
Rational Bézier Patch Differentiation
using the Rational Forward Difference Operator∗

Xianming Chen†, Richard F. Riesenfeld, Elaine Cohen

School of Computing, University of Utah

Abstract

This paper introduces the rational forward difference
operator for differential computation on a rational Bézier
patch based on its control mesh. With this rational ver-
sion of the forward difference operator, and by ignoring
the appropriate dependent (on lower order derivatives)
terms of various derivatives, the derivatives themselves
have the same expressions as their polynomial counter-
parts; the curvature and torsion, and the first and second
fundamental forms, all have very similar expressions as
those equations from classical differential geometry. This
new approach also allows straightforward generalization
to higher dimensional rational Bézier patches, the special
co-dimension 1 case of which is treated with the result of
the first and second fundamental forms.

Keywords: forward difference, rational forward difference,
rational Bézier patches, curvature, torsion, higher dimen-
sion rational Bézier patches.

1 Introduction

Let x(t) be a polynomial Bézier space curve in R3 of
degree n, and b[t1, · · · , tn] its blossom. From the theory of
blossoming [7], we have the following equation for its r-th
order derivative,

xr =
drx(t)

dtr
=

n!

(n − r)!
b[~1r, tn−r], r = 0, · · · , n,

(1.1)

where the superscripts r and n − r in the blossom mean
that the corresponding arguments are repeated r and n − r
times, respectively.
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Since ~1 = 1 − 0, evaluations with respect to vector ~1
are manifested as differences. Using this, the above equa-
tion simply becomes,

xr =
n!

(n − r)!
∆r, r = 0, · · · , n. (1.2)

when the LHS is evaluated at t = 0, which corresponds to
evaluating the RHS at the 0-th control point. The ∆s are
defined in the usual recursive manner,

∆0[i] = Pi, i = 0, 1, · · · , n.

∆r[i] = ∆r−1[i + 1] − ∆r−1[i], i = 0, · · · , n − r.
(1.3)

Below is the analogous equation for a polynomial
Bézier surface, x(u, v), of degree m in u and n in v. The
mixed partial derivative of order r + s is,

xrs =
∂r+sx(u, v)

∂ur∂vs

=
m!

(m − r)!

n!

(n − s)!
b[~1r um−r|~1s vn−s].

By analogously defining the forward difference for 2 di-
mensional case,

∆00[i][j] = Pij , i = 0, · · · , m, j = 0, · · · , n.

∆rs[i][j] = ∆r−1,s[i + 1][j] − ∆r−1,s[i][j], or,
∆rs[i][j] = ∆r,s−1[i][j + 1] − ∆r,s−1[i][j],

i = 0, · · · , m − r, j = 0, · · · , n − s.

(1.4)

we have,

xrs =
m!

(m − r)!

n!

(n − s)!
∆rs, (1.5)

where all expressions are evaluated at (u, v) = (0, 0) or at
the (0, 0)-th control point.

Equations (1.2) and (1.5) can be easily generalized to
arbitrary dimension m, with degree ni in the i direction.

xr0,··· ,rm−1
=

0
∏

i=0

ni!

(ni − ri)!
∆r0,··· ,rm−1

, (1.6)



where ∆r0,··· ,rm−1
, the m dimensional forward difference,

is defined analogously as Eq. (1.3) and Eq. (1.4).
In this paper, we use subscripts as a multi-index to

mean the (partial) derivative with respect to the correspond-
ing parameter. For example, in the above equation, xrs

means a mixed partial derivative of order r with respect to
parameter t0 (or u) and of order s with respect to parameter
t1 (or v). However, we maintain the common usage that a
parameter subscript just means order 1 derivative with re-
spect to that parameter. So, xuu or xt0t0 is the same as x20.
If the total derivative has a high order, the multi-index nota-
tion is more succinct, while the parameter notation is more
common for low order derivatives. This remark applies to
forward differences as well.

