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ABSTRACT

Previous work in haptics surface tracing for virtual prototyping
and surface design applications has used a point model for vir-
tual finger-surface interaction. We extend this tracing method for
surface-to-surface interactions. A straightforward extension of the
point-surface formulation to surface-surface can yield extraneous,
undesirable solutions, although we rework the formulation to yield
more satisfactory solutions. Additionally, we derive an alterna-
tive novel velocity formulation for use in a surface-surface trac-
ing paradigm that exhibits additional stability beyond the Newton
methods. Both methods require evaluating the surface point and
first and second surface partial derivatives for both surfaces, an
efficient kilohertz rate computation. These methods are integrated
into a three step tracking process that uses a global minimum dis-
tance method, the local Newton formulation, and the new velocity
formulation.

Figure 1: Well-behaved finger penetration into a surface shown by
the “penetration cylinder”. The velocity method and modified New-
ton method return the maximum distance between the two surfaces
upon penetration.

Figure 2: Virtual proxies are important in the penetrating case.
The maximal distance is required by the haptics tracing algorithm.
Global solution discontinuities such as “chopping though” an ob-
ject are not desirable. Because the velocity formulation (shown) is
the “most local,” it is the method of choice for the penetrating case.

1 INTRODUCTION

User interactions with surfaces with force feedback are an impor-
tant design and visualization tool. Current work has mostly uti-
lized a point position hand model for interaction, but a desirable
extension is to allow more realistic geometry for the hand model.
However, this extension creates some severe geometric computa-
tion challenges, as well much more complicated contact and re-
sponse scenarios.

In this paper, we address one portion of the surface-surface hap-
tic rendering problem, namely, computation of proper penetration
depth between two surfaces. Once the penetration vector has been
obtained, rendering force feedback will be done with established



haptics techniques [Thompson, 1997].
This penetration depth computation will be placed within a

framework for reliably finding and tracking multiple contact points
between models. This framework breaks the haptic rendering prob-
lem into several phases — distant tracking using global minimum
distance methods, nearby tracking using local Newton methods,
and tracking during contact using a reformulated Newton’s method
or a novel velocity formulation.

1.1 Distance Extrema

Following [Baraff, 1990], the extremal distance may be defined
as the minimum distance between the two models when they are
disjoint, zero during tangential contact, and the locally maximum
penetration depth when they are inter-penetrated. This measure is
related to the minimum translation distance defined by Cameron
[Cameron, 1997].

When a user touches a virtual surface with his virtual finger
model, a curveγ(t) embedded on the finger surfacef and a curve
ζ(t) on the embedded on a model surfaceg define the path of dis-
tance extrema required by the haptics tracing algorithm.

distance extrema = ||f(γ(t)) − g(ζ(t))|| (1)

Our goal is to find the piecewise continuous curvesγ(t) andζ(t)
for penetration depth computations in a real-time haptics tracing
environment.

When the finger model is penetrated into the CAD model, the
maximal distance is required for force computations as shown in
Fig.1. When the finger is not penetrating the surface the curves
γ andζ may be discontinuous since the distance between surface
models is non-differentiable in general. Both surfaces may be mov-
ing. A minimal distance measure between surfaces is useful in this
case for a global monitoring and restarting mechanism.
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Figure 3: Curves of distance extrema embedded into the finger sur-
face model and the CAD model.

2 BACKGROUND

The robotics community has considerable literature in the area of
finding the minimal distance between a point and model or between
model and model [Quinlan, 1994, Gilbert, 1988, Lin, 1994]. How-
ever, the minimum distance between models is zero during pene-
tration; we desire the penetration depth for haptic force computa-
tions. The minimum distance between parametric surfacesf(u, v)
andg(s, t) may be described by the following system of equations

(f(u, v) − g(s, t)) · fu = 0 (2)

(f(u, v) − g(s, t)) · fv = 0 (3)

(f(u, v) − g(s, t)) · gs = 0 (4)

(f(u, v) − g(s, t)) · gt = 0 (5)

which correctly describes that the line between the closest points
is normal to each surface. This system has been solved with a
search over the four-dimensional parameter space [Snyder, 1995],
with global, high-dimensional resultant methods [Lin, 1994], and
Euclidean space bounding methods [Johnson, 1998a].

Note that in haptic applications, we are often interested in the lo-
cal solution to distance. Using a local solution constrains the force
computation to a continuous solution, similar to a “God-object”
[Zilles, 1995] or virtual proxy [Ruspini, 1997] as used in polygo-
nal methods (see Fig.2).

