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Abstract

B-spline multiplication, that is, finding the coefficients of the prod-
uct B-spline of two given B-splines, is useful as an end result, in
addition to being an important prerequisite component to many
other symbolic computation operations on B-splines. Algorithms
for B-spline multiplication standardly use indirect approaches such
as nodal interpolation or computing the product of each set of poly-
nomial pieces using various bases. The original direct approach is
complicated. B-spline blossoming provides another direct approach
that can be straightforwardly translated from mathematical equa-
tion to implementation; however, the algorithm does not scale well
with degree or dimension of the subject tensor product B-splines.
We present the Sliding Windows Algorithm (SWA), a new blossom-
ing based algorithm for B-spline multiplication that addresses the
difficulties mentioned heretofore.

CR Categories: J.6 [Computer Applications]: Computer-
Aided Engineering—Computer-aided design (CAD); I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling—
Splines

Keywords: NURBS multiplication, sliding windows algorithm,
blossoming.

1 Introduction

B-spline multiplication, that is, finding the coefficients of the prod-
uct B-spline of two given B-splines, is useful as an end result, in ad-
dition to being an important prerequisite component to many other
symbolic computation operations on B-splines. Several theoreti-
cally based direct algorithms and several indirect approaches have
been proposed for performing this symbolic computation.

Using the discrete B-spline representation, Morken [Morken 1991]
presented the first theoretically proven result for expressing the co-
efficients of a product B-spline in terms of the coefficients of its
two factor B-splines (Theorem 3.1 in [Morken 1991]), and further
derived recurrence relations (Proposition 4.1 in [Morken 1991])
that may be useful for developing an efficient algorithm for B-
spline multiplication. However, these recurrence relations appear
somewhat involved, and, as remarked in his paper, as well as
in [Lee 1994], it is not obvious as how to obtain an efficient al-
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gorithm based on these recurrence relations. To the best of our
knowledge, this discrete B-spline based approach, although theo-
retically appealing, has not resulted in any practical algorithm for
B-spline multiplication in the CAD community.

The first practical B-spline multiplication algorithm proposed
in [Elber 1992] is based on sampling the product by sampling each
factor B-spline and indirectly forming the product B-spline using
nodal interpolation. Elber and Cohen [Elber and Cohen 1993] fur-
ther used the algorithm as a fundamental tool to symbolically query
and analyze second order differential surface properties.

Ueda [Ueda 1994] reported a direct approach for B-spline mul-
tiplication based on a blossom representation of B-splines, and
proved its equivalence to Morken’s earlier discrete B-spline ap-
proach. However, observing that computing the product B-spline
coefficients directly from the blossom representation of product B-
spline (Eq. (22) [Lee 1994] and Eq. (17) [Ueda 1994]) is very in-
efficient, Lee [Lee 1994] proposed an indirect approach that con-
verts a B-spline basis representation to a power basis representa-
tion, performs multiplication by convolving coefficients, and then
converts back to B-spline basis representation via the de Boor-
Fix formula [de Boor 1978]. As the whole process is computa-
tionally expensive, Lee developed a scheme to evaluate the coef-
ficients of the product B-spline a group at a time by computing a
chain of blossoms. Piegl and Tiller [Piegl and Tiller 1997], exploit-
ing the algorithm for multiplying Bézier curves [Cohen et al. 2001;
Farin 2002], provided another indirect approach that converts B-
splines via knot insertion to piecewise Bézier curves, performs
Bézier multiplication, and then employs knot removal methods to
convert back to the B-spline representation.

Of various algorithms for B-spline multiplication, Ueda’s
blossoming-based approach does not involve a basis conversion,
and only uses convex affine combination to construct new product
B-spline coefficients. Although the authors prefer to use a direct
method because it is constructive and stays within B-spline formu-
lations, the original algorithm lacks efficiency and favorable scala-
bility behavior with respect to degree and dimension (i.e., number
of variables)

Several researchers (for example [DeRose et al. 1993]) have ob-
served that straightforward implementations of many blossoming-
based B-spline algorithms are inefficient when the involved re-
cursive blossom evaluations exhibit combinatorial characteristics,
which is true for B-spline multiplication. One strategy to speed
up such algorithms is an associated look-up table to reuse previous
partial results of recursive blossom evaluation [Ueda 1994]. How-
ever, partial result reuse alone offers limited efficiency benefits for
multivariate high degree B-splines.

Tensor product splines with large numbers of variables
arise in many analytical situations, and have particu-
lar use in B-spline subdivision based rational constraint
solvers [Sherbrooke and Patrikalakis 1993; Elber and Kim 2001]
to enable solution of many complex geometry problems. For
example, 4-dimensional B-spline multiplication is carried out
for the computation of various geometric entities including,
bisector surfaces [Elber and Kim 2000], bi-tangent curves and
flecnodal curves [Elber et al. 2005], accessible regions for 5-axis
machining [Elber and Cohen 1999; Elber and Kim 2001], offset



Figure 1: Sliding Windows Algorithm Overview

Top row: Coefficient meshes of factor B-splines. Middle row: Cor-
responding blossom meshes of curves in top row. Bottom row: Co-
efficient meshes of product B-spline. Notice that windows in the
second row are used to compute the enlarged seventh control point
of the product. (cf. Examples 1 and 2).

surface self-intersection [Seong et al. 2006a], and perspective
silhouette of a general swept volume [Seong et al. 2006b], etc. 5D
B-spline multiplication is required in the tracking of deforming
surface/surface intersection [Chen et al. 2006], and even 7D
B-spline multiplication has to be performed to find the triple-point
singularity of deforming surface/surface intersection [Chen 2007].

Even with today’s improved computer speeds compared to that of
the 1990s when the blossoming-based direct B-spline multiplica-
tion algorithm was proposed, it would still be infeasible using that
algorithm to compute the product B-spline at interactive speed for
the difficult multiplication examples previously discussed. In this
paper we present the Sliding Window Algorithm (SWA), an effi-
cient algorithm for blossoming based B-spline multiplication. In
order to develop this algorithm, we reformulate the blossom rep-
resentation from the one presented in [Ueda 1994; Lee 1994] and
carefully organize the overall computations of the coefficients of the
product B-spline. Attaining interactive speeds and incurred no per-
formance bottlenecks in all difficult situations like the previously
mentioned examples, we have used this algorithm for computing
coefficients of product splines. With only exception of the 7-variate
multiplication, we have not encountered a slow-down in the com-
putation. A rigorous analysis of the presented algorithm and other
approaches on both efficiency and numerical stability issues is un-
derway and will be discussed in a coming report. In this paper, we
focus on presenting the form, structure, and details of the sliding
windows algorithm.