We have very simple derivative equations
(Eq. (1.2) (1.5) and (1.6)) for polynomial Bézier patches.
For the rational case, however, things become more
involved and the derivative equations more complicated
because the quotient rule for derivatives generates a
denominator of increasing degree. In what follows, we
offer an alternative approach that avoids this problem.

First we make the simple but critical observation that
any dependent (i.e., spanned by all derivatives of lower
orders) term of a derivative actually has no effect on the
torsion (for co-dimension 2 manifolds) and various curva-
tures (including curve curvature, normal curvature, Gaus-
sian curvature, mean curvature, etc.) calculation. Therefore
we can omit it (or for that matter, add in some additional
arbitrary dependent term, although we have not yet had to
do that in this paper). For example, any dependent (on x′)
term of x′′ in the curvature equation ‖x′×x′′‖

‖x′‖3 makes no
contribution, and nor does any term of x′′′ in the torsion
equation [x′x′′x′′′]

‖x′×x′′‖2 that is dependent on {x′, x′′} (See
Section 3). Here, [x′x′′x′′′] = (x′ × x′′) · x′′′ , is the triple
scalar product of x′, x′′ and x′′′ . Similar observations
apply to any terms of xuv which are spanned by xu

and xv (i.e., in the tangent plane) in the computation of
M = N̂ · xuv , etc.(see Section 4).

Throughout this paper, we use [E1] = [E2] notation
if derivative vectors E1 and E2 yield equivalent results in
calculating aforementioned curvature or torsion. Basically
it is just the equivalent class of all vectors having the same
orthogonal (to the subspace spanned by all the lower or-
der derivatives) components, and we can choose any one of
them as the representative, which usually is not the original
derivative, but not necessarily the original derivative with
all the dependent component eliminated either.

For our development, we will need to define a rational
version of the (polynomial) forward difference operator.

Definition 1 (Rational Forward Differences)
Suppose a rational Bézier patch of dimension m,
of degree ni in the i-th direction, embedded in

Euclidean space of dimension q > m, is defined
by an m-dimensional control mesh with homoge-
neous control points of (Ps, Ws), where s is the
multi-index s0s1 · · · sm−1, si = 0, 1, · · · , ni,
and Ps ∈ Rq , Ws ∈ R.

The rational forward difference operator of or-
der ri in the i-th direction, is defined at the s-th
control point, for si = 0, 1, · · · , ni − ri and
i = 0, 1, · · · , m − 1, as

∆̄r(P, W )[s] =
∆r(P )[s]Ws − ∆r(W )[s]Ps

W 2
s

,

where r stands for r0r1 · · · rm−1, ∆r(P )[s]
and ∆r(W )[s] denote the usual (polynomial)
forward difference operators evaluated at the s-
th control point.

Combining this rational forward difference operator in
Definition 1 and the observation preceding it, this paper de-
rives consistent, virtually equivalent rational forms for the
derivatives as those known in the Bézier polynomial case
and also similar forms for curvature and torsion, the first
and second fundamental forms, as those from classical dif-
ferential geometry. This is not only gratifying in terms of
mathematical elegance; but more importantly it provides
a straightforward generalization to higher dimension and
translates into very simple and unified code for differen-
tial geometry computation on NURBS manifolds of arbi-
trary dimension. This benefit distinguishes the approach
described herein.

Without loss of generality, in this paper, all derivatives
(forward differences) are evaluated at the lower corner of
the domain (the control mesh), and therefore we develop
differential computation on only one point of the patch.
Employing subdivision techniques, however, the same dif-
ferential features clearly can be extracted from any point
on a NURBS manifold. Further, we note that curvature
and torsion are intrinsic geometric properties inherited by
each subdivided curve part, during a subdivision process,
so it is not necessary to recompute this value subsequently
at any time in the recursion. That is to say, if we subdi-
vide a Bézier curve into two smaller pieces, the geometric
properties at the left hand point are inherited by that of the
first piece, so only the second piece requires evaluation at
its left hand point. In other words, this leads directly to
an incremental algorithm that arises as a by-product of the
subdivision process typically used for the visualization of
the manifold.

