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Abstract

Previous interactive works have used springs, heuristics, and dy-
namics for surface placement applications. We present an analytical
technique for kilohertz rate manipulation of CAD models with vir-
tual surface and trimming constraints. The optimization approach
allows best placement and sensitivity analysis for mechanical de-
sign objectives and parametric domain objectives. Such objec-
tives are not readily incorporated into previous interactive methods.
Force feedback is rendered to the user using previously developed
haptics principles.

Figure 1: OpenGLTM display and PHANToMTM force feedback
interaction with a 3 paper clip surface constraint assembly.

1 Motivation

CAD research into interactive and optimal surface placement is im-
portant for prototyping and design variation analysis. Very often, a
designer cannot easily determine the best place and orientation for
a surface in his virtual still life portrait or CAD assembly. The best
surface configuration for some mechanical design objective, such
as dexterity, is often desired in CAD prototyping applications. The
differential kinematics dexterity measure for example [31],

f(q) =
√

det(J(q)JT (q)), (1)

whereJ is the geometric velocity manipulator Jacobian, can be
maximized by an optimization algorithm. It is known that solv-
ing high order polynomial objectives must be done through such
numerical means. We show how to maximize surface placement
objectives, constraints, and constraint Jacobians quickly in this op-
timization framework.

Furthermore, optimal interactive surface placement supports the
generation of physically-based surface animations. A kinematically

admissible configuration is required to begin a dynamical simula-
tion. When surfaces are touching, however, a valid initial configu-
ration may be difficult to determine. The interactivity of the opti-
mization environment is important in sketching mechanical config-
urations at the start of a dynamical simulation.

2 Overview

2.1 Related Work

Surface contact events have been studied extensively for computa-
tional dynamics and animation [3, 7, 13, 23]. Interactive surface
placement has received attention in the literature through a spring-
based collision framework where at any time only a single object
may move [34]. A depth-buffer approach has also been used [5].
Optimal surface placement has also been studied with a careful
treatment through an expensive (non-interactive) interval analysis
[33]. Our method does not cover as broad a class of analysis as the
interval methods, but the accompanying global management algo-
rithm allows a very useful class of global optimization to be per-
formed.

The surface-surface floating contact constraint has been evalu-
ated using an expensive finite differences operator [37] and a “dis-
tance” Jacobian [1]. In this paper, a fast, closed form parametric
contact Jacobian is developed that computes the extremal distance
floating contact constraint Jacobian. The parametric contact Jaco-
bian also allows more general types of constraints to be evaluated
quickly.

Algorithms to solve the geometric satisfaction problem [11], in-
verse kinematics problem [20, 36], and nonlinear constrained op-
timization problems have been developed using graph theory and
numerical programming means. Mechanisms that self-assemble
through inverse dynamics “forces” for simple joint constraints have
been shown to be effective in modeling applications [4]. Differen-
tial manipulation for virtual peg in hole and other basic constraints
has been studied but without emphasis on design objectives or force
feedback [12]. The methods used in our paper will focus on kine-
matic optimization to provides positions, velocities, and accelera-
tions over time to our inverse dynamics controller.

2.2 Representation

The interactive rate solution presented relies on fast NURBS sur-
face evaluation (i.e. computation of Eq. 2 and its derivatives) since
the parametric contact Jacobians require two surface evaluations.
An optimized version of the Alpha matrix refinement operations
[9] in our CAD system has been implemented to achieve a rate of
30 kilohertz for surface evaluations.

The piecewise tensor product non-uniform rational B-spline def-
inition of a surfaceS is a mapping fromR2 → R3, i.e. a function
from parametric (u,v) space to Cartesian (x,y,z) space.



S(u, v) =

∑
i,j

wi,jpi,jBi,ku(u)Bj,kv (v)∑
i,j

wi,jBi,ku(u)Bj,kv (v)
=

[
x(u, v)
y(u, v)
z(u, v)

]
(2)

where the B-spline blending functionsB, control meshp, and
weightsw are used. The over-line notation such asS is used to
indicate the local body frame.

Use of minimal coordinate representations such as Denavit-
Hartenburg or Hayati parameters, would need to be extended to
include surface interactions. We use the augmented generalized
coordinate representation of mechanical systems [14, 32] to in-
corporate both simple mechanical joints and complex surface con-
straints. The position and quaternion orientation coordinates for
body i are denoted byqi. The parametric contact coordinates
u = [ui vi uj vj ]T for two surfacesi and j in contact are com-
pletely dependent onq and are therefore removed from our coordi-
nates to be optimized.