2 Algorithm Overview

Given two tensor product B-spline factors, with their defining knot
vectors and control meshes, the algorithm first constructs a pair of
intermediate meshes of blossom values, one for each B-spline fac-
tor. It further maintains a sliding window sub-mesh of the con-
structed blossom mesh, one for each factor. The blossom values in
a pair of sliding windows are used to compute a control point of the
product B-spline. Each control point of the product is generated by
a pair of windows and between computations the windows slide in
an ordered way. Fig. 1 illustrates this with a pair of windows for a
particular control point for univariate B-spline multiplication.

The rest of the paper is organized as follows. After a brief review
of the basic principles of multiplying two B-splines via blossom-

ing in Section 3, Section 4 presents a reformulation of the blos-
soming representation of a product B-spline. Section 5 develops
an incremental algorithm of knot subsequence enumeration. Start-
ing at Section 6 which reviews briefly general n-dimensional (i.e.,
n-variate) B-spline multiplication, we focus on the n-dimensional
(n-variate) case for general n. Section 7 constructs, for the factor
B-splines, a pair of n-dimensional hyper-arrays of blossom values
called blossom meshes. A pair of windows of blossom submeshes is
constructed in Section 8 to compute a corresponding control point
of the product, and the collection of control points is computed by
sliding this window pair along the blossom meshes. Finally, Sec-
tion 9 presents concluding comments.

3 B-spline Products via Blossoming

This section reviews the basic blossoming principles used for
multiplication of two B-spline functions, as noted in [Lee 1994]
and reported in detail in [Ueda 1994]. A general introduction
to blossoming can be found in [Ramshaw 1987; Ramshaw 1989;
DeRose and Goldman 1991; Seidel 1993; Gallier 1998].

Suppose a degree d univariate B-spline function G defined by a
knot vector and a series of coefficients (control points).

The knot vector is given by

v1, v1, · · · ,v1︸ ︷︷ ︸
n1=d

,v2, · · · ,v2︸ ︷︷ ︸
0<n2≤d+1

, · · · ,vr−1, · · · ,vr−1︸ ︷︷ ︸
0<nr−1≤d+1

,vr, · · · ,vr,︸ ︷︷ ︸
nr=d

vr, (1)

where v1,v2, · · · ,vr is the breakpoint sequence of distinct knot val-
ues in ascending order. Note that knot vector (1) is augmented by
extra knots v1 and vr because they are required at the two ends for
the appropriate definition of basis B-splines. However, they do not
appear in the blossoming representation, that is, if G is regarded
as the diagonalization of a symmetric d-affine function g called
the blossom of G (See [Ramshaw 1987; Ramshaw 1989] for how
to construct the blossom g from G ). Also note that the internal

maximal multiplicity of d + 1 allows possible C(−1) continuity at
breakpoints.

The ordered coefficients are the blossom values of g evaluated on
an order collection of knot sequences (this is the dual functional
property of blossoming [Ueda 1994]),

g(v1, · · · ,v1︸ ︷︷ ︸
d

),g(v1, · · · ,v1︸ ︷︷ ︸
d−1

,v2), · · · ,g(vr, · · · ,vr︸ ︷︷ ︸
d

) (2)

Each sequence at which g is evaluated in (2) has length d and
is called a (d)-knot-sequence, or simply (d)-sequence or abbrevi-
ated as (d)-seq in this paper. The (d)-sequences in (2) are spe-
cial in the sense that they take d consecutive knots from the knot
vector (1), and their corresponding blossom values are the control
points. More formally,

Definition 1 (p)-sequence, dual (p)-sequence A
knot sequence that has a total length of p is called a
(p)-sequence. If a (p)-sequence consists of consecutive
knots from the knot vector defining some B-spline, then,
alluding to the property that it is dual to some control
point of the B-spline, it is called a dual (p)-sequence.

Dual (p)-sequences of a B-spline are ordered, with two sequential
control points having their corresponding (p)-sequences shifted one
position in the knot vector (cf. (1)).

Now, consider a second B-spline function Ĝ (with blossom ĝ ) of



degree d̂, with knot vector,

v̂1, v̂1, · · · , v̂1︸ ︷︷ ︸
n̂1=d̂

, v̂2, · · · , v̂2︸ ︷︷ ︸
0<n̂2≤d̂+1

, · · · , v̂s−1, · · · , v̂s−1︸ ︷︷ ︸
0<n̂s−1≤d̂+1

, v̂s, · · · , v̂s,︸ ︷︷ ︸
n̂s=d̂

v̂s (3)

and control points (i.e., blossom values of ĝ evaluated at dual d̂-
sequences),

ĝ(v̂1, · · · , v̂1︸ ︷︷ ︸
d̂

), ĝ(v̂1, · · · , v̂1︸ ︷︷ ︸
d̂−1

, v̂2), · · · , ĝ(v̂s, · · · , v̂s︸ ︷︷ ︸
d̂

) (4)

Assuming v1 = v̂1 = u1 and vr = v̂s = ut , the product of G and Ĝ is

another B-spline function F of degree D = d + d̂, with knot vector

u1, u1, · · · ,u1︸ ︷︷ ︸
m1=D

, u2, · · · ,u2︸ ︷︷ ︸
0<m2≤D+1

, · · · ,ut−1, · · · ,ut−1︸ ︷︷ ︸
0<mt−1≤D+1

,ut , · · · ,ut︸ ︷︷ ︸
mt=D

, ut (5)

where, m1 = n1 + n̂1 = mt = nr + n̂s = d + d̂ = D. For 0 < i < t, the
multiplicity of ui in the product knot vector is computed according
to Table 1.

1 mi = n j + d̂
if ui = v j for some j but is

absent from Ĝ’s knot vector

2 mi = n̂k +d
if ui = v̂k for some k but is
absent from G’s knot vector

3 mi = max(n j + d̂, n̂k +d) if ui = v j = v̂k for some j and
k

Table 1: Multiplicity of Breakpoints in Product Knot Vector

By the dual functional property, the control points of the product B-
spline are the blossoms f of F evaluated on its dual (D)-sequences,
that is, all sequences of D consecutive knots from the product knot
vector (5). The blossom of product B-spline is related to the two
blossoms of its two factor B-splines by (Eq.(17) of [Ueda 1994]
and Eq.(22) of [Lee 1994]),

f (k1,k2, · · · ,kD
) =

∑g(ki1 ,ki2 , · · · ,kid ) ĝ(k j1 ,k j2 , · · · ,k j
d̂
)

(
d + d̂

d

) , (6)

where the summation runs over all (d)-subsets {i1, i2, · · · , id},

and complementary (d̂)-subsets { j1, j2, · · · , j
d̂
} of the set

{1,2, · · · , D−1, D}.