The rest of the paper is organized as follows. First we
give a comparative discussion of related works in Section 2,
derive differential computation on rational Bézier curves
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and surfaces in Section 3 and Section 4 respectively. Then
we give two examples in Section 5. After that, in Section 6,
we generalize to rational Bézier hyper-surfaces. Finally,
looking backward and forward, we make some concluding
remarks in Section 7.

2 Related Works

Curvature computation for rational Bézier curves
based on control meshes is well known [5, 4, 1]. This, how-
ever, is not the case for rational Bézier surfaces. J. Zheng
and T. Sederberg [8] published some earlier result on this
with good geometric intuition. Inspired by their paper, our
work is in a similar vein. However, we introduce the ra-
tional forward difference operation, and use that as a sim-
plifying approach to achieve succinct expressions that are
unifiable over manifold dimension. The rational forward
difference approach allows us straightforwardly to general-
ize to higher dimensional situation, an extension which we
touch on in Section 6. Moreover, from an implementation
viewpoint, another advantage is that the simpler formula-
tion translates directly to clean, compact code.

3 Rational Bézier Curves

In this section, we derive formulas for derivatives, cur-
vature and torsion of a rational Bézier curve, all expressed
in rational forward difference operators. Throughout this
section, we assume the degree n rational Bézier curve is
defined by a control polygon with homogeneous points
(P0, W0), (P1, W1), · · · , (Pn, Wn).

Notice in all the work that follows, the degree of the
denominator of any higher order derivative stays the same
as that of the first order derivative; a higher degree de-
nominator comes only with terms that are in the subspace
spanned by all the lower order derivative and can therefore
be eliminated. This remark applies to the surface case in
Section 4 and the hyper-surface case in Section 6 as well.

3.1 First Order Derivatives

Apply the quotient rule to a given rational parametriza-
tion,

x(t) =
p(t)

w(t)
,

x′(t) =
(p′w − w′p)

w2
, (3.1)

at t = 0, i.e., the starting point of the Bézier curve, we have
(cf. Eq (1.2)),

p′ = n(P1 − P0) = n∆1(P ),

w′ = n(W1 − W0) = n∆1(W ),

x′ = n
∆1(P )W0 − ∆1(W )P0

W 2
0

Then, by Definition 1,

x′ = n∆̄1. (3.2)

3.2 Second Order Derivatives

Differentiating Eq. (3.1) one more time,

[x′′] =
(p′′w − w′′p)

w2
, (3.3)

where the term due to the derivative of the denominator
(and therefore is parallel to x′) has already been discarded.

Again with Definition 1,

[x′′] = n(n − 1)∆̄2. (3.4)

Note that we should also have put a pair of brackets [ ]
around the right side expression, meaning that x′′ and
n(n − 1)∆̄2 are in the same equivalent class defined by
having the same orthogonal component. For the sake of
simpler math expressions, however, we accept this incon-
sistency for this equation and all similar equations in the
rest of the paper.

3.3 Third Order Derivatives

It turns out that the equation for the third order deriva-
tive, [x′′′], also provides a simple formulation.

Differentiating Eq. (3.3) one more time, we get,

[x′′′] =
p′′′w − w′′′p

w2
+

p′′w′ − w′′p′

w2
, (3.5)

where, again, the term due to the derivative of the denomi-
nator(parallel to x′′) has already been discarded.

If we can prove that the second term of the above equa-
tion is spanned by (x′, x′′) , or (p′w−w′p, p′′w−w′′p)
(cf. Eq. (3.1) and Eq. (3.3)), then we would have

[x′′′] = n(n − 1)(n − 2)∆̄3, (3.6)

where, ∆̄3 is the third order rational forward difference.
Now, to prove that p′′w′−w′′p′ is spanned by p′w−

w′p and p′′w − w′′p , we take the triple scalar product
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of these 3 vectors, and show it vanishes. Specifically 1

(p′w − w′p) × (p′′w − w′′p) · (p′′w′ − w′′p′) =

((p′ × p′′)w2 − (p × p′′)ww′ − (p′ × p)ww′′) · (p′′w′ − w′′p′)

= (p × p′′)ww′ · w′′p′ − (p′ × p)ww′′ · p′′w′

= 0

3.4 The Curvature and Torsion of Rational
Bézier Curves

For rational Bézier curves, rational forward difference
operators really allow a direct translation of curvature and
torsion equations from classical differential geometry [6,
2].