3 Fast Analysis of Surface Constraints

Our approach to high speed, interactive surface configuration op-
timization leverages constraints and constraint Jacobians to define
a kinematically admissible configuration space and admissible mo-
tion. This information drives the high speed optimization algorithm
at force control rates.

3.1 Design Objectives

We describe both simple and complex mechanical joints as geo-
metric constraints. Since the system is under-specified, there are
infinitely many solutions that satisfy these constraints for mecha-
nisms that move, or have degrees of freedom (DOFs). Mechan-
ical design objectives are introduced to specify the best solution
choice. For virtual manipulation of the closed loop mechanism de-
picted at the end of this work (Fig. 7), the design objective is to
minimize the distance from the middle link to the hand grasp. The
grasp can be modeled as point contact, rigid hand contact, and the
surface-surface floating contact described here. This design objec-
tive extends previous work in virtual inverse kinematics manipu-
lation [12, 38, 27]. Other mechanical design measures with good
convergence properties that have been implemented to further con-
strain the system are dexterity eigenvector ellipsoids, workspace
volume, and force transmission measures.

3.2 Extremal Distance Computations

The bilateral surface contact constraint which ensures that two sur-
facesf andg touch is given by

minuf ,gf ||f(uf )− g(ug)|| = 0, (3)

which removes one DOF from the solution manifold. This con-
straint is to be maintained regardless of the current model configu-
ration. The zero distance constraint in this case is called extremal
distance, as opposed to minimal distance, becausef andg may be
interpenetrating. The extremal distance contact points have been
studied with gradient descent [34] and improved Newton iterative
distance approaches [18, 28]. The velocity formulation of Eq. 4
guarantees the maintenance of the extremal distance solution since
it is an exact computation, not an iterative numerical method, and
cannot not slide into extraneous, undesirable solutions. If there is
an extremal distance solution, the velocity method will compute it,
but there are unusual cases where infinitely many extremal solu-
tions exist. The current solution is acceptable in the case of infinite
solutions.

3.3 Surface Constraint Jacobian Extraction

The Jacobian relating the extremal distance contact coordinates
with the linear and quaternion velocities of the surfaces in contact
can be written in the form (as derived in Appendix A)[

u̇f

u̇g

]
= AB

[
q̇f

q̇g

]
, (4)

whereAB is the Jacobianuq relating differentialsu̇ andq̇.1

Since closed forms for the quantitiesSp, pq (see Appendix B),
andSu are easily derived, the solution is given bySq = Suuq +
Suppq, are also conveniently obtained onceuq is known.uq and
Sq will be used in the kilohertz update optimization algorithm.

The Jacobian of the constraint that two surfaces must touch
anywhere (are floating) is readily obtained as the Jacobian of
Eq. 3 sincefq andgq are available from Eq. 4. I.e.,||f(uf ) −
g(ug)||q|| = βq = β−1(f −g)T (fq−gq). The situation becomes
more interesting for the derivation of the Jacobians of parametric
contact constraints, used in parametric trimming loop constraints.

3.4 Trimmed Surface Constraints

Figure 2: An additional condition is included to avoid placement
in trimmed away areas, such as the boundary of the region on the
right. The parametric constraint Jacobian for trimming constraints
is obtained in closed form through the surface-curve velocity rela-
tions.

Trimming curves occur in CAD modeling when boolean set or
sculpting operations are used. A curvec embedded in a surfaceS
refers to the compositionS(c). c(t) is a planar curve mapping a
scalar toR2, the (u,v) parametric domain of the surface. Iff or
g has a curve embedded in it (Fig. 2), such as a trimming curve,
we can write the constraint Jacobian of the following curve-surface
constraint since we can extract the Jacobian from the curve-surface
velocity method in Appendix A. Other types of parametric curve
constraints can also be written in a similar manner.

Figure 4 illustrates the unsatisfied, initial configuration of an
assembly with surface-surface contact with trims. There are
several options for writing the surface-curve unilateral or bilateral
constraint for placement in a parametric area or avoiding trimming
loops. We have identified and implemented three versions:

1The subscriptq, u andp will denote the partial derivative with respect
to a vector, i.e. the Jacobian.



Figure 3: Global considerations are managed through polygonal
and numerical tracking methods. Two surface contact constraints
are shown in this paperclip example. The global method coordi-
nates with the local, analytic method to add and remove global col-
lision constraints.