In Eq. (6), a single evaluation of the blossom f at a dual (D)-

sequence of the product B-spline, is expanded to 2
(

D
d

)
evalua-

tions of blossom g at (d)-subsequences, and of blossom ĝ at

(d̂)-subsequences. The (d)-subsequence and (d̂)-subsequence are
so named because they are subsets of the dual (D)-sequence from

the product knot vector. Notice that, they are simply (d) and (d̂)-
sequences that consists of consecutive knots from some refined knot

vectors of the two factor B-splines G and Ĝ, respectively. In other
words, with respect to the original knot vector of the correspond-
ing factor B-spline, they are not dual sequences in general. They
are usually explicitly called factor sequences; more formally (cf.
Definition 1),

Definition 2 factor (d)-sequence, factor (d̂)-
sequence Any dual (D)-sequence of a product

B-spline of two factor B-spline of degree d and d̂,
respectively, can be split, in multiple ways, into a pair

of sub sequences of length d and d̂. They are called,
respectively, factor (d)-sequence of the first factor

B-spline and factor (d̂)-sequence of the second factor
B-spline. They are also called (d)-subsequence and

(d̂)-subsequence, respectively, alluding to the property
that they are sub string of the (D)-sequence as a string.

An evaluation of g at a given factor (d)-sequence in the summation
of Eq. (6) can be further expanded to a convex affine combination
of blossom values at two other (d)-sequences, each with reduced
multiplicity at a single knot. The process can be performed recur-
sively until the elements of the lowest level of convex combination
blossom (d)-sequences consist of consecutive knots from G’s orig-
inal knot vector, that is, until the blossom g is evaluated only at
dual (d)-sequences, i.e., using only the control points of G. Ex-
actly the same procedure is applied on the recursive evaluation of
the blossom values of ĝ.

This is basically the approach used by Ueda [Ueda 1994], which
he augmented by using a strategy of partial result reuse with table
look-up. However, as observed by Lee [Lee 1994], this implemen-
tation is inefficient due to its combinatorial characteristics.

4 Reformulation of B-spline Multiplication

in the Blossoming Representation

Now we provide a reformulation of the blossom representation of
product B-splines that allows significant reduction in the number
and complexity of blossoms computed and thus enables a faster
algorithm. To our best knowledge, this has neither been observed
and nor used in the specific context for B-spline multiplication.

4.1 Product B-spline Represented in Multisubsets

of Multisets

Because each internal breakpoint comes from one of the factors, its

multiplicity must be increased by d or d̂ (cf. Table 1) to preserve
the correct order of continuity. Hence, it has multiplicity greater
than 1 (cf. Table 1). Therefore, Eq. (6) enumerates all multisubsets
of a multiset. Omitting the extra end knots and using superscript m
of a knot value u to denote the same knot value u repeated m times,
the product knot vector (5) can be rewritten as

u
m1

1 ,um2

2 , · · · ,ums
s . (7)

Eq. (6) can be reformulated by enumerating all the factor sequences
as multisubsets of the given dual knot sequence as a multiset;
specifically

f (uni

i ,u
mi+1

i+1 , · · · ,u
m j−1

j−1 ,u
n j

j ) =

∑ w g(uλi

i ,u
λi+1

i+1 , · · · ,u
λ j

j ) ĝ(uλ̂i

i ,u
λ̂i+1

i+1 , · · · ,u
λ̂ j

j )
(

d + d̂

d

) , (8)

where the weight w depends on (λi, · · · ,λ j),

w = ∏
i≤ℓ≤ j

(
λℓ + λ̂ℓ

λℓ

)
=

(
ni

λi

)
∏

i<ℓ< j

(
mℓ

λℓ

)(
n j

λ j

)
(9)



is the number of ways of choosing a specific (d)-subset

u
λi

i ,u
λi+1

i+1 , · · · ,u
λ j

j

from the (D)-set

u
ni

i ,u
mi+1

i+1 , · · · ,u
m j−1

j−1 ,u
n j

j .

In other words, w is the number of ways to partition the (D)-set

into the (d)-subset and its complementary (d̂)-subset

u
λ̂i

i ,u
λ̂i+1

i+1 , · · · ,u
λ̂ j

j ;

and where the summation is taken over all partitions {λi, · · · ,λ j}
such that

j

∑
ℓ=i

λℓ = d, where λℓ ≥ 0 for ℓ = i, · · · , j

j

∑
ℓ=i

λ̂ℓ = d̂, where λ̂ℓ ≥ 0 for ℓ = i, · · · , j

λℓ + λ̂ℓ = nℓ if ℓ = i or j , or mℓ otherwise

Notice that the dual (D)-sequence, as a consecutive knot sequence
from the product knot vector (7), does not necessarily have maximal
multiplicity at each of its two end points, i.e., 0 < ni ≤ mi and
0 < n j ≤ m j

Example 1 Let the first factor B-spline G (with blossom g ) of
degree 2 be defined by the knot vector,

a2 c d2 (10)

and a sequence of 4 control points, {Pi}
4
i=1, values of g on the

corresponding dual (2)-sequences,

a2, ac, cd, d2. (11)

That is, P1 = g(a2),P2 = g(a,c),P3 = g(c,d),P4 = g(d2). Similarly,

let the second factor B-spline Ĝ (with blossom of ĝ and degree of
3) be defined by the knot vector,

a3 b c d3

and a sequence of 6 control points, {Qi}
6
i=1, values of ĝ on the

corresponding dual (3)-sequences,

a3, a2b, abc, bcd, cd2, d3

The product, F = GĜ (with blossom f ), has degree 2+3 = 5, and
is defined by the knot vector

a5 b3 c4 d5.

Its 13 control points, {Ri}
13
i=1, are computed by evaluating the blos-

som f on the corresponding dual (5)-sequences,

a5,a4b,a3b2,a2b3,ab3c,b3c2,b2c3,bc4,c4d,c3d2,c2d3,cd4,d5.

For example, the 7th control point of the product is R7 = f (b2,c3).
Using Eq. (6), it is evaluated as

10R7 =

(
5

2

)
f (b2,c3) = 10 f (b2,c3) = 10 f (b1,b2,c1,c2,c3)

= g(b1,b2) ĝ(c1,c2,c3)+g(b1,c1) ĝ(b2,c2,c3)+g(b1,c2) ĝ(b2,c1,c3)+

g(b1,c3) ĝ(b2,c1,c2)+g(b2,c1) ĝ(b1,c2,c3)+g(b2,c2) ĝ(b1,c1,c3)+

g(b2,c3) ĝ(b1,c1,c2)+g(c1,c2) ĝ(b1,b2,c3)+

g(c1,c3) ĝ(b1,b2,c2)+g(c2,c3) ĝ(b1,b2,c1)

where all bi’s (i = 1,2) and all c j’s ( j = 1,2,3) are the values b and
c, respectively.

Using Eq. (8),

10R7 = 10 f (b2,c3)

= g(b2) ĝ(c3)

(
2

2

)(
3

0

)
+

g(b,c) ĝ(b,c2)

(
2

1

)(
3

1

)
+ g(c2) ĝ(b2,c)

(
2

0

)(
3

2

)

= g(b2) ĝ(c3)+6g(b,c) ĝ(b,c2)+3g(c2) ĝ(b2,c) (12)

where the weights are computed from basic combinatorial formula.