The assumption that the situation upon penetration is local for
haptics tracing is fortunate because the haptics controller often re-
quires the greatest update rates precisely at the impact or penetrat-
ing event. Greater stability is achieved with the high update rates.

Local solution methods have been applied to point - surface
analogs of Equations 2-5. A first-order solution to the minimum
distance is described in [Thompson, 1997] and extended to a New-
ton formulation in [Johnson, 1998b, Stewart, 1997]. For a para-
metric surfacef(u, v) and pointP, we can describe the minimum
distance constraint equations as

(f(u, v) −P) · fu = 0 (6)

(f(u, v) −P) · fv = 0. (7)

Offset surfaces have recently been used to extend the point-
surface finger model with a sphere-surface model [Ruspini, 1997,
Thompson, 1999]. A surface that is offset from an original surface
by a constant amount can be traced with the point-surface model.
When the original surface is displayed, the point model is effec-
tively performing sphere-surface tracing. A sphere is still a very
simple finger model; rotating the finger has no effect. We develop
a method in this work that allows more complicated finger models.

3 APPROACH

We have broken the haptic rendering of surface-surface interactions
into three phases. In the first phase, the far phase, a global moni-
toring mechanism returns all portions of a surface within some dis-
tance of some part of the other surface. In the second phase, the
near phase, local Newton methods determine the closest points be-
tween all portions of the surfaces returned from the far phase. The
third phase, the penetration phase, uses these closest points to ini-
tiate a velocity formulation that maintains the proper penetration
depth vector between surfaces.

3.1 Global Minimum Distance

The global minimum distance mechanism depends on the subdivi-
sion properties of the surface. For NURBS surfaces, the surface
is made up of a patchwork of polynomial pieces. Each polynomial
piece is contained with the convex hull of its defining control points.
These pieces may be refined, such that each piece splits into several
pieces that maintain the original surface shape, yet have additional
control points. These additional control points converge quadrati-
cally to the surface as the refinement is increased.

We can exploit these properties to prune away portions of sur-
faces that are further away than some threshold, refine the remain-
ing portions, and repeat [Johnson, 1998a]. Remaining areas may be
used to find approximate minimum distances to initiate faster, local,
Newton methods.

3.2 Local Minimum Distance

The local minimum distance phase uses Newton methods to quickly
update the minimum distance between portions of the model. We



use a reformulated extremal distance approach described in the fol-
lowing section for extra stability relative to the standard minimum
distance formulation from the minimum distance formulation of
Equations 2-5.

3.3 Local Penetration

We have developed two methods for maintaining the proper pene-
tration depth vector for surface-surface interactions. The first is a
reformulation of the Newton minimum distance method. The sec-
ond is a velocity formulation. The Newton method has the advan-
tage of being able to find the extremal distance given nearby starting
locations on the surfaces. The velocity formulation is able to main-
tain the proper extremal distance and shows stability beyond that of
the reformulated Newton method.

3.4 Extremal Distance Representation

The minimum distance equations 2-5 are not adequate to properly
describe the extremal distance needed for surface-surface haptics.
Along with a root at the extremal distance, a set of roots occurs
along the curve of intersection between the two surfaces, where
(f(u, v)−g(s, t)) goes to zero. The local methods may very easily
“slide” into these solutions. Our reworked formulations avoid the
zero distance roots.

The following methods are applicable to any parametric surface
representation, including NURBS and subdivision surfaces, the

most commonly used representations. Letu =
[

u v s t
]T

designate the closest parametric contact coordinates between any
two parametric surfacesf(u, v) andg(s, t). f andg denote surface
evaluations, or mappings from parametric space to Cartesian space.

3.5 Newton Extremal Distance Formulation

The extremal distance between parametric surfacesf(u, v) and
g(s, t) may be described by the following equation:

E(u, v, s, t) = (f(u, v) − g(s, t)) ·N (8)

whereN is the surface normal off at (u, v). We wish to find the
extrema ofE, which may be found at simultaneous zeros of its
partials. The partials are

fu ·N + (f(u, v) − g(s, t)) · Nu = 0 (9)

fv ·N + (f(u, v) − g(s, t)) ·Nv = 0 (10)

−gs ·N = 0 (11)

−gt ·N = 0. (12)

Noting that the normalN is orthogonal to the tangent plane
formed by the partialsfu andfv, we may remove thefu · N and
fv ·N terms. Additionally, the partials ofN lie in the tangent plane
of f . The equivalent constraint may be formulated by replacing
these partials with the partials off . These substitutions form a sim-
plified set of equations.