κ =
‖x′ × x′′‖

‖x′‖3
=

‖x′ × [x′′]‖

‖x′‖3

=
n − 1

n

‖∆̄1 × ∆̄2‖

‖∆̄1‖3
(3.7)

τ =
[x′x′′x′′′]

‖x′ × x′′‖2
=

[x′[x′′][x′′′]]

‖x′ × [x′′]‖2

=
n − 2

n

[∆̄1∆̄2∆̄3]

‖∆̄1 × ∆̄2‖2
(3.8)

Comparing to the common formulation of the curva-
ture and torsion of polynomial Bézier curves [5, 4], the
above equations have no explicit reference to the weights
of the control points, and assume exactly the same forms,
replacing the forward differences with the rational forward
differences.

4 Rational Bézier Tensor Surfaces

In this section we work on differential computa-
tion on a rational Bézier tensor surface. Throughout
this section, we assume the degree m (in u-direction)
by n (in v-direction) rational Bézier tensor surface is
defined by a control mesh with homogeneous points
(Pij , Wij), where i = 0, · · · , m and j = 0, · · · , n.

4.1 First Order Derivatives

Let the rational parametrization be,

x(u, v) =
p(u, v)

w(u, v)
.

1In these 3 expressions, w,w
′ and w

′′ are scalar values, p
′ and p

′′ are
vectors; and w

′
p and w

′′
p are also vectors, because they are actually dif-

ference of two points. Therefore, the subsequent derivation makes sense
mathematically.

Then, the first order partial derivatives are,

xu =
(puw − wup)

w2
, (4.1)

xv =
(pvw − wvp)

w2
.

At (u, v) = (0, 0), i.e., the lower left corner point of the
rational Bézier surface, we have (cf. Eq (1.5)),

pu = m(P10 − P00) = m∆10(P ),

pv = n(P01 − P00) = n∆01(P ),

wu = m(W10 − W00) = m∆10(W ),

wv = n(W01 − W00) = n∆01(W ),

and consequently,

xu = m
∆10(P )W00 − ∆10(W )P00

W 2
00

= m∆̄10,

xv = n
∆01(P )W00 − ∆01(W )P00

W 2
00

= n∆̄01.

(4.2)

4.2 Second Order Derivatives

For the non-mixed second order derivatives, things are
almost the same as the curve case,

[xuu] = m(m − 1)∆̄20,

[xvv ] = n(n − 1)∆̄02.
(4.3)

Now, to deal with the mixed partial derivative by tak-
ing one more partial derivative of Eq. (4.1) with respect to
v, we have,

[xuv ] =
(puvw − wuvp)

w2
+

(puwv − wupv)

w2
.

Verifying that the triple scalar product of puwv − wupv

with puw − wup and pvw − wvp vanishes,

((puw − wup) × (pvw − wvp)) · (puwv − wupv) =

(w2pu × pv − wuwp × pv − wwvpu × p) · (puwv − wupv)

= −wuwwv [ppvpu] + wwvwu[puppv]

= 0,

we can eliminate the second term in the above equation,
and again get the appealingly expression,

[xuv ] = mn∆̄11. (4.4)
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4.3 The First and Second Fundamental Forms of
Bézier Surfaces

Interpreting the classical first fundamental form for a
surface, it becomes,

I =

(

E F
F G

)

=

(

xu · xu xu · xv

xv · xu xv · xv

)

=

(

mm∆̄10 · ∆̄10 mn∆̄10 · ∆̄01

nm∆̄01 · ∆̄10 nn∆̄01 · ∆̄01

)

. (4.5)

Also denoted as I , the determinant is

I = m2n2‖∆̄10 × ∆̄01‖
2

= m2n2A2, (4.6)

where, A = ‖∆̄01 × ∆̄10‖.