For example, the first term has a weight of
(

2
2

) (
3
0

)
because the

considered subsequence b2 is formed by choosing 2 b’s from a
total of 2 b’s in b2c3, and choosing no (i.e., 0) c’s from a total of 3
c’s in b2c3.

Notice that, on the right hand side of Eq. (12), factor sequences b2,
bc and c2 of G must be expanded as affine combinations of dual
(2)-sequences, and consequently g(b2),g(b,c), and g(c2) evaluate
to affine combinations of control points of G. Analogously, the 3

factor (3)-sequences for Ĝ , i.e., c3,bc2 and b2c, evaluate to affine

combinations of control points of Ĝ. For a detailed description, see
Algorithms 3 and 4. �

4.2 Reducing Combinatorial Complexity

The number of (d)-subsets of a set with cardinality D is

(
d + d̂

d

)
=

(
D

d

)
=

(
D

d̂

)
(13)

with lower bounds [Knuth 1997],

(
D

d

)d

and

(
D

d̂

)d̂

(14)

That is, if Eq. (6) is used directly to compute a control point of

the product, blossoms of at least max
(
(D/d )d , (D/d̂ )d̂

)
factor

sequences are evaluated. In addition, the sequences necessary for
recursively evaluating the blossoms of the factor d-sequences must
also be evaluated.

Note that if one of the factor is linear, then the number of subsets is
D. Also, if the two factors have similar degrees, then by Eq. (14),
the number of subsets, i.e., Eq. (13), will be exponential in D.

If Eq. (8) is used instead, the total number of distinct (d)-sequences

(and complementary (d̂)-sequences) of a dual (D)-sequence is sig-
nificantly reduced. The exponential complexity that occurs when d

and d̂ are close to each other is reduced to polynomial complex-
ity. Furthermore, the upper bound is constant or linear for the three
commonly occurring cases discussed shortly. Very few computa-
tions are required in those cases. We show,

Theorem 1 The number of partitions that split a (D)-

sequence into a factor (d)-sequence and factor (d̂)-

sequence pair (d + d̂ = D), is less than

(σ +1)2 D (σ−1)

where σ is the maximal order of continuity across all
breakpoints of the product B-spline of degree D.



We assume σ ≥ 1 in the theorem; otherwise, we have a simple case
of multiplying two piecewise Bézier functions, where the consid-
ered upper bound is trivially 1.

To prove Theorem. 1, we consider the general dual (D)-sequence

u
ni

i ,u
mi+1

i+1 , · · · ,u
m j−1

j−1 ,u
n j

j (15)

from the product knot vector (7), where all interior knots must
have the same multiplicity as that in the knot vector, while ni ∈
{1,2, · · · ,mi} and n j ∈ {1,2, · · · ,m j}, subject to the requirement
that

ni +
j−1

∑
ℓ=i+1

mℓ +n j = D.

Because the product is at most C σ at any breakpoint, each knot
that is interior to the dual (D)-sequence (15) has multiplicity at least
D−σ , and thus, the total multiplicity of all ( j− i−1) interior knots
is at least

( j− i−1)(D−σ).

Consequently ni +n j is at most

D− ( j− i−1)(D−σ).

Therefore, to make the dual (D)-sequence (15) valid, the above ex-
pression must at least be 2 (ni ≥ 1,n j ≥ 1), or, equivalently,

( j− i−2) <
σ −1

D−σ
≤ σ −1 (16)

where the last inequality holds because D≥ σ +1, i.e., the order of
continuity is at most 1 less the degree.

Now consider the possible subsequences of the dual (D)-
sequence (15). Note that, on the one hand, the multiplicity of
each interior breakpoint of the dual (D)-sequence (15) is at most
D, while, on the other hand, at least D−σ . Thus the multiplicity
at each of its two end knots is at most σ 1. Since the multiplic-
ity of a knot in any subsequence can be any value from 0 to the
corresponding multiplicity in the dual (D)-sequence (i.e. D for the
interior knots, and σ for each of its two end knots), the total number
of ways of choosing distinct subsequences from the (D)-sequence
is

≤ (σ +1)2(D+1)( j−i−2) < (σ +1)2 D (σ−1) (17)

where ( j− i− 2) is one less the total number of interior knots 2,
and we have used Eq. (16) to conclude the proof of Theorem 1.

For many common situations, though, the upper bound is actually
either constant or linear in D because the dual (D)-sequences for
these common situations have at most 3 distinct breakpoints. If the
considered dual (D)-sequence has three distinct breakpoints, then
j− i− 2 ≡ 1 (cf. Eq. 15 and Eq. 16), and so the left hand side of
Eq. (17) yields a linear bound in D. Similarly, if only two distinct
breakpoints are involved, the upper bound in D is constant.

To show that a dual (D)-sequence has typically at most three dis-
tinct breakpoints, let us assume, on the contrary, that

unvD−σ1 wD−σ2 xσ1+σ2−D−n

is a (D)-sequence with 4 breakpoints, u,v,w and x , sequential
values from the breakpoint sequence, and σ1 and σ2 are the order

1The total length of the D-seq could not be more than D.
2“one less” because we can choose any interior knot multiplicity in the

subsequence to be determined by the constraint that the total multiplicity of

all knots, i.e. the length of the factor (d)-subsequence, has to be fixed value

d

of continuity at breaks v and w, respectively. For this to be a valid
dual (D)-sequence,

σ1 +σ2−D−n > 0, and n > 0

Since σ1 ≤ σ and σ2 ≤ σ , then D < σ1 +σ2−n < σ1 +σ2 ≤ 2σ ,
or

D < 2σ (18)

i.e., the degree D of the product is less than 2σ , twice the maximum
order of continuity. This turns out to be false for many common
situations.

We illustrate this by considering three specific cases. Suppose d̂ =
d. Then the maximum smoothness possible for the product curve
σ = d−1. Now, D = 2d > 2(d−1), so there cannot be 4 knots in

the (D)-sequence. If d̂ = d−1 or d−2, the maximum smoothness
of the product curve is d−1 again, so now D = 2d−1 or 2d−2 is
not less than 2(d−1), so again the hypothesis is contradicted, and
the (D)-sequence has fewer than 4 distinct knots. Hence when the
degrees of the two factors differ by 2 or less, then (D)-sequences
cannot have 4 or more elements, and the number of distinct factor
sequence pairs is at most linear as shown in Table 2. Note that this

situation occurs exactly when
(

D
d

)
(cf. Eq. (13)) exhibits its worst

combinatorial complexity.

Eq. (18) is also false for the common situation where both factors

have the same breakpoints. Since, in that case, d > σ and d̂ >
σ . Many applications, including rational differentiation and finding
cross products of first and second derivatives of curves (in curvature
calculations), all have this characteristics; and thus, the involved
product B-splines all have fewer than 4 distinct knots in their (D)-
sequences.

Summarizing, we have

Observation 1 Three common cases of dual (D)-sequences and
the corresponding total number of ways of choosing distinct subse-
quences from these dual sequences, respectively, are as in Table 2.

