rectifying developable sur-
face on the ruled direction. Of all the terms in the RHS of
the above equation, T̄̄T̄T , B̄̄B̄B and κ are not rational in general.
However, by Eq. (4.2) (4.5) and (4.3),

τT̄̄T̄T + κB̄̄B̄B =
[x′x′x′ x′′x′′x′′ x′′′x′′′x′′′]

|x′x′x′ ×x′′x′′x′′|2
x′x′x′

|x′x′x′|
+

|x′x′x′ × x′′x′′x′′|

|x′x′x′|3
x′x′x′ × x′′x′′x′′

|x′x′x′ × x′′x′′x′′|

=
1

|x′x′x′|

( [x′x′x′ x′′x′′x′′ x′′′x′′′x′′′]

|x′x′x′ ×x′′x′′x′′|2
x′x′x′ +

x′x′x′ × x′′x′′x′′

|x′x′x′|2

)

.

Hence, by a simple re-parameterization of λ = |x′x′x′| ζ, DDDDDDDDDr

is actually a rational,

DDDDDDDDDr = xxx + λ
( [x′x′x′ x′′x′′x′′ x′′′x′′′x′′′]

|x′x′x′ ×x′′x′′x′′|2
x′x′x′ +

x′x′x′ × x′′x′′x′′

|x′x′x′|2

)

,

with a degree of 39d assuming xxx is a rational of degree
d. Similarly, replacing the derivatives with D’s (Eq. (2.2)),
DDDDDDDDDr is transformed into a rational

DDDDDDDDDr = xxx + λ
( [D1 D2 D3]

|D1 ×D2|2
D1 +

D1 ×D2

|D1|2

)

,

with a degree of 13d− 8

The Focal Curve is not Rational in General. For a
plane curve, the locus of its curvature centers or osculating
circle centers, i.e. the evolute, has significant topological
meaning in various applications. On the other hand, there
are two similar curves related to a space curve - they are
the locus of its osculating circle centers and the locus of its
osculating sphere centers. In this paper, we call them evo-
lute and focal curve, respectively. The evolute of a space
curve turns out to be a rational, just like its counterpart in
plane curve case (See Section 3.3); however it does not
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have as much topological significance as the focal curve
does. Therefore, instead of transforming and reducing the
degree of the evolute, we will work on the focal curve. The
work, though, is of a negative type - we will show that, un-
fortunately, the focal curve of a space curve is non-rational,
in general.

The focal curve of a space curve x is the locus of os-
culating sphere centers, or,

FFFx = xxx +
1

κ
N̄̄N̄N +

1

τ

(

1

κ

)′

B̄̄B̄B. (4.7)

The first term is rational, and by Eq.(4.4), the second term
is rational too. However, FFFx is not rational in general, be-
cause the third term of the RHS of Eq. (4.7) is not rational
as proved below.

By Eq. (3.1), Eq. (4.5) and Eq. (4.2),
(

1

κ

)′

B̄̄B̄B =

(

|xxx′|3

|xxx′ × xxx′′|

)′
xxx′ ×xxx′′

|xxx′ ×xxx′′|

=
3|xxx′|2 |xxx′|′ |xxx′ × xxx′′| − |xxx′ ×xxx′′|′ |xxx′|3

|xxx′ ×xxx′′|2
xxx′ × xxx′′

|xxx′ × xxx′′|
.

Observing that

|xxx′ ×xxx′′|′ =
(

√

(xxx′ ×xxx′′) · (xxx′ × xxx′′)
)′

=
(xxx′ ×xxx′′) · (xxx′ ×xxx′′)′

|xxx′ ×xxx′′|

=
(xxx′ ×xxx′′) · (xxx′ ×xxx′′′)

|xxx′ ×xxx′′|
,

this is,
(

1

κ

)′

B̄̄B̄B

=
3|xxx′|2 |xxx′|′ − (xxx′×xxx′′)·(xxx′×xxx′′′)

|xxx′×xxx′′|2 |xxx′|3

|xxx′ × xxx′′|2
(xxx′ ×xxx′′)

=
3|xxx′|(xxx′ · xxx′′) − (xxx′×xxx′′)·(xxx′×xxx′′′)

|xxx′×xxx′′|2 |xxx′|3

|xxx′ × xxx′′|2
(xxx′ ×xxx′′)

=
|xxx′|

|xxx′ × xxx′′|4
(xxx′ ×xxx′′)

(

3(xxx′ · xxx′′)|xxx′ ×xxx′′|2 − (xxx′ ×xxx′′) · (xxx′ ×xxx′′′)|xxx′|2
)

,

where we have already used the fact,

|xxx′||xxx′|′ =
1

2
(|xxx′|2)′ =

1

2
(xxx′ · xxx′)′ = xxx′ · xxx′′.

