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Abstract. This paper applies singularity theory of mappings of surfaces
to 3-space and the generic transitions occurring in their deformations to
develop algorithms for continuously and robustly tracking the intersec-
tion curves of two deforming parametric spline surfaces, when the defor-
mation is represented as a family of generalized offset surfaces. The set
of intersection curves of 2 deforming surfaces over all time is formulated
as an implicit 2-manifold I in the augmented (by time domain) para-
metric space R

5. Hyper-planes corresponding to some fixed time instants
may touch I at some isolated transition points, which delineate transi-
tion events, i.e., the topological changes to the intersection curves. These
transition points are the 0-dimensional solution to a rational system of 5
constraints in 5 variables, and can be computed efficiently and robustly

with a rational constraint solver using subdivision and hyper-tangent
bounding cones. The actual transition events are computed by contour-
ing the local osculating paraboloids. Away from any transition points,
the intersection curves do not change topology and evolve according to
a simple evolution vector field that is constructed in the euclidean space

in which the surfaces are embedded.

1 Introduction and Related Work

In this paper, we consider the dynamic intersection of two deforming parametric
surfaces. The surface deformation is represented by a family of generalized offset
surfaces, which is an example of a “radial flow”of a generalized offset vector field
introduced in [?, ?] (also see [?] for a mathematically less technical discussion).
This extends the standard unit normal offset surfaces. Specifically, let ς(s), s ∈
R

2, be a parameterization of a regular initial surface; and let U(s) denote an
offset vector field (parameterized again by s). Such a U need be neither unit-
length nor orthogonal to the tangent plane, but does not lie in the tangent plane.
The generalized offset surface flow is defined by,

σ(s; t) = ς(s) + tU(s); (1)
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where 0 ≤ t ≤ 1 is the offset time. Each of the two deforming surfaces is assumed
to remain regular and be free of self-intersections throughout the deformation
process. Conditions ensuring such regularity are given in [?] and [?].

Research into finding surface-surface intersections has mostly focused on the
static problem [?, ?, ?, ?, ?], and the case of the unit normal offset surfaces [?, ?,
?, ?, ?, ?, ?, ?], We emphasize the topological robustness of surface intersection,
which has been an important and extensively researched topic for static surface-
surface intersection ( [?, ?, ?, ?, ?, ?, ?]). In [?], Jun et al. worked on surface
slicing, i.e., the intersection of a surface with a series of parallel planes, exploring
the relation between the transition points and the topology of contour curves.
The transition points, though, are used only to efficiently and robustly find the
starting point of the contour curves for a marching algorithm [?, ?] to trace out
the whole curve. Ouyang et al. [?] applied a similar approach to the intersection
of two unit normal vector offset surfaces.

Applied to mappings of surfaces to R
3, singularity theory [?] provides a the-

oretical classification of both the local stable properties of mappings of surfaces
and of the generic transitions they undergo under deformation. Our assumptions
on the regularity of the surfaces characterizes the transition of the intersection
curves of the deforming surfaces to one of a list of standard generic transitions.
Between transitions, the intersection curves evolve in a smooth way without
undergoing topological transitions.

This paper is organized to deal with these two cases. In Section 2, we con-
struct an evolution vector field which allows us to follow the evolution of intersec-
tion curves (ICs) by discretely solving a differential equation in the parametric
space. In Section 3, we represent the locus of intersection curves of the two
deforming surfaces as a 2–manifold I in a 5–dimensional augmented parameter
space. In Section 4 we turn to the second problem of computing the transition
events, and tracking the topological changes of the intersection curves occurring
at transition points. In Section 4.1, we enumerate the generic transition points
classified by singularity theory and provide an alternative characterization as
critical points of a function on the implicit surface I. This provides the theo-
retical basis to our algorithm that detects transition points as the simultaneous
0-set of a rational system of 5 constraints in 5 variables. Then, in Section 4.2 we
compute the transitions in the intersection curves using contours on the local
osculating quadric of the surface I at the critical points. A concluding discussion
of the issues ensues in Section 5.