In preparation for the second fundamental form, we
normalize the surface normal N = xu × xv to,

N̂ =
xu × xv

‖xu × xv‖
=

∆̄10 × ∆̄01

‖∆̄10 × ∆̄01‖
.

And the second fundamental form becomes,

II =

(

L M
M N

)

=





xuu · N̂ xuv · N̂

xvu · N̂ xvv · N̂





=







m(m − 1) [∆̄10∆̄01∆̄20]

‖∆̄10×∆̄01‖
mn [∆̄10∆̄01∆̄11]

‖∆̄10×∆̄01‖

nm [∆̄10∆̄01∆̄11]
‖∆̄10×∆̄01‖

n(n − 1) [∆̄10∆̄01∆̄02]
‖∆̄10×∆̄01‖







=





m(m − 1)V20

A
mnV11

A

mnV11

A
n(n − 1)V02

A



 , (4.7)

where,

V02 = [∆̄10∆̄01∆̄02],

V11 = [∆̄10∆̄01∆̄11],

V20 = [∆̄10∆̄01∆̄20].

The determinant of the second fundamental form matrix,
also denoted as II , is,

II = LN − M

=
mn(m − 1)(n − 1)V20V02 − m2n2V 2

11

A2
. (4.8)

And finally, the Gaussian curvature is,

K =
II

I
=

(m−1)(n−1)
mn

V20V02 − V 2
11

A4
. (4.9)

We omit the derivations of other second order surface
features, such as mean curvature, principal curvatures, and
asymptotic directions, since they are easily derived from
the first and second fundamental forms.

5 Examples

To illustrate the main idea of this paper, we choose the
simple curve case to give two examples in this section.

The first example computes the curvature of a rational
conic section. The second example does the same work on
the same curve, but within the context of NURBS.

Example 1 (Curvatures of an ellipse via the rational forward operator)
Consider the first quadrant of the ellipse

x2
1

a2
+

x2
2

b2
= 1,

with parametrization of

x1(t) =
a × (1 − t2)

1 + t2
,

x2(t) =
b × 2t

1 + t2
,

at the interval [0, 1].
Rewriting the parametrization in homogenous coordi-

nate form, we have,

x(t) = [a(1 − t2), 2bt, 1 + t2].

Using blossoming, we can easily find the rational Bézier
control points of this conic section in homogenous coordi-
nates,

[P0, W0] = [a, 0, 1],

[P1, W1] = [a, b, 1],

[P2, W2] = [0, 2b, 2].

The first order forward differences at the first control point
are,

∆1(P )[0] = P1 − P0 = [a, b] − [a, 0] = [0, b],

∆1(W )[0] = W1 − W0 = 0.

By Definition 1, the first order rational forward difference
at the first control point is,

∆̄1[0] =
∆1(P )[0]W0 − ∆1(W )[0]P0

W02
=

[0, b] + 0[a, 0]

1
= [0, b]
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The first order forward differences at the second(middle)
control point are,

∆1(P )[1] = P2 − P1 = [0, 2b]− [a, b] = [−a, b],

∆1(W )[1] = W2 − W1 = 1.

Therefore, the second order forward differences at the first
control point are,

∆2(P )[0] = ∆1(P )[1] − ∆1(P )[0] = [−a, b] − [0, b] = [−a, 0],

∆2(W )[0] = ∆1(W )[1] − ∆1(W )[0] = 1,

Now again by Definition 1, the second order rational for-
ward difference at the first control point is,

∆̄2[0] =
∆2(P )[0]W0 − ∆2(W )[0]P0

W02
=

[−a, 0]− [a, 0]

1
= [−2a, 0]

Based on the first and second order rational differences,

[x′(0)] = 2 × ∆̄1[0] = [0, 2b],

[x′′(0)] = 2 × (2 − 1)∆̄2[0] = [−4a, 0].