By introducing

Ψ =

3(xxx′ · xxx′′)|xxx′ ×xxx′′|2 − (xxx′ ×xxx′′) · (xxx′ ×xxx′′′)|xxx′|2

|xxx′ ×xxx′′|4
(xxx′ ×xxx′′),

we have,
(

1

κ

)′

B̄̄B̄B = |xxx′|Ψ.

Ψ is a rational because each of its term is. If
(

1
κ

)′
B̄̄B̄B is a

rational, then solving the above equation for |xxx′|, it would
also be rational. Henceforth,

(

1
κ

)′
B̄̄B̄B can not be rational,

provided that |xxx′| is not rational, which is generally true.

The Polar Developable or the Focal Surface DDDp is de-
veloped by the focal lines (lines parallel to binormals and
passing through the curvature centers) on the focal curve,
i.e.,

DDDp = xxx +
1

κ
N̄̄N̄N +

1

τ

(

1

κ

)′

B̄̄B̄B + λ B̄̄B̄B,

where λ is the parameter of the polar developable surface
on the ruled direction. This is not a rational parameteriza-
tion. However, rewriting (i.e., re-parameterizing) the last
two terms as,

1

τ

(

1

κ

)′

B̄̄B̄B + λ B̄̄B̄B = µBBB,

for some µ ∈ R, the polar developable now has a rational
parameterization,

DDDp = xxx +
1

κ
N̄̄N̄N + µBBB, (4.8)

because the second term is already shown to be rational (cf.
Eq. (4.4)), and B = x′x′x′ ×x′′x′′x′′ is rational too. By Eq. (4.4),

DDDp = xxx +
|x′x′x′|2

|x′x′x′ ×x′′x′′x′′|2
(x′x′x′ ×x′′x′′x′′) × x′x′x′ + µ x′x′x′ ×x′′x′′x′′. (4.9)

If xxx is a rational B-spline, again by Eq. (2.2), DDDp is trans-
formed into,

DDDp =
p

w
+

1

w2

|D1|
2

|D1 ×D2|2
(D1 ×D2) ×D1 +

µ

w4
D1 ×D2

with significantly reduced degree.

5 Point/Curve and Curve/Curve Bisectors

It has been proved [13, 10] that the bisector9 between
a rational plane curve and a plane point is a rational curve,
that between a space point and a space rational curve is a

9Strictly speaking, a point on the bisector, as discussed in this section
and in [10], is not equidistant to the point and to the curve (or to the two
curves), even locally – rather it has equal critical distances. To get the real
bisector, trimming procedure as done in [13] for the plane case has to be
applied.
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rational ruled surface, and that between two space rational
curves is a rational surface. For the plane case, [13] has
shown that the bisector has a maximal degree of 3d − 1
and 4d − 1 if the curve is a degree d polynomial and ratio-
nal respectively10 . We will reformulate bisectors on space
curves [10] to achieve precisely the same result.

5.1 Polynomial Formulation of the Linear System
for Solving the Curve/Curve Bisector

Adapted from [10], the bisector BBB of two space curves
xxx(s) and x̂̂x̂x(ŝ) is the solution to the following linear system,





x′x′x′

x̂̂x̂x
′

xxx − x̂̂x̂x



BBB =





xxx ···x′x′x′

x̂̂x̂x ··· x̂̂x̂x′

|xxx|2−x̂̂x̂x2

2



 , (5.1)

where each B-spline in the LHS is regarded as a row vec-
tor. Geometrically, this simply means that a bisector point
BBB(s, ŝ) of two space curves xxx and x̂̂x̂x is the intersection point
of three planes namely, the plane passing xxx(s) with nor-
mal x′x′x′(s), the plane passing x̂̂x̂x(ŝ) with normal x̂̂x̂x′(ŝ), and
the plane passing xxx(s)+x̂̂x̂x(ŝ)

2 with normal xxx(s) − x̂̂x̂x(ŝ). By
Cramer’s rule, the bisector is solved as,

BBB =
(D0, D1, D2)

D
, (5.2)

where D is the determinant of the LHS matrix, and Di (i =
0, 1, 2) is that of the LHS matrix when its i-th column is
replaced by the RHS column vector.