2 Evolution of Intersection Curves

Consider two deforming surfaces, σ and σ̂, represented as generalized offset sur-
faces,

σ(s, t) = ς(s) + t U(s),

σ̂(ŝ, t) = ς̂(ŝ) + t Û(ŝ),
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where s = (s1, s2) ∈ R
2 and ŝ = (ŝ1, ŝ2) ∈ R

2 are the parameters of ς(s) and
ς̂(ŝ), and their corresponding offset vector fields U(s) and (Û(ŝ), respectively.
We write the coordinate representation of the deforming surfaces by

σ(s, t) = (x(s), t), y(s, y), z(s, t)) and σ̂(ŝ, t) = (x̂(ŝ, t), ŷ(ŝ, t), ẑ(ŝ, t)).

Define L0 to be the set of all points in R
3 on a local intersection curves

of the two deforming local surfaces over all times t. Consider a point P on an
intersection curve of the two deforming surfaces at some time t. We first assume
that the tangent planes to the two offset surfaces at P are different; otherwise,
we are in the singular case corresponding to a transition event, which we will
discuss in section 4. We use the notation σ̂i = (x̂i, ŷi, ẑi) to denote the partial
derivative ∂σ̂

∂ŝi

= ( ∂x̂
∂ŝi

, ∂ŷ
∂ŝi

, ∂ẑ
∂ŝi

) (i = 1, 2), and analogously for σi. Define

N = σ1 × σ2, N̂ = σ̂1 × σ̂2

to be the 2 non-unit length normals to each of the two surfaces, respectively.
Further let

N̄ = (N × N̂) × N̂ .

to be the tangent vector of σ̂ at P that is perpendicular to the intersection curve.

σ2

N×N̂

P

TS
σ̂

N̄TS
σ

σ1

Fig. 1. Local Basis {σ1, σ2, N̄}

Because the two tangent planes to the two
surfaces at P are different, {σ1, σ2, N̄} is a
basis of R

3 (Fig. 1). Decomposing δU = Û−U

in this basis gives,

δU = Û − U = aσ1 + bσ2 + cN̄

Because the last term cN̄ lives entirely in the
tangent plane to the surface σ̂ at P , it has a
decomposition relative to the basis {σ̂1, σ̂2},

cN̄ = âσ̂1 + b̂σ̂2,

Thus, we have

δU = Û − U = aσ1 + bσ2 + (−âσ̂1 − b̂σ̂2),

or,
Û + (âσ̂1 + b̂σ̂2) = U + aσ1 + bσ2

Consequently, we have the evolution vector field with two equivalent repre-
sentations (over two different basis of R

3),

η = U + aσ1 + bσ2 (2)

η̂ = Û + âσ̂1 + b̂σ̂2 (3)

This vector field is defined on a neighborhood of the point P in R
3, rather than

just on the surfaces.
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Next, for any point P which lies on a curve of intersection for the deforming
surfaces, we can define a scalar field φ in a neighborhood of P (in R

3). By
the inverse function theorem, there is a neighborhood of P which is entirely
covered by each deforming family. For a point P ′ in this neighborhood, we define
φ(P ′) = t̂− t, where t̂ (resp. t) is the time when the surface σ̂(ŝ, t) (resp. σ(s, t))
reaches P ′. Although φ is not defined everywhere on R

3, it is defined on a
neighborhood of L0.

The following properties involving φ, η, and L0 can be shown to hold:

1. The directional derivative ∂φ
∂η

= 0 identically wherever φ is defined.

2. The zero level set of φ is exactly L0.

3. Hence, η is tangent to L0 at all points.

Now suppose point P is on L0, and lies on an intersection curve at time t. The
condition that η is tangent to L0 allows us to follow the evolution of P on future
intersection curves by solving the differential equation

dx

dt
= η(x) with initial condition x(0) = P

for x(t) ∈ R
3. The evolution vector field η is the image of the vector field

ξ = ∂
∂t

+ a ∂
∂s1

+ b ∂
∂s2

under the parametrization map σ. Thus, the evolution
could likewise be followed on the parameter space using instead the vector field
ξ, and analogously for σ̂.