N · gs = 0 (13)

N · gt = 0 (14)

(f − g) · fu = 0 (15)

(f − g) · fv = 0. (16)

The first two equations constrain the solution to collinear nor-
mals and the second two maintain collinearity of the closest points
with the surface normals. This set of equations is analogous to those

used in [Baraff, 1990] and [Snyder, 1995], however, we have ex-
pressed them in a form more suitable to the demands of haptic rate
computation.

This system of equations may be locally solved through incre-
mental updates ofu using multi-dimensional Newton’s method,

∆u = J−1(−F) (17)

whereF is the constraint violation defined by Eqs. 13-16, andJ is
the Jacobian ofF.

This formulation may result in extraneous zeros, since there may
be multiple locations where the surfaces’ tangent planes are parallel
and are at a local distance extrema. However, these undesired roots
are typically at polar opposites of the model and are less common
than for the minimum distance formulation.

3.6 Velocity Extremal Distance Formulation

A different approach in the penetrating case is to take surface
velocity into account. The relation of parametric contact dif-
ferentials with the relative linear and angular velocity between
the two surfaces can be used to provide incremental tracing up-
dates. In the Appendix, the authors have extended the results of
[Cremer, 1996, Montana, 1986] to arbitrary surface parameteriza-
tions, i.e. the contact velocity relations have been extended to sur-
faces whose partials are not everywhere perpendicular, making the
relations useful for common models. The parametric contact coor-
dinatesu may be integrated through time using the following rela-
tion, derived in the Appendix,

u̇ = A

[
vx,y

ωx,y

]
(18)

where[vT , ωT ]T are the relative linear and angular velocity be-
tween the surfaces relative to the framexg = gu/||gu||, zg =
gu × gv/||gu × gv||, andyg = zg × xg located at the contact
pointg(u) (Fig.6), and

A =

[
Rθ(E

f − βFf
−y,x) −Eg

−(RθF
f ) −Fg

]−1

(19)

Ef =
[[

xf yf

]T
fu

]
(20)

Ff =

[
xf

T zu

yf
T zu

]
(21)

Rθ =

[
cosθ −sinθ
−sinθ −cosθ

]
(22)

whereθ represents the angle between parametric axesgs andfu,
β is the distance between contacts,xf = fu/||fu||, zf = fu ×
fv/||fu × fv||, andyf = zf × xf . Eg ,Fg are defined in a similar
manner.

The authors have also developed the relation in terms of world
frame quaternion velocity body coordinates in the Appendix, which
may be more convenient for use in haptics.

3.7 Comparing the Methods

The advantage to using Newton’s iterative method is that it con-
verges to a solution given a close initial guess. We are required to
use the Newton method during the non-penetrating case so that we
obtain an exact starting point for the velocity method.

The advantage to the velocity space method is that it is an ex-
act relation at that instant in time; it is not an iterative numerical
method. The integration oḟu provides a highly accurate, strictly



continuous tracing update. It is very well conditioned and does not
suffer from the optimization problems of Newton’s method. How-
ever, it does not converge to the true minimal distance given only
an approximate starting point. It is a good algorithm for generating
virtual proxy information because it is a strictly local distance up-
date; the curvesγ(t) andζ(t) are continuous, where they may be
discontinuous in small intervals with the Newton method.

The authors have found that haptics surface tracing should be as
minimally confusing as possible. When given a choice of switch-
ing to a non-local point, which would cause discontinuous force
feedback, it has been our experience that the more local choice is
desirable. This choice is enforced by the continuous updates pro-
vided by the velocity method.

4 ALGORITHM & IMPLEMENTATION

In sum, we have the following algorithm for the non-penetrating
and penetrating case:

• Far : Global distance refinement, obtain approximateu

• Near : Newton iteration, obtain exactu

• Very Near and Penetrating : Velocity formulation, using exact
u

During tracking (the outside, non-penetration case), we use a
global “monitoring” mechanism. Newton iteration and the velocity
method are run concurrently during this case. kilohertz rate updates
are not critical since the haptics control is returning no force during
non-penetration.

Once the Newton or velocity methods detect a penetration, the
monitoring and Newton tracking are turned off. It is assumed that
non-local jumps are not possible because a haptics device can hold
a user to within .3 mm of the surface. Global jumps are also not
desirable because of the need for virtual proxies for the finger model
(see Fig.2).