Assume that xxx is a degree d B-spline, either polyno-
mial or rational, with parameter s. Only focusing on degree
in s (BBB has the same degree in ŝ as that in s), Eq. (5.1) can
be re-written as,




d − 1 d − 1 d − 1
0 0 0
d d d



BBB =





2d − 1
0
2d



 . (5.3)

First consider the situation when xxx is a degree d polyno-
mial. D, as a 3 × 3 determinant, is the sum of 6 terms.
Because each of the 6 terms is a degree 2d − 1 polynomial
B-spline, D is also a degree 2d−1 polynomial B-spline. On
the other hand, D0 has the following degree representation,





2d − 1 d − 1 d − 1
0 0 0
2d d d



 (5.4)

and thus 4 of the 6 terms are degree 3d−1 B-splines, while
the other 2 are still degree 2d − 1 polynomial B-spline.

10 It is stated to be 4d − 2 in [13] for the rational case. We suspect that
it is just a typo.

Therefore, D0, and of course D1 and D2 as well, is a de-
gree 3d − 1 polynomial B-spline. Finally, a division of a
degree 3d− 1 polynomial Bspline by another 2d− 1 poly-
nomial scalar B-spline results inBBB being a rational B-spline
of degree 3d − 1.

Now consider the situation when xxx is rational. D is
again the summation of 6 terms, each of which is a degree
2d − 1 rational B-splines. However, adding them together
does not raise degree at all, because all the denominators of
these 6 rational B-splines are the same and the summation
of the 6 rationals is reduced to the summation of 6 poly-
nomial B-splines followed by a division by the common
scalar polynomial B-spline. Therefore, D is finally a de-
gree 2d − 1 rational B-spline. On the other hand, D0 (and
similarly for D1 and D2) is a different situation. Notice
that each of the three rational scalar B-splines in the first
column of Eq. (5.4) has a different denominator from that
of the other two in the corresponding row. That is to say,
in the summation of the determinant, 2 of the 6 rational B-
spline terms have the common denominator, yet another 2
have another common denominator, and the rest 2 have yet
another common denominator. Therefore, applying addi-
tion first within each pair and then across the 3 pairs, the
final rational B-spline is symbolically computed to have a
degree of (3d−1)+(3d−1)+(2d−1) = 8d−3. A much
better and also simpler way is to bring the three rational
B-splines in each row of D0 to the same type by degree el-
evation and knot insertion, i.e. transforming Eq. (5.4) into,





2d − 1 2d − 1 2d − 1
0 0 0
2d 2d 2d



 . (5.5)

Now adding the 6 terms in the determinant as usual, D0 is
symbolically computed to be a degree (2d − 1) + 2d =
4d − 1 rational B-spline. And finally, BBB (cf. Eq. (5.2)) is a
rational B-spline of degree (2d − 1) + (4d − 1) = 6d − 2.

What we have just discussed is all about the optimal
implementation. In what follows, we will show that, for the
rational case, the degree actually can be reduced to 4d − 1
by some careful mathematical reformulation.

Suppose xxx = ppp

w
. Noticing that only the directions of

the plane normals matter, two of the three plane normals, xxx′

andxxx−x̂̂x̂x, can be replaced with D1 andppp−wx̂̂x̂x, respectively.
Consequently, Eq. (5.1) can be transformed into,





D1

x̂̂x̂x
′

ppp − x̂̂x̂xw



 B̄BB =





ppp ··· D1,

w x̂̂x̂x ··· x̂̂x̂x′
,

ppp2−(x̂̂x̂xw)2

2 ,



 , (5.6)

where,

B̄BB = wBBB. (5.7)
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Only focusing on degree in s, this is,




2d − 1 2d − 1 2d − 1
0 0 0
d d d



 B̄BB =





3d − 1
d

2d



 . (5.8)

Therefore, we are back to the polynomial situation; and
analogously, D is a degree 3d−1 polynomial B-spline, and
Di (i = 0, 1, 2) is a degree 4d − 1 polynomial B-spline.
Noticing that now BBB = B̄BB

w
= (D0,D1,D2)

Dw
(cf.Eq.(5.7)), and

that Dw is a degree 4d − 1 polynomial B-spline, BBB is fi-
nally symbolically computed as a rational B-spline of de-
gree 4d − 1 in s.