Then, we can use a discrete algorithm for solving the differential equations
to follow the evolution of the intersection curves over a time interval void of
transitions. Specifically, for small time dt P moves to Q = P + dt (aσ1 + bσ2) on
the physical surface and if p = s ∈ R

2 corresponds to P then q = s + (a dt, b dt)
will correspond to Q in the parameter space, and analogously for σ̂. The first
order marching algorithm accumulates error over time, so point correction can
be used to increase the quality. Various point correction algorithms are discussed
in [?] in the context of static surface-surface intersection. We have adopted the
middle point algorithm as presented in [?] to relax the points onto the actual
intersection curve.

Also notice that we are not tracing out an entire intersection loop from
some starting point; instead, we represent intersection curves by an ordered list
of sample points. Sample points are adaptively inserted or deleted so that the
spacing of two consecutive sample points is neither too far away nor too close,
and so that the angle deviation of 3 consecutive sample points stays small.

3 Formulation in the Augmented Parametric Space

Define a vector distance mapping

d(s, ŝ, t) = σ̂ − σ : R
5
{s,ŝ,t} −→ R

3 (4)
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where R
5
{s,ŝ,t}

3 is the combined parametric space of the 2 surfaces and the
time domain, and is thus called augmented parametric space. The canon-
ical orthonormal basis R

5
{s,ŝ,t} is denoted as {es1

, es2
, eŝ1

, eŝ2
, et}. The 0-set of

this mapping, denoted I hereafter in this paper, gives the set of all intersec-
tion points in R

5
{s,ŝ,t}. Note that d(s, ŝ, t) concisely represents related equations

for three separate coordinate functions. Considering the x-component dx(s, ŝ, t).
dx(s, ŝ, t) = 0 defines a hyper-surface in R

5
{s,ŝ,t}, with corresponding normal

Nx = ∇dx = (−x1, − x2, x̂1, x̂2, δUx) (5)

The component functions y and z define another two hyper-surfaces with anal-
ogous expressions for their normals Ny and Nz. Geometrically, I is the locus of
intersection points of these three hyper-surfaces in R

5
{s,ŝ,t}. The Jacobian [?] of

the mapping d(s, ŝ, t) : R
5
{s,ŝ,t} −→ R

3 is,

J = (Nx Ny Nz)
t =





−x1 −x2 x̂1 x̂2 δUx

−y1 −y2 ŷ1 ŷ2 δUy

−z1 −z2 ẑ1 ẑ2 δUz



 = (−σ1 − σ2 σ̂1 σ̂2 δU). (6)

Remark 1 If the 2 tangent planes to the two deforming surfaces at the inter-
section point are not the same, then both of the triple scalar products (determi-
nants) [σ1σ2σ̂i]’s (i = 1, 2) can not simultaneously vanish, and so J has the full
rank of 3. Otherwise, the two tangent planes must be the same. Assuming, at
such a touching point, δU is not on the common tangent plane, i.e., [σ̂1σ̂2δU ] 6= 0
and [σ1σ2δU ] 6= 0, J again has the full rank. Therefore, the 0-set of the distance
mapping d(s, ŝ, t) = σ̂ − σ : R

5
{s,ŝ,t} −→ R

3, is a well defined implicit 2-manifold
in the augmented parametric space.

4 Transition of Intersection Loops

In singularity theory, the situation we consider is considered generic. That is,
except for a finite set of times, the two closed surfaces intersect transversely,
that is, at each intersection point the tangent planes of the surfaces are different.
Thus, the method presented in Section 2 can be applied to track the evolution
of the curves. Over such time intervals topological changes are guaranteed not
to occur.

At the remaining finite number of times, there will be intersection points
at which the tangent planes coincide (non-transverse points). Again for generic
deformations, singularity theory describes exactly the transitions in intersection
curves that can occur as the evolution passes such times. These transitions can
always be given (up to a change of coordinates) by standard model equations,
so there is essentially a unique way for each transition to occur. We shall refer
to points (and times) at which transitions occur as transition points. These
transitions are classified as,

3
R

5

{s,ŝ,t} denotes R
5 with the five coordinates being s1, s2, ŝ1, ŝ2, t and analogously,

for R
3

{s,t}, etc.
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1. a creation event, when a new intersection loop is created (Fig. 2),
2. an annihilation event, when one of the current loops collapses and disappears

(Fig. 2 in the reverse direction),
3. an exchange event, when two branches of intersection curves meet and ex-

change branches (Fig. 3).