D-Sequence Pairs of Distinct Factor Sequences

case 1 uD 1

case 2 unvD−n min(d+1, d̂+1,1+n,1+D−n)

case 3 unvD−σ wσ−n ≤ (1+n)(1+σ −n)≤ (1+
σ

2
)2

Table 2: Number of Pairs of Distinct Factor Sequences

5 Incremental Algorithm for Knot Subse-

quence Enumeration

In this section, we develop an algorithm for enumerating subse-
quences, i.e., factor sequences, of dual knot sequences of the prod-
uct vector. The consecutive enumeration with respect to consec-
utive dual sequences of the product vector is generated incremen-
tally; furthermore, it results in a pair of ordered lists of factor se-
quences, which is used later for the computation of product B-spline
control points.



5.1 Enumeration of Subsequences of a Single Dual

Sequence

Computing a control point of the product B-spline by Eq. (8), or
equivalently, computing the blossom at the corresponding dual (D)-
sequence, the blossoms of the two factors must be evaluated at a
collection of factor knot sequences, each of which is a subset of the
dual (D)-sequence of the product vector. Thus, subset enumeration
is an essential operation. With the details of the ordering discussed
in Section 5.3, the following algorithm generates subsequences of
a given sequence in an ordered way. The algorithm is presented for
easy illustration.

Algorithm 1 Enumerate subsequences of a sequence

Input (uλi

i
· · ·u

λj

j
) (q)-seq

Output L(p, q) list of all (p)-subsequences of (uλi

i
· · ·u

λj

j
)

Begin

1. L(p, q)←−∅

2. If (uλi

i
· · ·u

λj

j
) = ()

If p = 0, add empty string () to L(p, q)

3. Else

For k = 1, · · · ,λj

(a) L(p−k, q−k) ←− enumeration of (p−k)-

subseqs of (q−k)-seq (uλi

i
· · ·u

λj−1

j−1
)

(b) For each (p−k)-seq (X ) ∈ L(p−k, q−k),

append (X uk
j) to the end of L(p, q)

End

5.2 Incremental Subsequence Enumeration for All

Dual Sequences

Even though at first glance it seems that each time Eq. (8) is used
to compute a new control point of the product, Algorithm 1 must
be applied to enumerate all the factor sequences. a performance
enhancement is readily available by observing that the subsequence
enumerations of two neighboring dual (D)-sequences share most of
their subsequences, and their corresponding weights as well. This is
true simply because the two neighboring dual (D)-sequences shift
only one position with respect to the product knot vector. Specifi-
cally,

1. Consider any (d)-subsequence

(uλi

i · · ·u
λ j

j )

of the current (D)-sequence

(uni

i u
mi+1

i+1 · · ·u
m j−1

j−1 u
n j

j ).

If λi < ni, then it is still a valid (d)-subsequence of the next
dual (D)-sequence of the product vector, which is

(uni−1
i u

mi+1

i+1 · · ·u
m j−1

j−1 u
n j+1

j ), if n j < m j

(uni−1
i u

mi+1

i+1 · · ·u
m j−1

j−1 u
m j

j u1
j+1), if n j = m j

(19)

Furthermore, by Eq. (9), the associated weight is updated sim-
ply by a scale factor of

(
ni−1

λi

)

(
ni

λi

) = ni−λi
ni

, if n j = m j, otherwise

(
ni−1

λi

)

(
ni

λi

)

(
n j +1

λ j

)

(
n j

λ j

) = ni−λi
ni

n j +1

n j−λ j +1

(20)

Note that the next dual (D)-sequence of the product vector
in Eq. (19) actually starts with u

mi+1

i+1 if ni = 1, but Eq. (20)
holds as well in this special case.

2. New (d)-subsequences of the next dual (D)-sequence (19),
must be of the form

(X1 u
n j+1

j ), if n j < m j,

(X2 u1
j+1), if n j = m j.

(21)

where X1 and X2 are computed recursively by Algorithm 1
for subsets problems with reduced size. Specifically, X1 is
any (d−nj−1)-subsequence of the (D−nj−1)-sequence

(uni−1
i u

mi+1

i+1 · · ·u
m j−1

j−1 ),

and X2 is any (d−1)-subsequences of the (D−1)-sequence

(uni−1
i u

mi+1

i+1 · · ·u
m j−1

j−1 u
n j

j ).

The associated weight is initialized by a direct computation of
Eq. (9)

Finally, Algorithm 2 below gives the details on incrementally enu-
merating all subsequence pairs (one for each factor) for each dual
(D)-sequence of the product knot vector, where each enumerated
subsequence is further tagged with an associated weight. We cre-
ate ordered sub lists of the list of the ordered enumerated weighted
subsequences and name them weighted intervals. Fig. 2 illustrates
a snapshot of output of the algorithm.

Algorithm 2
Enumerate factor sequences of all dual sequences
of a product B-spline

Input

d, d̂,D degrees of the factors and the product

u
m1

1
· · ·ums

s product knot vector, where m1 = ms = d+ d̂ =D

Output

L seq List of factor (d)-seq of the first factor

L ŝeq List of factor (d̂)-seq of the second factor
LSEQ List of dual (D)-seq of the product
L P List of pairs of weighted intervals of L seq and

L ŝeq. Each such weighted interval specifies a sub-
list of L seq or L ŝeq, consisting of consecutive ele-
ments, each of which is tagged with a weight. A pair
of weighted intervals is created for each correspond-
ing dual (D)-seq of the product, i.e., each correspond-
ing element in LSEQ

Begin
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Figure 2: Illustrating Subsequences Enumeration of Algo. 2 (cf.
Example 2)

Shown is the output of Algo. 2 at Iteration 7 for Example 1.
For example, the (2)-subsequence bc (resp. the complementary
(3)-subsequence bc2) occurs 6 times out of all 10 possible (2)-
subsequences (resp. (3)-subsequences) of the current (underlined)

dual (5)-seq b2c3. Refer to Example 2 for more details.

1. Initialization

(a) L seq←{ (ud
1)}, L ŝeq←{ (ud̂

1)}

(b) currentSEQ← uD
1

(c) Initialize the current pair of weighted intervals,

(⊢⊣, ⊢̂⊣), by setting the first interval to be the whole
L seq with its only sequence tagged with weight(

D
d

)
, and the second interval to be the whole L ŝeq

with its only sequence tagged with weight 1, respec-
tively.

2. Append currentSEQ to LSEQ

3. Append (⊢⊣, ⊢̂⊣) to L P.

4. While (currentSEQ 6= uD
s )

(a) Update currentSEQ using Eq. (19);

(b) For each factor (d)-sequence in the weighted interval
⊢⊣, set its associated weight w to 0 if it is not a valid
(d)-subsequences of currentSEQ; otherwise, scale w
according to Eq. (20).

(c) Append to L seq all new factor (d)-sequences, as sub-
sequences of currentSEQ and generated by Eq. (21).