5.2 Ruled Point/Curve Bisectors

If one of the curve, say x̂̂x̂x, is degenerated to a point QQQ,
the second sub-equation in Eq. (5.1) is not valid; that is, we
have an under-determined 2 × 3 linear system.

(

x′x′x′

xxx −QQQ

)

BBB =

(

xxx ··· x′x′x′

|xxx|2−QQQ2

2

)

, (5.9)

Geometrically, there are now only two planes, intersecting
into lines on the bisector, and thus the bisector is actually
a ruled surface with the intersecting lines as its generators.
There are two different approaches to solve this linear sys-
tem (Figs. 4 and 5 compare the two approaches).

The Explicit Directrix Approach In [10], a third axil-
lary plane that passes through the space point and has the
corresponding generator as its normal is added to the lin-
ear system so that the directrix of the ruled bisector surface
can be solved explicitly. Since [10] does not discuss the
degrees, especially for the rational case, we will go into a
little detail here.

The directrix DDD is the solution to the following linear
system,




x′x′x′

x′x′x′ × (xxx −QQQ)
xxx −QQQ



DDD =





xxx ··· x′x′x′

QQQ ··· (x′x′x′ × (xxx −QQQ))
|xxx|2−QQQ2

2



 . (5.10)

Assuming xxx(s) is a degree d rational B-spline, focusing
only on degrees in s, we have,





2d 2d 2d

3d 3d 3d

d d d



DDD =





3d

3d

2d



 . (5.11)

The directrix DDD is therefore symbolically computed to be a
degree (3d+3d+2d)+(2d+3d+d) = 14d rational, by the
same procedure as we derived the degree ofBBB (cf.Eq. (5.1))
in Section 5.1. Because the generator is GGG = (x′x′x′ × (xxx −

QQQ)), which is a degree 3d rational11, the final ruled bisector,
symbolically computed from

BBB = DDD + tGGG,

is a rational of degree 17d.
Using the same strategy as we did in Section 5.1,

Eq. (5.10) has a polynomial re-formulation,




D1

D1 × (ppp − wQQQ)
ppp − wQQQ



wDDD =





ppp ··· D1

wQQQ ··· (D1 × (ppp − wQQQ))
ppp2−wQQQ2

2



 ,

(5.12)

and,focusing only on degree in s, this is,




2d − 1 2d − 1 2d − 1
3d − 1 3d − 1 3d − 1

d d d



wDDD =





3d − 1
4d − 1

2d



 .

Consequently, wDDD is the division of a degree (2d − 1) +
(3d − 1) + d + d = 7d − 2 polynomial B-spline by an-
other degree (2d− 1) + (3d− 1) + d = 6d− 2 polynomial
B-spline. Noticing that DDD = wDDD

w
, DDD is the division of two

polynomial B-spline, both having degree 7d− 2; therefore,
DDD is a degree 7d − 2 rational B-spline. Rewriting the gen-
erator as GGG = D1 × (xxx −QQQ) with degree 3d − 1 in s, the
final degree of the bisector is 10d − 3 in s.

Direct Approach The directrix of the ruled point/curve
bisector, however, does not have to be solved explicitly;
and also, for a fixed ruled surface, there are infinitely many
choices for the directrix. In fact, Eq. (5.9) of course can be
turned into a 2×2 linear system of two variable by moving
any of the 3 components of BBB to the RHS. Let us assume,
for the moment, that the last component ofBBB can be moved
to the RHS without introducing additional singularity to the
linear system. Eq. (5.9) is transformed into,

(

x̃xx′

x̃xx − Q̃QQ

)

B̃BB =

(

xxx ··· x′x′x′ −x′x′x′[2]BBB[2]
|xxx|2−QQQ2

2 − (xxx[2] −QQQ[2])BBB[2].