The exchange event can have two different global consequences. If the two
branches are part of the same curve, an intersection loop is split into 2 loops
and we refer to this as a splitting event (Fig. 6). If the branches are from distinct
intersection loops, a single loop is formed in a merge event (Fig. 6 in reverse
order).

Fig. 2. Creation of IC Component Fig. 3. Exchange of IC Components

4.1 Detection of Transition Events

In this sub-section, we formulate the topological transition points as the 0-set
of a rational system of 5 nonlinear constraints in 5 variables. The 0-set has
dimension 0, i.e., it is a discrete collection of points. It can be robustly and
efficiently computed using a rational constraint solver [?, ?]. The robustness is
achieved by bounding the subdivided implicit surface I with the corresponding
hyper-tangent cone [?], an extension of the bounding tangent cones for explicit
plane curves and explicit surfaces [?, ?].

Let us recall that the implicit 2-manifold I in R
5
{s,ŝ,t} is the locus of in-

tersection points of the two deforming surfaces, over the whole time period.
Geometrically, the intersection curves, at some time point, are the correspond-
ing height contour of I when the t is regarded as the vertical axis. Therefore,
it is obvious that there will be one of the three transition events listed earlier,
if the tangent space to I at a point (s, ŝ, t) is orthogonal to the t-axis. Since
I and its tangent space have the same dimension, namely, 2, the orthogonality
condition is tantamount to satisfying two equations,

T1 ··· et = 0, T2 ··· et = 0,

where T1 and T2 are any two vectors spanning the tangent space. A simple and
natural way to construct such a pair of tangent vectors is to let T1 be the tangent
to an s2-iso-curve on I with the extra constraint s2 = c2 for some constant c2,
and let T2 be the tangent to an s1-iso-curve on I with the extra constant s1 = c1
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for some constant c1. Noticing that an s2-iso-curve is the intersection of 4 hyper
surfaces in R

5
{s,ŝ,t}, defined by s2 = c2, dx = 0, dy = 0, and dz = 0,

T1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

es1
es2

eŝ1
eŝ2

et

0 1 0 0 0
−x1 −x2 x̂1 x̂2 δUx

−y1 −y2 ŷ1 ŷ2 δUy

−z1 −z2 ẑ1 ẑ2 δUz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (T 1̂2̂δ , 0, T
12̂δ , − T

11̂δ, T
11̂2̂),

where T ’ denotes the triple scalar product of its 3 corresponding vectors indi-
cated by the superscripts. Superscripts i and î represent σi and σ̂i, respectively,
while a superscript δ represents δU (e.g., T 1̂2̂δ = [σ̂1 σ̂2 δU ]). A similar deriva-
tion exists for T2, and in general, we have,

Ti = T
1̂2̂δ esi

+ T
i2̂δ eŝ1

− T
i1̂δ eŝ2

+ T
i1̂2̂ et, i = 1, 2. (7)

At transition points, the last component of T1 and T2 vanishes, i.e.

T1 ··· et = T
11̂2̂ = [σ1 σ̂1 σ̂2] = 0, T2 ··· et = T

21̂2̂ = [σ2 σ̂1 σ̂2] = 0, (8)

Remark 2 By Remark 1, T 1̂2̂δ 6= 0 at any transition point. Therefore, at a
transition point, T1 and T2 are guaranteed to be independent of each other. It
is also easily seen that Eq. (8) simply require the two tangents σ1 and σ2 to the
first offset surface to be perpendicular to the normal of the second offset surface,
i.e., the two tangent planes to the two deforming surfaces in the euclidean space
are coincident.

Finally, together with σ̂−σ = 0, Eq. (8) gives a rational system with 5 constraints
in 5 variables, whose 0-dimensional solution set contains all the transition points
we are seek.