(d) Expand the interval ⊢⊣ by sliding forward its right end
to that of L seq . Each new element in ⊢⊣ is also
tagged by a weight that is computed by Eq.(9).

(e) Shrink the interval ⊢⊣ by sliding forward its left end to
the first tagged w 6= 0

(f) Apply the same procedure (steps (b), (c), (d), and (e)) to

L ŝeq and ⊢̂⊣. However, weights are not scaled, only
zeroed if necessary.

End

5.3 Backward Lexicographic Order of Subsequence

Enumeration

Although subset enumeration is a classical topic in combinatorial
algorithms; the detailed Algorithm 1 is given to illustrate the spe-
cific order of the resulting enumeration.

In the recursive algorithm Algorithm 1, the loop control variable k
is in ascending order, and the corresponding output is in the form

of (X uk
j) (cf. the last line of Algorithm 1; therefore, if each of

the enumerated sequence is reversed (i.e., for example b2c = bbc
turned into cbb ), the enumeration would be in lexicographic or-
der with respect to the alphabet that consists of distinct ascending
knots. We call this backward lexicographic order. Furthermore,
Algorithm 2 iterates dual (D)-sequences using Eq. (19), which also
adds knots of higher alphabet values to the rightmost side instead
of to the leftmost side, and thus has the same property. In conclu-
sion, Algorithm 1 and Algorithm 2 generate enumerations of both
the dual (D)-sequences and the two factor sequences in backward
lexicographic order (cf. Fig. 2 and Example 2).

5.4 Reverse Pairing of Knot Sequences of Two Fac-

tor B-splines

In Algorithm 2, subsequence enumeration for Ĝ is independent
from that for G. It follows the same procedure, except that the as-
sociated weights serve to only indicate whether or not the sequence
is really a subsequence of the (D)-sequence of the product knot
vector.

It is necessary to pair (d)-sequences with (d̂)-sequences so each
pair forms a partition of the (D)-sequence. By Algorithm 2, each
dual (D)-sequence of the product knot vector is partitioned into

a factor (d)-sequence and a complementary factor d̂-sequence in
multiple ways, with all the possible factor (d)-sequences forming

an interval ⊢⊣ of L seq, and all the possible factor d̂-sequences

forming another interval ⊢̂⊣ of L ŝeq. Because of the backward lex-
icographic order of both L seq and L ŝeq, the first (d)-sequence

in ⊢⊣ must be paired with the last d̂-sequence in ⊢̂⊣ to make a
dual (D)-seq, and the process proceeds recursively with the rest

(d)-sequences and d̂-sequences that are not paired yet while skip-
ping invalid factor sequences (i.e., those with 0 weights). Fig. 2
illustrates the reverse pairing.

We conclude this section with a detailed example.

Example 2 Algorithm 2 is applied to Example 1. Recall that the

knot vectors of G, Ĝ, and F are (a2 c d2), (a3 b c d3), and

(a5 b3 c4 d5), respectively.

The first few iterations are shown with output (cf. Fig. 2),

1. list LSEQ of dual (5)-seq of the product generated so far

2. list L seq of factor (2)-seq of the factor G generated so far

3. current weighted interval ⊢⊣ of L seq , for the current dual
(5)-seq that is the last (underlined) element of LSEQ

4. list L ŝeq of factor (3)-seq of the factor Ĝ generated so far

5. the current weighted interval ⊢̂⊣ of L ŝeq , for the current
dual (5)-seq



Iteration 1:

LSEQ a5

L seq a2

⊢⊣ 10

L ŝeq a3

⊢̂⊣ 1

Iteration 2:

LSEQ a5 a4b

L seq a2 ab
⊢⊣ 6 4

L ŝeq a3 a2b

⊢̂⊣ 1 1

...

Iteration 6:

LSEQ a5 a4b a3b2 a2b3 ab3c b3c2

L seq a2 ab b2 ac bc c2

⊢⊣ 3 0 6 1

L ŝeq a3 a2b ab2 b3 abc b2c bc2

⊢̂⊣ 1 0 1 1

Iteration 7:

LSEQ a5 a4b a3b2 a2b3 ab3c b3c2 b2c3

L seq a2 ab b2 ac bc c2

⊢⊣ 1 0 6 3

L ŝeq a3 a2b ab2 b3 abc b2c bc2 c3

⊢̂⊣ 1 1 1

For example, Algorithm 2 proceeds to Iteration 7 from Iteration 6
as follows.

1. Step 4(a) of the algorithm updates the current dual (5)-seq

from b3c2 to b2c3. Refer to the first case in Eq. (19) where
ni = 3 and n j = 2.

2. Step 4(b) does not zero any weights, as the valid factor (2)-
sequences from iteration 6 are still valid; however, Step 4(b)
updates all three weights, e.g., for the factor (2)-seq b2, λi = 2
and λ j = 0, so by the second case of Eq. (20),

ni−λi

ni

n j +1

n j−λ j +1
= 1/3,

and the new weight is scaled to 1.

3. Step 4(c)& 4(d) generate no new factor (2)-sequences as a
valid (2)-sequence cannot have its end knot with multiplicity
3 (cf. the first case of Eq. (21)). Thus, the right end of the
interval stay the same.

4. By Step 4(b), the left end of the interval stay the same as well.

5. Step 4(b), 4(c), 4(d) & 4(e) are repeated for the factor (3)-
sequences. The (3)-seq b3 from iteration 6 is not a valid sub-

sequence of the current dual (5)-seq b2c3 and thus its weight
is zeroed, and consequently the left end of the interval slides
forward by two steps to the first valid (3)-seq b2c (Notice that
no scaling of the weight is required this time). Finally, a new
(3)-sequence c3 is added, and consequently, the right end of
the interval slides forward by one step.

These output lists are used to compute the control points of the
product. For example, according to the output of iteration 7, and by
the reverse pairing property,

R7 = f (b2,c3) = 1 g(b2) ĝ(c3)+6 g(b,c) ĝ(b,c2)+3 g(c2) ĝ(b2,c)

which is seen in Eq. (12) in Example 1. The right hand side expres-
sion is further computed by Algorithms 3 and 4. See Example 3 for
the computation of g(b,c). �

6 Multiplication of n-Dimensional Tensor

Product B-splines

Algorithm 2 in Section 5.2 is best understood for univariate B-
spline functions. However, it works for n-variate or n-dimensional
B-spline functions as well, when the focus is on any single direction
or dimension. In this more general setting, a dual sequence of the
knot vector in the considered dimension, corresponds to a slice of
control points. Algorithm. 2 must be applied n times, once for each
dimension, and then the resulting n list pairs are combined for the
purpose of computing the blossoms at various n-tuples of dual knot
sequences of the product knot vector. But first, in this section, we
need to briefly review multiplication of 2 n-dimensions B-splines
of general dimension n > 1.