1. Parametric domain:||uf
extrema − uf

curve|| = 0

2. Cartesian domain:||f(uf
extrema)− f(uf

curve)|| = 0

3. Cartesian domain between surfaces:||g(ug
extrema) −

f(uf
curve)|| = 0,

where the subscriptextrema refers to the extremal distance
parametric coordinate between surfaces and the subscriptcurve
denotes the extremal distance coordinate of the curve one embed-
ded on one surface with respect to the other surface. The Jaco-
bian of those constraints is easily derived since we haveuf

curve,q,
f(uf

curve)q, uf
extrema,q, and other derivatives.

4 Constraint Satisfaction

An augmented Lagrangian approach [10, 29, 30] has been imple-
mented to solve the constrained optimization problem. The solution
to any nonlinear constrained optimization problem is expensive in
general, but our problem domain takes advantage of the coherence
in the solution between optimization iterations. The convergence
properties are discussed in the results section.

Surface constraints may become inactive during the course of
the optimization or manipulation of the virtual surface assembly.
The detection and tracking of these events is performed in a global
management algorithm. When a contact event has occur, the corre-
sponding constraint is added or deleted.

5 Global Collision Management

The Jacobian extraction in Eq. 4 relies on the contact point being
maintained exactly through a combined local and global tracking
process. We have implemented a three step tracking process to
manage the global issues that are not guaranteed by the local colli-
sion methods. The details were reported in previously as part of
results on a haptics surface-surface tracing algorithm [28]. Our

Figure 4: Unsatisfied surface-surface contact constraint showing
minimal distance between the surfaces and surface-curve minimal
distance. Several constraint domains to write the surface-curve in-
equality condition are possible.

manager uses a global polygonal collision algorithm [21] on an off-
set model to start a Newton tracking process for exact tracking of
locally closest points. These parametric tracking coordinates are
input to the Jacobian extraction equations.

The “spheres-of-neglect” check [34] has been added to avoid ar-
tifacts caused by the polygonal representation for global collisions.
More than 1 polygon pair may intersect where there is only a sin-
gle contact point in the smooth representation. However, Figure 3
illustrates a situation where a very thin-radius paperclip may have 2
or more smooth surface contact points within a small “radius”. The
problem is hard in general, requiring an expensive, exact global in-
tersection algorithm. We have added a check to make sure that the
neglect does not exclude areas that are not nearby topologically, as
in the outer and inner loop of the paperclip. The class of surfaces
that do not have tiny, undulating features (convex surface areas with
a radius of curvature smaller than that of the neglect radius) are han-
dled well with the added second check.

6 Inverse Dynamics Feedback

Inertial and constraint force feedback also provide important proto-
typing information. Constraint forces and inverse dynamics forces
are computed according to methods for virtual mechanical assem-
blies previously developed by the authors [29]. Force in con-
figuration space of the mechanismWc, such as in the Carte-
sian/quaternion set of coordinates, may be expressed in terms of
body space force and torqueW through standard transformation
operators, denoted byG [32, 14],

W =
1

4
G(q)Wc (5)

This force and torque may be projected onto joint axes to provide
the amount of torque required by a controls system to produce a
motion. For our interactive haptics force feedback application,W
can be transmitted to the user.

7 3 and 6 Axes of Force Feedback

Our system drives a PHANToMTM haptics device that senses 6
DOFs of position and renders 3 DOFs of force. The generalized



Figure 5: The global polygonal manager is used in the “far” regions
on an offset of the model surface. This result starts a nonlinear root
finger for tracking “near” cases. Each root is used and updated by
the velocity formulation during the local tracking case.

wrench to be rendered to the user,W, is input into the algorithm.
The first 3 components ofW are taken as output for the 3 DOF
PHANToM case.

For a more complicated anthropomorphic haptic mechanism pro-
viding feedback to a user’s entire arm, we use a relation from stat-
ics to project the virtual wrench to the appropriate actuators [35].
The following equations allow the use of a tool frame for the finger
without changing the manipulator Jacobian.

W =

[
f1

r1 × f1

]
, (6)

J =

[
z0 × b0 . . . z4 × b4 0 0 0

z0 . . . z4 z5 z6 z7

]
, (7)

τ = JT W, (8)

whereW is the wrench at the wrist,f1 is the force at the finger tip,
r1 is the moment arm of the finger on the wrist,zi is the axis of
rotation for jointi, bi is a vector from the origin of jointi to the
wrist,τ is the haptics control torque vector, andJ is the manipulator
Jacobian. The force reflecting arm can be an exoskeleton worn by
the user. In this example, the shoulder is spherical attachment from
revolute joints 1,2,3. The elbow is joint 4. The wrist is spherical,
composed of revolute joints 5, 6, 7.