4.2 Compute the Structural Change at Transition Events

p 

(a) elliptic

p

(b) hyperbolic

Fig. 4. Contour Osculating Paraboloid

In this section, we perform the shape
computation of the 2-manifold I at
a transition point, and subsequently
compute the corresponding transition
event by contouring the osculating
paraboloid [?, ?] to the local shape
(Fig. 4).

The implicit surface I is a 2-
manifold in a 5-space R

5
{s,ŝ,t}. Shape

computation is difficult because it is
an implicit surface, and also because its codimension 6= 1.

Most recently, a comprehensive set of formulas for curvature computation on
implicit curves/surfaces with further references were presented in [?]. However,
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it is limited to curves/surfaces embedded in 2D or 3D spaces. There exists some
literature from the visualization community, e.g., [?, ?] and references therein,
that develops second order derivative computation on iso-surfaces extracted from
trivariate functions. Most of these approaches use discrete approximations. Re-
cently, [?] developed B-spline representations for the Gaussian curvature and
squared mean curvature of the iso-surfaces extracted from volumetric data de-
fined as a trivariate B-spline function, and subsequently presented an exact cur-
vature computation for every possible point of the 3D domain. While we seek
an exact differential computation, the task here significantly differs from that
in [?] and [?, ?] since the implicit 2-manifold I has codimension 3. In [?], a set of
formulas for computing Riemannian curvature, mean curvature vector, and prin-
cipal curvatures, specifically for a 2-manifold, and with arbitrary codimension,
is presented. The specific 2nd order problem we seek to solve, namely initializing
the newly created intersection loop, or switching the two pairs of hyperbolic-like
segments, is based on shape approximation. For a surface in 3-space, the local
shape approximation is simply the osculating quadric, expressed in the second
fundamental form [?] as z = II(a, a) where a is any tangent vector, and z is the
vertical distance from the local surface point to the tangent plane. Observing
that the second order shape approximation is best done if the codimension is 1,
we do not compute the second fundamental form directly on the 2-manifold in 5-
space. Instead, we project the 2-manifold to a 3-space of either R

3
{s,t} (our choice

in this paper)or R
3
{ŝ,t}. The second fundamental form is then computed for this

projected 2-manifold, and shape approximation is achieved subsequently. Notice
that the shape approximation in the projected 3-space gives only a partial answer
to the transition event; the full solution is achieved by the tangential mapping
between the projected 2-manifold and the original one (cf. Observation 1 below).

Projection of I to R
3

{s,t} Near a critical point, T1 and T2 (cf. Eq. (7)) give

two vectors spanning the tangent space to I. By projecting I onto R3
{s1,s2,t} and

ignoring the ŝ1 and ŝ2 components, we transform I, a 2-manifold in R
5
{s,ŝ,t},

into a surface in R3
{s,t}, denoted as Is. Furthermore, the projection, denoted as

π hereafter, is a diffeomorphism. and the projected tangent plane (the tangent
plane to Is) is spanned by,

T s
1 = T

1̂2̂δ es1
+ T

11̂2̂ et, T s
2 = T

1̂2̂δ es2
+ T

21̂2̂ et, (9)

where we have used the superscript s to distinguish the tangents from their
counterparts of I in the original augmented parametric space R

5
{s,ŝ,t}.

Exactly at the transition point where T 11̂2̂ = T 21̂2̂ = 0 (cf. Eq. (8)), we
have,

T s
1 = T

1̂2̂δ es1
, T s

2 = T
1̂2̂δ es2

.

Hereafter, a point in the tangent space TSIs is typically specified by its 2 coor-
dinates, say, a1 and a2, with respect to the basis {T s

1 , T s
2 }, the canonical frame

{es1
, es2

} scaled by T 1̂2̂δ .
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Observation 1 At a transition point, the inverse of the tangent map of π is
(cf. Eqs. (7)),

(1, 0) 7→ (T 1̂2̂δ, 0, T 12̂δ,−T
11̂δ, 0), (0, 1) 7→ (0, T 1̂2̂δ , T 22̂δ ,−T

21̂δ , 0),

where (1, 0) and (0, 1) are the coordinates of two points in the local tangent space
TSIs with basis {T s

1 , T s
2 }.