Suppose G and Ĝ are 2-D (i.e., bivariate) tensor product B-splines.
Assume that the product knot vector in the second dimension is

v
p1

1 ,v
p2

2 , · · · ,v
pt

t , (22)

and the degrees of the first factor, the second factor and the product

are di, d̂i and Di, respectively for i = 1,2. The multi-dimensional
analogy to Eq. (8) is

f (uni

i u
mi+1

i+1 , · · · ,u
m j−1

j−1 ,u
n j

j ; v
qk

k
v

pk+1

k+1 , · · · ,v
pl−1

l−1 ,v
ql

l
)

=
∑ w1 w2 g⊗ ĝ

(
d1 + d̂1

d1

)(
d2 + d̂2

d2

) ,



where

g⊗ ĝ = g(uλi

i , · · · ,u
λ j

j ; v
ηk

k
, · · · ,v

ηl

l
) ĝ(uλ̂i

i , · · · ,u
λ̂ j

j ; v
η̂k

k
, · · · ,v

η̂l

l
)

w1 =

(
ni

η̂i

)
∏

i<r< j

(
mr

λr

)(
n j

η̂ j

)

w2 =

(
qk

ηk

)
∏

k<r<l

(
pr

ηr

)(
ql

ηl

)

∑
r=i,··· , j

λr = d1, ∑
r=k,··· ,l

ηr = d2

(λi, λi+1, · · · , λ j−1, λ j)

+ (λ̂i, λ̂i+1, · · · , λ̂ j−1, λ̂ j)

= (ni, mi+1, · · · , m j−1, n j),

(ηk, ηk+1, · · · , ηl−1, ηl)

+ (η̂k, η̂k+1, · · · , η̂l−1, η̂l)

= (qk, pk+1, · · · , pl−1, ql),

and the summation takes over all

{λi, · · · ,λ j}, {ηk, · · · ,ηl}

Similar equations exist for the multiplication of tensor product B-
splines of any general dimensions n.

7 Computing Blossom Meshes of Factor B-

splines

To multiply 2 n-dimensional B-splines, Algorithm 2 must be ap-
plied n times, once for each dimension. For each i ∈ {1, · · · ,n}, the
algorithm generates L seqi, a list of (di)-sequences with respect to
the i-th dimension knot vector of the first factor G where di is G’s
degree in the i-th direction. Taking the n such lists as vectors and
iteratively forming tensor product yields an n-dimensional array,
each element of which is a tuple of n factor sequences ((d1)-seq,
· · · , (dn)-seq). In this section we evaluate the blossom g of G at all
such sequence tuples, therefore construct an n-dimensional array of
blossom values, called a blossom mesh of G. Of course, another
blossom mesh of Ĝ is analogously constructed.

7.1 Knot Sequences as Convex Affine Combinations

A method to recursively evaluate a blossom value of g on a (d)-
sequence, seqseqseq, of B-spline G is to recursively expand seqseqseq into an
affine combination of other 2 (d)-sequences until all the final (d)-
sequences are dual (d)-sequences that correspond to control points
of G. For the sake of the discussion that follows, we also call an
affine combination of 2 knot (d)-sequences into another one inter-
polation.

If seqseqseq is a dual sequence of G, then no interpolation is required.
Otherwise, let seqseqseq = X b Y Z , where X and Z consist of con-
secutive knots from the original knot vector of G, while X b does
not. Further, let a be the left neighbor knot to X in G’s origi-
nal knot vector of non-descending knots, and respectively, c be the
right neighbor knot to Z , then b can be expressed as an convex
affine combination of a and c,

b =
c−b

c−a
a+

b−a

c−a
c = (1−ρ)a+ρc, where ρ =

b−a

c−a
,

Consequently, the left and right interpolating (d)-sequences L and
R are aX Y Z and X Y Z c. The detailed algorithm, based on
multiplicity knot vector representation, is shown in Algorithm 3
below.

Without delving into a detailed description, one final comment
on the comparison of the above algorithm with the approach
in [Ueda 1994], where, in our notation, the interpolating right knot
c is the right neighbor of the X , i.e., the leftmost matched string,
instead of Z , i.e., the rightmost matched string. Although there
will not be any significant performance difference if associated ta-
ble is used to store and retrieve the intermediate result, our method
typically does have fewer levels of recursion.

Algorithm 3 Compute Interpolating Knot Sequences

Input

(uλi

i
· · ·u

λj

j
) (d)-seq to be recursively interpolated

u
m1

1
· · ·ums

s Original knot vector of G, with new knots from Ĝ
inserted with 0 multiplicity

Output

L,R,ρ 2 (d)-seqs interpolating to (uλi

i · · ·u
λ j

j ) by ratio ρ

Begin

1. kkk← first index that λk > mkλk > mkλk > mk

2. If λi <mi L← (uλi+1
i
· · ·uλk−1

k · · ·u
λj

j
)

Else L ← (u1
ru0

r+1 · · ·u
0
i−1u

λi

i
· · ·uλk−1

k · · ·u
λj

j
) where

r < ir < ir < i is the first such index that mr 6= 0.

3. If λ j <m j R← (uλi

i
· · ·uλk−1

k · · ·u
λj+1

j
)

Else R ← (uλi

i
· · ·uλk−1

k · · ·u
λj

j
u0

j+1 · · ·u
0
s−1 · · ·u

1
t )

where t > jt > jt > j is the first such index that mt 6= 0.

4. ρ ←
uk−us

ut −us

End

Example 3 Consider again Examples 1 and 2. Evaluation of
g(bc) is required for the computation of R7 of the product. As
bc is not a dual (2)-sequence of G, Algorithms 3 and 4 are used
to compute g(bc). For the sake of discussion, let a = 0,b = 1,c =
2,d = 3, then b is the affine combination of a and d with

ratio of b−a
d−a = 1/3, therefore, g(bc) is the affine combination

of g(ac) and g(cd) with the same ratio of 1/3, or equivalently,
g(bc) = 2/3P2 +1/3P3, where P2 and P3 are the second and the
third control points of G (cf. Eq. (11)). �

7.2 Constructing Blossom Meshes

In the previous sub-section, a factor (d)-sequence is expanded to a
convex affine combination of two other (d)-sequences, which are
recursively expanded until reaching an expression of convex affine
combinations of dual (d)-sequences from the original knot vector
of G. There is a dual statement of evaluating blossoms to an expres-
sion of affine combinations of control points of G. Specifically, by
the affine property of blossom g,

g(∗; · · · ; X b Y ; · · · ; ∗)

= (1−ρ) g(∗; · · · ; aX Y ; · · · ; ∗)+

ρ g(∗; · · · ; X Y c; · · · ;∗) (23)



where ∗ denotes any knot sequences in all dimensions other than
the one being considered. Notice that, for the 1-dimensional case,
the equation represents an interpolation of two blossom values into
the one to be evaluated, and the two interpolating blossom values
have to be recursively evaluated, ultimately from the control points
of G. For a general n-dimensional case, Eq. (23) represents an in-
terpolation of two slices – that is, (n− 1) dimensional arrays of
blossom values – into the one slice corresponding to the knot se-
quence X b Y (cf. Fig 2), which means that the same interpolation
is applied to each corresponding triple of blossom values of the 3
involved slices. Such an interpolation of slices are carried out it-
eratively for all dimensions, ultimately resulting an n-dimensional
array of blossom values, all of which are evaluated at n-tuples of
factor sequences as generated by Algorithm. 2.