And, by Eq. (3.7), the curvature of the ellipse at t = 0, i.e.,
the major end, is,

κ =
n − 1

n

‖∆̄1 × ∆̄2‖

‖∆̄1‖3

=
2ab

2b3
= a/b2

Although we define the rational forward difference op-
erator and its application in the context of Bézier patches,
the main idea actually extends to NURBS as shown in the
following example.

Example 2 (Rational forward differences in the context of NURBS)
Consider the same ellipse as the above example, blos-
soming, however, the explicit parametrization using the
knot vector of − 1, 0, 1, 2 (instead of 0, 0, 1, 1, which
essentially results in a Bézier curve) so that the de Boor
control points are,

[P0, W0] = [a,−b, 1],

[P1, W1] = [a, b, 1],

[P2, W2] = [−a, 3b, 3].

The first order forward differences at the first control points
are,

∆1(P )[0] =
P1 − P0

1 − (−1)
=

[a, b]− [a,−b]

2
= [0, b],

∆1(W )[0] =
W1 − W0

1 − 1
= 0.

Note that the polynomial forward difference has to be di-
vided by 1 − (−1) , which normalizes ~1 − ~(−1) = ~2
back to ~1 (cf. Eq. (1.1)). Nonetheless, we can use Def-
inition 1 as usual to get the first order rational forward
difference at the first control point,

∆̄1[0] =
∆1(P )[0]W0 − ∆1(W )[0]P0

W02

=
[0, b]− 0[a,−b]

12
= [0, b]

The first order forward differences at the second(middle)
control point are,

∆1(P )[1] =
P2− P1

2 − 0
=

[−a, 3b]− [a, b]

2
= [−a, b],

∆1(W )[1] =
W2− W1

2 − 0
= 1.

Therefore, the second order forward differences at the first
control point are,

∆2(P )[0] =
∆1(P )[1] − ∆1(P )[0]

1 − 0

= [−a, b]− [0, b] = [−a, 0],

∆2(W )[0] =
∆1(W )[1] − ∆1(W )[0]

1 − 0
= 1.

Now again by Definition 1, the second order rational for-
ward difference at the first control point is,

∆̄2[0] =
∆2(P )[0]W0 − ∆2(W )[0]P0

W02

=
[−a, 0]− [a,−b]

12
= [−2a, b]

Based on the first and second order rational difference,

[x′(0)] = 2 × ∆̄1[0] = [0, 2b],

[x′′(0)] = 2 × (2 − 1) × [−2a, b] = [−4a,−2b].

And, by Eq. (3.7), the curvature of the ellipse at t = 0, i.e.,
the major end, is,

κ =
n − 1

n

‖∆̄1 × ∆̄2‖

‖∆̄1‖3

=
2ab

2b3
= a/b2

Note that, compared to Example 1, we have the same
result for [x′(0)] (∆̄1[0]), but different one for [x′′(0)]
(∆̄2[0]). However, there is actually no inconsistency here,
as we are talking about the the second derivative up to any
term parallel to the first derivative. Both [x′′(0)] (∆̄2[0])
can be used to compute the curvature.
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6 Rational Bézier Hyper-Surfaces

Differential computation on a rational Bézier man-
ifold, with arbitrary dimension and co-dimension, is a
formidable problem. With the rational forward difference
operation introduced in this paper, we try to make a modest
step toward this goal - the co-dimension 1 case.

Considering an m dimensional rational Bézier patch
embedding in Rm+1 space, the first fundamental form is
an m × m matrix, the (i, j)-th element of which is merely
the dot product of the two partial derivatives along i and j
directions,

I(ij) = xti
· xtj

= ninj∆̄ti
· ∆̄tj

. (6.1)

By analogous reasoning, the m partial derivatives
{xti

, i = 0, · · · , m − 1} span the tangent hyper-plane,
and their cross product, defined as ( in the equation,
{e0, · · · , em} is the orthonormal base of the embedding
space, and (xti

)j is the j-th component of xti
),

xt0 × · · · × xtm−1
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

e0 · · · em

(xt0 )0 · · · (xt0)m

...
. . .