The Shape Computation The local shape of Is in R
3
{s,t} is determined

from the second fundamental form II . At a transition point,

II =
(

Ns···∇T s

i
T s

j

)

=
(

∇T s

i
T s

j ··· et

)

, (10)

and the local shape is approximated by the osculating quadric [?, ?],

δt = II(a, a) =
(

a1 a2

)

II

(

a1

a2

)

, (11)

where a = (a1, a2) ∈ TSIs . Notice that we wrote the left hand side as δt, because,
at a transition point, the tangent plane TSIs is horizontal, and thus the local
vertical height is exactly the time deviation from the considered transition point.

The covariant derivatives are best computed in the original 5-space, i.e.,

∇T s

i
T s

j ··· et = ∇Ti
Tj ··· et.

By Eq. (7),

∇T s

i
T s

j ··· et = ∇Ti
Tj ··· et = ∇Ti

(Tj ··· et) = ∇Ti
T

j1̂2̂

= T
1̂2̂δ ∂T j1̂2̂

∂si

+ T
i2̂δ ∂T j1̂2̂

∂ŝ1
− T

i1̂δ ∂T j1̂2̂

∂ŝ2
.

Introducing the following notations (i, j, k ∈ {1, 2}),

T
ji1̂2̂ = [

∂σj

∂si

σ̂1 σ̂2], T
i1̂k 2̂ = [σi

∂σ̂1

∂ŝk

σ̂2], T
i1̂2̂k = [σi σ̂1

σ̂2

∂ŝk

]

yields,

∇T s

i
T s

j ··· et = T
1̂2̂δ

T
ji 1̂2̂ + T

i2̂δ (T j1̂1 2̂ + T
j1̂2̂1) − T

i1̂δ (T j1̂2 2̂ + T
j1̂2̂2).

Throughout this paper, we make the generic assumption that the transition
point is non-degenerate, i.e., det(II) 6= 0.

Heuristically Uniform Sampling of Local Height Contours To com-
pute various transition events, the height contour curves of the local osculating
quadric needs to be uniformly sampled in the euclidean space R

3.
Suppose we are sampling the height contour with the time deviation δt. By

Eq. (11), the sample point pv ∈ TSIs along a direction v ∈ TSIs , is pv =
√

2δt
II(v,v) v. Therefore, given an initial list of sample directions, the following

algorithm generates a list of heuristically uniform sample points.
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Algorithm 1 Heuristically Uniform Sampling

1. Turn the given list of sample directions into a list of sample points by scaling

each element p by
√

2δt
II(p,p) .

2. In the current list, find a neighboring sample pair p, q ∈ TSIs with maximal
distance.

3. Let m = p+q
2 , scale m by

√

2δt
II(m,m) , and insert it into the list in between p

and q.
4. If not enough sample points, or the distances are not approximately uniform,

goto Step 2.

Compute Transition Events

Compute Creation Events: If det(II) > 0 (or equivalently, the Gaussian curva-
ture of Is is positive), the osculating quadric (Eq. (11)) is an elliptic paraboloid,
and the transition point has elliptic type. See Fig. 4(a).

For an upward elliptic type and offset surfaces deforming forward, or for a
downward elliptic type and offset surfaces deforming backward, a creation event
is occurring, i.e., an entirely new intersection loop is created from nothing. The
following algorithm computes the intersection loop at the time deviation δt from
the transition point.

Algorithm 2 Compute Ellipse Contour for a Creation Event

1. Put directions (1, 0), (0, 1), (−1, 0) into the ordered list of directions V .
2. Apply Algo. 1 to transform V to a ordered list of uniform samples in TSIs .
3. Except the first and the last ones, copy and negate in order all elements, in

V, and append to itself.
4. Map V to a ordered list of samples in R

4
{s,ŝ,t} (cf. Observation 1).