)

,

where the notation ãaa, for any vector aaa, denotes the vector
aaa with the last component discarded. Focusing only on de-
grees in s, this is,

(

d − 1 d − 1
d d

)

B̃BB =

(

2d − 1
2d

)

. (5.13)

Notice that the above equation is actually the same as
Eq. (5.8), considering the fact that the second row of the
LHS matrix is all 0’s there. Consequently, the bisector is

11or, a degree 3d polynomial if only the denominator vector is taken
as the generator. This, however, does not change the final degree of the
bisector
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a rational of degree 3d − 1 in s if the curve is a degree d

polynomial. On the other hand, if the curve is a degree d ra-
tional, we would have a polynomial re-formulation (omit-
ted here) just as we did in Section 5.1, and once again, the
resulting bisector has a degree 4d − 1 in s.

At this point, a few words are in order, comparing
our direct approach method to the explicit directrix method
in [10].

1. the degree of the final bisector is considerably re-
duced; compare Fig. 4(a) to Fig. 4(b) and Fig. 5(a)
to Fig. 5(b).

2. the iso curves of the ruled surface is exactly the height
contour line; see Fig. 4(b) and 5(b)

3. more than one parameterization may have to be used
to cover the whole bisector surface if moving some
component (the last one in the derivation) does not
work for the whole parametric space (In this case, the
curve has to be splitted into separate segments. For
any neighboring segment pair, different components
of the bisector are moved to the RHS of Eq. (5.9)).

4. both approaches have the special case of plane bisec-
tor curve as an iso-curve of the ruled bisector surface;
see Fig. 6.

6 Conclusion

In this paper, we have presented several degree re-
duction strategies for NURBS symbolic computation on
curves, including eliminating higher order derivative terms,
canceling common scalar factors, and developing sym-
bolic computation as much as possible using polynomial
B-splines. Although only focusing on NURBS symbolic
computation, we would like to point out that there is also
a numeric issue involved here, i.e. the effect of discarding
the denominator to the final zero finding of the original ra-
tional. Fig. 2 gives us an example that the transformed and
degree reduced B-spline even has a better numeric condi-
tion. We suspect, however, that the opposite might be true
if both the numerator and the (discarded) denominator eval-
uated to close to zero at some points. In the future, we will
extend the work in this paper to the surface case, especially
to investigate any possible degree reducing reformulation
for various surface interrogation problems.
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Patch Differentiation using the Rational Forward Difference
Operator,” Proceedings of the 23rd Computer Graphics In-
ternational Conference, June 2005.

(a) The Explicit Directrix Approach (final degree = 17)

(b) The Direct Approach (final degree = 7)

Figure 4. Point/Helix-Like-Curve Bisector
Comparing the two approaches to computing the ruled bisector
between a space point (in gray) and a helix-like quadratic space
curve. Control polygons in both images are in green.

[2] W. Cho, T. Maekawa, and N. M. Patrikalakis, “Topolog-
ically reliable approximation of composite Bzier curves,”
Computer Aided Geometric Design, vol. 13, no. 6, August
1996, pp. 497–520.

[3] T. DeRose, R. N. Goldman, H. Hagen, and S. Mann, “Func-
tional Composition Algorithms via Blossoming,” ACM
Trans. Graph., vol. 12, no. 2, 1993, pp. 113–135.

[4] G. Elber, “Free Form Surface Analysis using a Hybrid of
Symbolic and Numeric Computation,” Ph.D. thesis, Uni-
versity of Utah, Computer Science Department, 1992.

[5] G. Elber, “The IRIT modeling environment,”

11



(a) The Explicit Directrix Approach (final degree = 17)

(b) The Direct Approach (final degree = 7)

Figure 5. Point/Ellipse Ruled Bisector
Comparing the two approaches to computing the ruled bisector
between a plane point (in gray) and an ellipse. Control polygons
in both images are in green.

http://www.cs.technion.ac.il/ irit/, 2005.

[6] G. Elber and E. Cohen, “Error bounded variable distance
offset operator for free form curves and surfaces,” Int. J.
Comput. Geometry Appl, vol. 1, no. 1, 1991, pp. 67–78.

(a) The Explicit Directrix Approach (cf. Fig. 5(a))

(b) The Direct Approach (cf. Fig. 5(b))

Figure 6. The Plane Bisector Curve
The plane bisector curve in Fig 5 is the iso-curve of the ruled
bisector for both approaches.

[7] G. Elber and E. Cohen, “Second Order Surface Analysis Us-
ing Hybrid Symbolic and Numeric Operators,” ACM Trans-
actions on Graphics, vol. 12, no. 2, April 1993, pp. 160–
178.