8 Results

This approach has been incorporated into the Alpha1 CAD system
[9].

8.1 Iteration Rates

The size of the control mesh does not slow down the local con-
straint analysis since the surface evaluations are done with Alpha1
refinement operations. The global constraint tracking depends on
the complexity of the surfaces being analyzed, but a hierarchical,
polygonal global management scheme is employed that reduces this
cost so that it is not the bottleneck in the parallel management im-
plementation.

4 kHz updates are achieved for the 3 surface paperclip assembly
on a four processor SGI 300MHz R12000. The method is scalable
to any number of surface contact constraints since the surfaces can
be evaluated in parallel within an optimization iteration. There is no
parallelism between iterations. For the examples used to date, the
surface evaluations, not the optimization computation, are the dom-
inant cost. Highly parallel optimization algorithms are a subject of
future work.

8.2 Convergence Rates

A number of measures have been introduced in this work to al-
low multiple, highly nonlinear surface and trimming constraints to
be satisfied while maximizing mechanical design objectives. This
convergence is an intractable problem in general (note that it is easy
to write a system of constraints that cannot be satisfied). How-
ever, our monitoring mechanism simplifies the problem by keep-
ing track of global collision events. This simplification allows the
local extremal distance contact computations to be maintained ex-
actly, without problems that numerical methods suffer. The colli-
sion management scheme also allows the curve extremal distance
to be maintained exactly. For surfaces that do not have tiny, sharp
changes as described in our section on “spheres-of-neglect,” the
proper extremal distance can be maintained.

For the steady state case (during PHANToM manipulation),
the second order gradient, or Hessian, can be computed to check
whether it is positive definite. In practice, the user cannot move so
quickly as to escape the region where the solution space is convex
(positive definite Hessian); therefore, the system will converge. The
norm of the constraint manifold, a constraint violation measure, is
less than10−5 for simple mechanisms on the scale of 1 unit in size.

9 Research Conclusions

We have established a principled method to handle force-interactive
surface placement for a large class of mechanical design objectives.
This is a vast improvement over .1-20 Hz methods (adjusted for
current machine speeds) used in previous works. Mechanical de-
sign objectives such as placement for maximal dexterity are readily
encoded in an optimization framework. The addition of objectives
to prescribe unconstrained degrees of freedom is a very useful and
important separation of this method with previous manipulation al-
gorithms. The ability to analyze the surface constraints at force
update rates is the critical problem solved in our work.

Appendix A: Surface Contact Velocity For-
mulation

A number of different derivations of the kinematics of contact have
been developed in the last 15 years. These formulations relate the
rate of change of the parametric contact coordinates to the Carte-
sian velocity and angular velocity of the bodies in contact. Previous
works have been limited to surfaces parameterized to have orthogo-
nal surface partial derivatives. Some are also limited the in-contact
case[25, 26, 6]. While any surface may be reparameterized to be
orthogonal, it may be expensive and impractical to find such a pa-
rameterization. The finger may bend in our interactive application.
Finding the reparameterization with full numerical precision is also
a problem[22]. We develop a new derivation for the not-in-contact,
non-orthogonal surface parameterizations.

When both surfaces have partials that are everywhere orthogo-
nal, i.e.fu · fv = 0 andgs · gt = 0, ∀u in the parametric domain,
an original result from [25], extended by [1] for the not in contact
case, derives the surface kinematics as



fu
Surface f

yf
zf = −zg

gu

yg

Surface g

Figure 6: Closest point surface contact frames. Velocity relations
allow the contact coordinate velocities to be found.

u̇
f

= If
−1

Rθ(IIg + ĨIf + βIIg ĨIf )
−1

(

[ −wy

wx

]
+ IIg

[
vx

vy

]
)

u̇g = Ig
−1(IIg + ĨIf + βĨIf IIg)−1((1 + βĨIf )

[ −wy

wx

]
− ĨIf

[
vx

vy

]
)

whereβ is the (signed) distance between contacts,1 is the2 ×
2 identity matrix, the relative linear and angular surface velocities
of surfaceg relative to surfacef be denoted byv, ω, the surface
contact velocities bevf , ωf andvg, ωg, I is the first fundamental
form andII is the surface curvature or second fundamental form,
with subscripts for surfacesf andg. θ represents the angle between

parametric axesgs andfu, let Rθ =

[
cosθ −sinθ

−sinθ −cosθ

]
and ĨI =

RθIIRθ. The relation may be written in the following matrix form,

u̇ = A

[
vx,y

ωx,y

]
. (9)

Non-Orthogonal Parameterizations

We provide a new derivation forA for regular parametric surfaces
whose partials are not orthogonal so the result in Eqn. 9 can be used
for typical models constructed by CAD systems.