Compute Annihilation Events: At an upward elliptic transition point when offset
surfaces deform backward (in time), or at a downward elliptic transition point
when offset surfaces deforming forward, there is an annihilation event happening,
i.e. an intersection loop collapses and disappears. See Fig. 4(a). The key issue
here is to choose the right current intersection loop to annihilate. If there is
currently only one intersection loop, annihilate it. Otherwise, we use an “evolve-
to-annihilate” strategy as illustrated in Fig. 5. First, evolve all intersection loops
at time t1 to the time t′ (i.e., the contour position used for the pre-computation
of the corresponding creation event). Then, using the inclusion test [?], find the
one that the critical point p identifies to annihilate.

Compute Switch Events: If det(II) < 0 (or equivalently, the Gaussian curvature
of Is is negative), the osculating quadric (Eq. (11)) is a hyperbolic paraboloid,
and the transition point has hyperbolic type. See Fig. 4(b).

Deforming across a hyperbolic transition point is a quite different situation
from an elliptic point inasmuch as there is a switch of two pairs of hyperbolic-like
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ptp

t2

t1

t′
1

= tp + δtp

Fig. 5. Evolve to Annihilate

S41 H12

H34

S′
21

S′
43

S43

S21

S23

Fig. 6. Split/Merge

segments (cf. Fig. 3 in the euclidean space, and Fig. 4 of Is): 2 local segments
approach each other, say, from above the transition point p , touch at p, and then
swap and depart into another two local segments below p. If the approaching pair
of segments is from one intersection loop (Fig. 6), we have a split event; and if it
is from 2 intersection loops (Fig. 6 in reverse order), we have a merge event. Each
segment is a height contour of the local shape approximated by the osculating
hyperbolic paraboloid. The following algorithm computes one pair of such height
contours.

Algorithm 3 Compute Hyperbolic Contours for a Switch Event

1. Put directions u1 + (u2 − u1) ∗ λ, u1 + u2, u2 + (u1 − u2) ∗ λ into the ordered
list of directions V.

2. Invoke Algo. 1 to transform V to an ordered list of uniform samples in TSIs .

3. In order, copy and negate all elements into another list V ′.

4. Map V to an ordered list of samples in R
4
{s,ŝ,t} (cf. Observation 1). Do the

same for V ′.

In the algorithm, u1 and u2 are the two asymptotic directions, which can be
solved (for u) from the equation II(u, u) = 0 using the second fundamental
form in Eq. (10). The other pair of contours, with the opposite height value, can
be sampled similarly, with one of the asymptotic directions reversed.

Based on the deforming direction we can determine which of the 2 principal
curvature directions is the approaching direction, and which is the departing
direction. Then the approaching pair of segments of current intersection curves
is the one that is closest to the considered transition point along the approaching
direction. Using Algorithm 3, the switch event can be computed by cutting the
two approach segments, evolving the rest across, say upward, p, and then pasting
the other pair of contours to the departing pair of segments (Illustrated Fig. 6).
Finally, Fig. 7 gives an example of split event of two deforming torus-like surfaces.
For demo videos, see http://www.cs.utah.edu/∼xchen/papers/more.html

http://www.cs.utah.edu/~xchen/papers/more.html
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Fig. 7. Transition: A split event of 2 deforming torus-like surfaces

5 Conclusion

In this paper, we have applied a mathematical framework provided by singu-
larity theory to develop algorithms for continuously and robustly tracking the
intersection curves of two generically deforming surfaces, on the assumption that
both the base surfaces and the deforming vectors have rational parametrization.
The core idea is to divide the process into two steps depending on when tran-
sition points occur. Away from any transition points, the intersection curves
evolve without any structural change. We found a simple and robust method
which constructs an evolution vector field directly in the euclidean space R3 and
evolves the intersection curves accordingly.

We further developed a method for identifying transition points and following
topological changes in the intersection curves through the introduction of an
implicit 2-manifold I, which consists of the union of intersection curves in the
augmented (by time domain t) joint parameter space. The transition points are
identified as the points on I where the tangent spaces are orthogonal to t-axis,
and the topological change of the intersection curves is subsequently computed
by 2nd order differential geometric computations on I.

There are further transitions which can occur for deforming surfaces, includ-
ing the surface developing singularities, self-intersections, and triple intersection
points.. We are now developing a similar formulation for tracking the intersec-
tion curve end points that correspond to surface boundaries, and for tracking
triple intersection points.
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