...
(xtm

)0 · · · (xtm
)m

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

gives the normal direction of the hyper-surface. For the
non-mixed second order derivatives, it is obvious we have
the same result as the surface case or as the (iso-parametric)
curve case. For the mixed second order partial derivatives,
although the notations are more complicated, we are able
to make a similar argument below as we did in the surface
case for xuv .

xti
=

∂

∂ti

(

p(t0, · · · , tm−1)

w(t0, · · · , tm−1)

)

=
pti

w − wti
p

w2
,

[xtitj
] =

(ptitj
w − wtitj

p)

w2
+

(pti
wtj

− wti
ptj

)

w2
.

Once again, the second term on the above equation is ac-
tually in the tangent hyper-plane and can be discarded.
This is true because the (m + 1)-th scalar product of the
m partial derivatives {xti

, i = 0, · · · , m − 1}, and v =
(pti

wtj
− wti

ptj
) defined as,

[xt0 · · ·xtm−1
v] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

v0 · · · vm

(xt0)0 · · · (xt0)m

...
. . .

...
(xtm

)0 · · · (xtm
)m

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

vanishes. Specifically, by observing that any multiple ap-
pearance of any vector in an (m + 1)-th scalar product
makes the product 0,

[(pt0w − wt0p) · · · (ptm−1
w − wtm−1

p) (pti
wtj

− wti
ptj

)]

= [(−wm−1wti
) pt0 · · · pti−1

p pti+1
· · · ptm−1

(pti
wtj

)]−

[(−wm−1wtj
) pt0 · · · ptj−1

p ptj+1
· · · ptm−1

(ptj
wti

)]

= 0.

Hence, we have the familiar expressions for the second or-
der partial derivatives,

[xtiti
] = ni(ni − 1)∆̄titi

, i = 0, · · · , m − 1,

[xtitj
] = ninj∆̄titj

, i, j = 0, · · · , m − 1, i 6= j.
(6.2)

and the second fundamental form,

II(ii) = ni(ni − 1)
Vtiti

A
, i = 0, · · · , m − 1,

II(ij) = ninj

Vtitj

A
, i, j = 0, · · · , m − 1, i 6= j,

(6.3)

where

Vtitj
= [∆̄t0 · · · ∆̄tm−1

∆̄titj
],

A = ‖∆̄t0 × ∆̄t1 × · · · × ∆̄tm−1
‖.

7 Conclusion

In this paper, a rational version of the forward differ-
ence operator on control meshes is introduced. With the
rational forward difference operation, it turns out that the
basic differential geometry computation on rational Bézier
patches results in very compact, simple formulas that spe-
cialize to previously known forms for their polynomial
counterparts and resemble those from classical differen-
tial geometry. A generalization to co-dimension 1 hyper-
surfaces is also discussed, and we believe that this formula-
tion is more amenable if the Bézier manifold has arbitrary
co-dimensions. This new approach also leads directly to
simple, unified implementations that handle all dimensions
within single algorithm.

Currently, we are considering the third and higher or-
der differential computation on Bézier patches. The ex-
tension to higher (> 2) order derivatives is not straight-
forward, since the lower order derivatives already span the
embedding Euclidean 3D space. For example, when de-
riving xuvv by xuvv = ∂xuv/∂v , the term due to the
derivative of the denominator of xuv can no longer be ig-
nored in xuvv · N , which is used to compute flecnodal
curves.

Another direction for extension is symbolic computa-
tion on NURBS (See G. Elber [3]). Specifically, we have

7



successfully managed to eliminate the higher degree terms
of the second and third order derivatives of a rational curve,
as well as the second order derivatives of a rational surface,
and we would like to explore its extension to some types of
symbolic computation.
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