The parametric contact frames in Fig. 6 for the extremal dis-
tance context are defined with an orthonormal set of vectors.Rf =
[xf yf zf ] is the rotation matrix from the local contact frame to
the world frame, wherexf = fu/||fu||, zf = fu × fv/||fu × fv||,
yf = zf × xf . Rg is similarly defined.zf andzg are parallel free
vectors (Fig. 6).

Comparison of the relative surface velocities2 can be used to re-
late the parametric contact coordinatesuf andug with the linear
and angular surface velocities. Let the surface velocitiesvf andvg

2A subscript with x or y such asax will denote the first component of
the vector. Several subscripts, such asa−x,y will represent a two-vector
containing the negative of the first component and the second component
of a. A superscriptT as inaT will denote a vector or matrix transpose.
Partitions of matrices may be selected with (row,column) indexing, with
“a:b” for a range or “:” for all rows or columns, as in theMatlabTM

notation. The operatorextract skew symmetric retrieves 3 independent
components from 9 elements of a skew symmetric matrix.

and relative surface velocityv be in the frame
[

xg yg zg

]
.

In the extremal distance context (see Fig. 6), we have

vg
x,y + vx,y = Rθv

f
x,y + βRθω

f
y,−x, (10)

ωg
y,−x + ωy,−x = −Rθω

f
y,−x. (11)

The termsvf andvg will contain u̇f and u̇g in the following
equations through due to the chain rule of differentiation. We derive
matricesEf

x,y andFf
x,y for surfacef (and analogously for surface

g) from the relations of linear and angular velocity to separateu̇f

andu̇g from other terms,

vf
x,y = RT

fx,y
ḟx,y =

[[
xf yf

]T
fu

]
2×2

u̇f = Ef
x,yu̇

f ,

(12)

ωf
y,−x = extract skew symmetric(Rf

T Ṙf )y,−x

=

[
xf

T zu

yf
T zu

]
2×2

u̇f = Ff
y,−xu̇

f . (13)

Using Eqns. 10,11,12,13, the general non-orthogonal case is re-
duced to the4× 4 system,

[
Rθ(E

f
x,y − βFf

−y,x) −Eg
x,y

(−RθF
f
y,−x)x,y −Fg

x,y

] [
u̇f

u̇g

]
=

[
vx,y

ωx,y

]
.

(14)
This system can be solved quickly foru̇ using the following

pseudocode fragment for arbitrary surface parameterizations. We
rewrite the inverse of the4× 4 coefficient matrix in Eq. 14,

A =

[
Rθ(E

f
x,y − βFf

−y,x) −Eg
x,y

−(RθF
f
y,−x)x,y −Fg

x,y

]−1

(15)

to be solved even more efficiently as a series of2 × 2 matrix
inverses and multiplications,

iEg_xy=inv(Eg_xy);
RphiFf_xy=Rphi*Ff_xy;
dRphiFf_xy=d*RphiFf_xy;
Fg_xyiEg_xy=Fg_xy*iEg_xy;
RphiEf_xy=Rphi*Ef_xy;

H=Fg_xyiEg_xy*(RphiEf_xy+dRphiFf_xy)-
RphiFf_xy;
iH=inv(H);
J=iH*[Fg_xyiEg_xy -eye(2)];

A=[J; iEg_xy*(RphiEf_xy*J+
dRphiFf_xy*J-[eye(2) zeros(2)])];

The solution is roughly as efficient as previous methods since the
inverse of two2×2 matrices and nine matrix multiplications, rather
than four2× 2 matrix inversions and six matrix multiplications, is
required (see pseudocode fragment). The optimized matrix inverse
and multiplication implementation is a constant cost and is a small
fraction of the cost associated with a surface evaluation.