Due to the use of extremal points in tracking and tracing para-
metric surfaces, the existing NURBS trimming implementation
[Thompson, 1999] may still be used. This model is an approxima-
tion for effects such as falling off or transitioning between edges,
because the “middle” of the finger is considered to be completely
off as soon as the extremal point is off. A full model for tracing
edges is considerably more costly in terms of computation and is a
subject of future work. However, the important perception of falling
off edges that is remarkably well rendered with haptic devices is not
significantly diminished with this approximate model.

5 RESULTS

Our approach is efficient because two surface evaluations for for
the contact points and surface partial derivatives at the points are
required for the velocity and Newton formulations. Timing results
[Johnson, 1998b] have shown that the point and partial evaluations
are only slightly slower than evaluating only the point. Running
times on an SGI R10000 Onyx 2 for two surface evaluations in-
side Alpha1 are about .07 milliseconds. Other operations includ-
ing the inverse of the4 × 4 matrix and other restacking required
in the velocity and Newton formulation are not insignificant, but
run in .01 milliseconds (that is, the cost of the methods excluding
the surface evaluations). Thus, a single processor system can eas-
ily perform control and surface-surface analysis at several kilohertz
update rates.

Figure 4 shows the concurrent global monitoring and local New-
ton and velocity parametric tracing to enable surface-surface con-
tact analysis at kilohertz rates for haptics control.

Figure 4: Combined global monitoring and local parametric tracing
enable surface-surface contact analysis at kilohertz rates for haptics
control.

We have avoided the introduction of unstable artifacts from a
purely iterative numerical method at the time of impact that would
be felt by the user. The generally accepted noticeable level of vi-
bration are on the order of less than a micron at various frequencies
from 1 Hz to 1kHz [NRC, 1995]. The artifacts caused by the nu-
merical methods may be many orders of magnitude greater than the
just noticeable error that a user may perceive.

Numerical integration of the results from the velocity formula-
tion may be done with the simple Euler’s method for short intervals
of time in a haptics environment due to the very small step sizes
between servo loop cycles. For other applications that use larger
timesteps, as occurs in our simulation debugging code, we have
used standard fourth order numerical integration techniques. A very
long tracing sequence, on the order of108 seconds for typical user
motions, can be performed in practice with this integration tech-
nique without accumulating noticeable errors. Periodic “restarts”
due to user transition to the non-penetrating condition and subse-
quent tracking by Newton’s method occur quite often. Even higher
order integration methods can be employed if some unusual cir-
cumstance or application requires it without excessive cost due to
the efficiency of our tracking techniques.

The reliability of these distance methods depends partially on
the underlying stability of the numerical methods. Singular re-
gions in the case of point-to-surface computations were derived
in [Johnson, 1998b]; we expect similar conditions for the surface-
to-surface extremal distance computations. During nearly singular
concave cases, as in Fig.5, the condition numbers during the first
iteration of Newton’s method is roughly 3 or 4, where it has usu-
ally been between 1 and 2 in other configurations. The velocity
method maintains a condition number of roughly 1 or 1.2 for the



Figure 5: The reformulated Newton local distance method (top)
may have problems with concave cases that the velocity (bottom)
does not have.

cases tried so far, for nearly singular and other cases. Because con-
dition numbers less than 100 are considered to be small, the loss
of precision upon matrix inverse operations is shown to be small
with both methods. Upon absolute singular configurations, both
methods have singular matrices. However, Newton’s method has
additional convergence requirements [McCalla, 1967] that can pro-
duce additional instability in concave regions, even when the con-
dition number is very small. The velocity method does not exhibit
these instabilities. We are investigating more sophisticated numer-
ical methods to improve the reliability of the Newton method ap-
proach.

6 CONCLUSION

The tracing update formulations presented here provide improved
surface tracing interactions. A fast, compact method for surface-
surface updates for the nearly penetrating and penetrating case have
been developed and analyzed. The velocity formulation has been
introduced for use in haptics penetration.
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7 APPENDIX: Surface Contact Velocity
Formulation

A number of different derivations of the kinematics of contact
have been developed in the last 15 years. These formulations re-
late the rate of change of the parametric contact coordinates to
the Cartesian velocity and angular velocity of the bodies in con-
tact. Previous works have been limited to surfaces parameterized
have orthogonal surface partial derivatives. Some are also limited
the in-contact case[Montana, 1986, Montana, 1988, Murray, 1990,
Cai, 1987]. While any surface may be reparameterized to be or-
thogonal, it may be expensive and impractical to find such a pa-
rameterization. The finger may bend in our interacitve application.
Finding the reparameterization with full numerical precision is also
a problem[Maekawa, 1996]. We develop a new derivation for the
not-in-contact, non-orthogonal surface parameterizations.