[8] G. Elber and M.-S. Kim, “Symbolic and Numeric Compu-
tation in Curve Interrogation,” Comput. Graph. Forum, vol.
14, no. 1, 1995, pp. 25–34.

[9] G. Elber and M.-S. Kim, “Bisector curves of planar rational
curves,” Computer-Aided Design, vol. 30, no. 14, 1998, pp.
1089–1096.

[10] G. Elber and M.-S. Kim, “The Bisector Surface of Rational
Space Curves,” ACM Trans. Graph, vol. 17, no. 1, 1998, pp.
32–49.

12



[11] G. Elber and M.-S. Kim, “A Computational Model for
Nonrational Bisector Surfaces: Curve-Surface and Surface-
Surface Bisectors,” GMP, 2000, pp. 364–372.

[12] G. Elber and M.-S. Kim, “Geometric constraint solver using
multivariate rational spline functions,” Symposium on Solid
Modeling and Applications, 2001, pp. 1–10.

[13] R. T. Farouki and J. K. Johnstone, “The bisector of a point
and a plane parametric curve,” Computer Aided Geometric
Design, vol. 11, no. 2, 1994, pp. 117–151.

[14] R. T. Farouki and C. A. Neff, “Analytic properties of plane
offset curves,” Computer Aided Geometric Design, vol. 7,
no. 1-4, 1990, pp. 83–99.

[15] R. T. Farouki and V. T. Rajan, “Algorithms for polynomials
in Bernstein form,” Computer Aided Geometric Design, vol.
5, no. 1, 1988, pp. 1–26.

[16] R. T. Farouki and T. Sakkalis, “Pythagorean hodographs,”
IBM Journal of Research and Development, vol. 34, 1990,
pp. 736–752.

[17] J.W.Bruce and P.J.Giblin, Curves And Singularities, 2 edi-
tion, Cambridge University Press, 1992.

[18] K. Kim and G. Elber, “A Symbolic Approach to Freeform
Parametric Surface Blends,” Journal of Visualization and
Computer Animation, vol. 8, no. 2, 1997, pp. 69–80.

[19] J. J. Koenderink, Solid Shape, MIT press, 1990.

[20] T. Maekawa and N. M. Patrikalakis, “Interrogation of dif-
ferential geometry properties for design and manufacture.,”
The Visual Computer, vol. 10, no. 4, 1994, pp. 216–237.

[21] W. Martin and E. Cohen, “Surface Completion of an Irreg-
ular Boundary Curve Using a Concentric Mapping,” Pro-
ceedings of Curves and Surfaces 2002, 2002.

[22] K. M. Morken, “Some Identities for Products and Degree
Raising of Splines,” Constructive Approximation, vol. 7,
1991, pp. 195–208.

[23] B. O’Neill, Elementary Differential Geometry, 2 edition,
Academic Press, 1997.

[24] N. M. Patrikalakis and T. Maekawa, Shape Interrogation
for Computer Aided Design and Manufacturing, 1 edition,
Springer-Verlag, 2002.

[25] L. A. Piegl and W. Tiller, “Symbolic operators for NURBS,”
Computer-Aided Design, vol. 29, no. 5, 1997, pp. 361–368.

[26] I. R. Porteous, Geometric Differentiation: For the Intelli-
gence of Curves and Surfaces, 2 edition, Cambridge Uni-
versity Press, 2001.

[27] E. C. Sherbrooke and N. M. Patrikalakis, “Computation of
the solutions of nonlinear polynomial systems,” Computer
Aided Geometric Design, vol. 10, no. 5, 1993, pp. 379–405.

[28] K. Ueda, “Multiplication as a General Operation for
Splines,” Curves and Surfaces in Geometric Design, 1994,
pp. 475–482.

13


	Background
	Derivatives of Rational Curves
	Symbolic Computation on B-Spline Plane Curves
	Curvature Zero Set of a Rational Plane Curve
	Curvature Critical Set of a Plane Curve
	The Evolute of a Plane Curve

	Symbolic Computation on Space B-Spline Curves
	Point/Curve and Curve/Curve Bisectors
	Polynomial Formulation of the Linear System for Solving the Curve/Curve Bisector
	Ruled Point/Curve Bisectors

	Conclusion