Cartesian and Quaternion Generalized Velocities

Now we express the relative surface velocities in terms of world
frame body coordinate velocities so that integration of orientation
is possible (integration of angular velocity is meaningless). Define
the local contact frame through the rotation matrix

Rloc =
[

xg yg zg

]T
. (16)

The elements of a quaternionqrot will be denoted byqrot0,
qrotx, qroty , qrotz . Let Gf = G(qf,rot), Gg = G(qg,rot),
whereG(qrot) is the matrix operator mapping quaternion veloc-
ities to angular velocities [14, 32], given by

G(qrot) = 2

[ −qrotx qrot0 qrotz −qroty

−qroty −qrotz qrot0 qrotx

−qrotz qroty −qrotx qrot0

]
. (17)

The velocity[vT ωT ]T is the motion of surfaceg relative to sur-
facef . We write our world space velocities in terms of the local
frame. We relate relative angular velocity and world frame quater-
nion velocity by

ω = Rloc

[ −TfGf TgGg

] [
q̇f,rot

q̇g,rot

]
, (18)

and relative linear velocity to Cartesian velocity through

v = Rloc(q̇g,tr − q̇f,tr + (ωgl
g − ωgl

f )× (g(u)− qg,tr)). (19)

× denotes the vector cross product.Tf andTg are rotations
from the local frame to the world frame defined by quaternions
qf,rot andqg,rot. It can be shown that the relative surface veloc-
ities [vT , ωT ]T are related to Cartesian and quaternion velocities
through[

v

ω

]
=

[ −Rloc 03×4 Rloc −Rloc((g(u)− qg,tr)×)RgGg

03×7 RlocRgGg

]
∗

 I3x3 03x11

04x14

03x3 ((g(u)− qg,tr)×)RfGf I3x3 03x4

04x3 −GT
g RT

g RfGf 04x3 −GT
g Gg

[
q̇f

q̇g

]
(20)

where× in Eq. 20 denotes the3x3 skew symmetric matrix that
performs the operation of a cross product (obtained from the three

components of a vector, i.e.a× =
[

0 −az ay
az 0 −ax
−ay ax 0

]
). From

Eq. 14, the truncated part[vT
x,y, ωT

x,y]T is all that is required. Let
B contain the first two rows and rows four and five of Eq. 20. Sub-
stituting[vT

x,y, ωT
x,y]T into Eq. 14, yields

u̇ = AB

[
q̇f

q̇g

]
. (21)

Non-Orthogonal Surface-Curve Velocity Formula-
tion

Similarly, it may be shown that the surface-curve extremal distance
equations may be extended to for arbitrary surface parameteriza-
tions.

The time derivative of the parametric contact coordinates for sur-
facef and curveg may be written as a function of linear and angular
velocity multiplying a matrix operator,

u̇3x1 =

[
Rθ(E

f
u + dFf

x,y) −gux,y

−RθF
f
x,y −kgsin(φ)gux,y

]−1

3x3

[
vx,y

ωy

]
3x1

,

(22)
where

kg =
||gu × guu||
||gu||3 (23)

andφ is the angle between the curve normal (which is−zf for
the extremal distance case) and the curve binormalb, about the
curve x axisgu. The binormal is

b =
gu × guu

||gu × guu|| . (24)

Eq. 20 is again used to establish this relation in terms of quater-
nion and Cartesian velocities, using rows 1,2, and 5.

Appendix B: Quaternion Differential Alge-
bra

qrot rotates a constant (i.e. local frame) vectorv using quaternion
multiplication, given by:

qrotvq∗rot = (q2
0−qrot ·qrot)v+2q0qrot×v+2qrot(qrot ·v)

whereq∗rot = q0 − qrot denotes the inverse of the quaternion.
The important Jacobian operation of the expressionqrotvq∗rot

with respect to the rotationqrot used in simple joints and more
complicated surface constraints is now given by

∂(qrotvq∗rot)

∂qrot
=

[
qyvz − qzvy qxvx + qyvy + qzvz

q0vy + qzvx − qxvz −qxvy − q0vz + qyvx

q0vz + qxvy − qyvx q0vy + qzvx − qxvz

... q0vz + qxvy − qyvx −qzvx − q0vy + qxvz

... qxvx + qyvy + qzvz −qzvy + q0vx + qyvz

... −qyvz − q0vx + qzvy qxvx + qyvy + qzvz

]
(25)
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Figure 7: Kinematic manipulation of a spatial four bar mechanism
consisting of a universal joint, a spherical joint, and two revolute
joints. The objective is to minimize the amount of separation of the
middle of the top link with the hand grasp point. The top figure
shows a point grasping constraint. The bottom figure has a floating
surface-surface contact.