Fig. 3 illustrates this idea and Algorithm 4 gives the details.

Algorithm 4 Computing Blossom Mesh of a Factor B-spline

Input

C Control mesh of G

L seq0
i List of dual (di)-seq in direction i ∈ {1, · · · ,n}

L seqi List of factor (di)-seq in direction i from Algo. 2

Output

B n-dimensional array of g evaluated at n-tuples of
factor sequences, ((d1)-seq, · · · , (dn)-seq)

Begin

1. SrcMesh← C

2. For each direction i = 1, · · · ,ni = 1, · · · ,ni = 1, · · · ,n

(a) DstMesh← nnn-dimensional empty mesh

(b) For k = 1, · · · ,mk = 1, · · · ,mk = 1, · · · ,m, where mmm is the total elements in
L seqi

i. Using Eq. (23), recursively evaluate

g(L seq1[∗]; · · · ; L seqi−1[∗];

L seqi[k];

L seq0
i+1[∗]; · · · ; L seq0

n[∗])

to some affine combination of slices (crossing di-
rection iii) from SrcMesh

ii. Append the evaluated slice to DstMesh along di-
rection iii.

(c) SrcMesh← DstMesh

3. B← DstMesh

End

8 The Sliding Windows Algorithm

The algorithms presented construct a pair of n-dimensional ar-
rays, i.e., meshes of blossom values corresponding to factor (d)-

sequences and (d̂)-sequences of the G and Ĝ, respectively. Since
these factor sequences are the ones that appear in the right hand
side of Eq. (8) for computation of control points of the product F ,
it is now possible to compute each control point of the product di-
rectly by Eq. (8). Furthermore, because of the consistent backward
lexicographic orderings of dual (D)-sequences of the product knot

Legend:

dual knot sequence of the original knot vector of the factor B−spline  in direction 1

dual knot sequence of the original knot vector of the factor B−spline in direction 2

factor knot sequence of the factor B−spline in direction 1

factor knot sequence of the factor B−spline in direction 2

· · ·
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Control Mesh C

Lseq0

1

Lseq0

2 Blossom Mesh B

Lseq1

Figure 3: Compute Blossom Mesh (cf. Algo. 4)
Each vertical slice of blossom points in the intermediate mesh (the
middle one) is interpolated from the appropriate vertical slices of
control points in the original control mesh (the left one); dually, the
factor (d1)-sequence is interpolated from appropriate dual (d1)-
sequences from the original knot vector in direction 1. Notice that
the horizontal slices of blossom values in the intermediate mesh
are still dual to dual (d2)-sequences from the original knot vector
in dimension 2. After applying another interpolation at direction
2, these slices are interpolated into horizontal slices in the final
blossom mesh (the right one), all elements of which are now dual to
both factor (d1)-sequences and factor (d2)-sequences. Notice that
both Lseq1 and Lseq2 are computed by Algorithm 2.

vector, factor (d)-sequences of G, and factor (d̂)-sequences of Ĝ, in
conjunction with the associated weighted factor sequence intervals
corresponding to each (D)-sequence, we are able to compute the
product B-spline control points one by one in a natural linear or-
der while iterating correspondingly in a linear way on the blossom
meshes.

First we order elements in various n-dimensional arrays considered
in this paper, in a natural way, by numbers i1i2 · · · in that correspond
to their multi-indices (i1, i2, · · · , in). Then, each control point can
be computed from a pair of windows, that is, constructed from n
copies of 1-dimensional interval pairs as computed by Algorithm
2, and that is used to access sub-arrays of the blossom meshes, re-
spectively. Due to the reverse pairing property as discussed in Sec-
tion 5.4 for 1-dimensional case, blossom values in the first window
are paired with those in the second window in a reverse linear order
where the linearity in the n-dimensional case is specified as above.

Details are show in Algorithm 5 below; see also illustrations in
Fig. 4.

Algorithm 5 Sliding Windows Algorithm



Input

B Blossom Mesh from Algo. (4) applied on G

B̂ Blossom Mesh from Algo. (4) applied on Ĝ
L Pi List of interval pairs from Algo. (2) on i-th dimension

fori = 1, · · · ,n.

Output

C n-dimensional control mesh of product B-spline

Notation

szi Total pairs in L Pi, i = 1, · · · ,n
J n-dimensional multi-index, where 1≤ Ji ≤ szi

Begin

For each J

1. C[J]← 0

2. Use n interval pairs L Pi[Ji], one per dimension i ∈

{1, · · · ,n}, to construct ⊞B and ⊞̂B, two sub-arrays of B

and B̂, resp.

3. Use the associated weights of L Pi[Ji] to construct a pair of

n-dimensional weight arrays ⊞W and ⊞̂W, each element of
which is simply the product of the corresponding n copies of
tagged weights, one per dimension.

4. Linear iterate ⊞B and ⊞W.

Linear reverse iterate ⊞̂B and ⊞̂W.

Let the iterated to be b and w, and b̂ and ŵ, respectively

(a) Go to next b and w until w 6= 0

(b) Go to next b̂ and ŵ until ŵ = 1

(c) C[J]←C[J]+b∗ b̂∗w

End

9 Conclusion

We have presented in this paper the Sliding Windows Algorithm
(SWA) for direct B-spline multiplication. The Sliding Windows
Algorithm is based on blossoming representation of B-splines, and
is conceptually straightforward. By constructing two n-dimensional
meshes of blossom values of the factor n-variate B-splines, the con-
trol points of the product B-spline can be computed simply by slid-
ing a pair of windows (as sub-arrays) on the two blossom meshes,
and the blossom values in the windows are paired, multiplied, and
finally affine combined into the control points. The algorithm is
motivated by the efficiency issue of NURBS symbolic computa-
tion involving B-splines of high degrees and especially high dimen-
sions, which we believe is a current trend in the CAD community
due to the increasing demand on tasks beyond simple modeling, in-
cluding especially inquiry, analysis and verification of the modeled
curves/surfaces.

We are currently working on detailed efficiency and numerical sta-
bility comparison of the various B-spline multiplication algorithms
especially including the one presented in this paper, and is also con-
sidering any possible hardware acceleration strategies for the actual
implementation of the sliding windows algorithm.
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Figure 4: Illustrating Sliding Windows Algorithm
A control point of product B-spline F is computed by finding the

pair of windows of the two blossom meshes of G and Ĝ, pairing ele-
ments in two windows in reverse order, multiplying each paired ele-
ments, and then affine combining the result with associated weights
to yield the desired control point.
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