When both surfaces have partials that are everywhere orthogo-
nal, i.e.fu·fv = 0 andgs·gt = 0, ∀u in the parameteric domain, an
original result from [Montana, 1986], extended by [Cremer, 1996]
for the not in contact case, derives the surface kinematics as

u̇f = If
−1

Rθ(IIg + ĨIf + βIIg ĨIf )
−1

(

[ −wy

wx

]
+ IIg

[
vx

vy

]
)

u̇g = Ig
−1(IIg + ĨIf + βĨIf IIg)−1((1 + βĨIf )

[ −wy

wx

]
− ĨIf

[
vx

vy

]
)

whereβ is the (signed) distance between contacts,1 is the2 ×
2 identity matrix, the relative linear and angular surface velocities
of surfaceg relative to surfacef be denoted byv, ω, the surface
contact velocities bevf , ωf andvg, ωg, I is the first fundamental
form andII is the surface curvature or second fundamental form,
with subscripts for surfacesf andg. θ represents the angle between

parametric axesgs andfu, let Rθ =

[
cosθ −sinθ

−sinθ −cosθ

]
and ĨI =

RθIIRθ. The relation may be written in the following matrix form,

u̇ = A

[
vx,y

ωx,y

]
. (23)

7.1 Non-Orthogonal Parameterizations

We provide a new derivation forA for regular parametric surfaces
whose partials are not orthogonal so the result in Eqn. 23 can be
used for typical models constructed by CAD systems.

The parametric contact frames in Fig. 6 for the extremal dis-
tance context are defined with an orthonormal set of vectors.Rf =
[xf yf zf ] is the rotation matrix from the local contact frame to
the world frame, wherexf = fu/||fu||, zf = fu × fv/||fu × fv||,
yf = zf ×xf . Rg is similarly defined.zf andzg are parallel free
vectors (Fig. 6).

Comparison of the relative surface velocities1 can be used to re-
1A subscript with x or y such asax will denote the first component of

the vector. Several subscripts, such asa−x,y will represent a two-vector
containing the negative of the first component and the second component
of a. A superscriptT as inaT will denote a vector or matrix transpose.
Partitions of matrices may be selected with (row,column) indexing, with
“a:b” for a range or “:” for all rows or columns, as in theMatlabTM

notation. The operatorextract skew symmetric retrieves 3 independent
components from 9 elements of a skew symmetric matrix.
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Figure 6: Closest point surface contact frames. Velocity relations
allow the contact coordinate velocities to be found.

late the parametric contact coordinatesuf andug with the linear
and angular surface velocities. Let the surface velocitiesvf andvg

and relative surface velocityv be in the frame
[

xg yg zg

]
.

In the extremal distance context (see Fig. 6), we have

vg
x,y + vx,y = Rθv

f
x,y + βRθωf

y,−x, (24)

ωg
y,−x + ωy,−x = −Rθω

f
y,−x. (25)

The termsvf andvg will contain u̇f and u̇g in the following
equations through due to the chain rule of differentiation. We derive
matricesEf

x,y andFf
x,y for surfacef (and analogously for surface

g) from the relations of linear and angular velocity to separateu̇f

andu̇g from other terms,

vf
x,y = RT

fx,y
ḟx,y =

[[
xf yf

]T
fu

]
2×2

u̇f = Ef
x,yu̇f ,

(26)

ωf
y,−x = extract skew symmetric(Rf

T Ṙf )y,−x

=

[
xf

T zu

yf
T zu

]
2×2

u̇f = Ff
y,−xu̇f . (27)

Using Eqns. 24,25,26,27, the general non-orthogonal case is re-
duced to the4 × 4 system,

[
Rθ(E

f
x,y − βFf

−y,x) −Eg
x,y

(−RθF
f
y,−x)x,y −Fg

x,y

] [
u̇f

u̇g

]
=

[
vx,y

ωx,y

]
.

(28)
This system can be solved quickly foru̇ using the following

pseudocode fragment for arbitrary surface parameterizations. We
rewrite the inverse of the4 × 4 coefficient matrix in Eq. 28,

A =

[
Rθ(E

f
x,y − βFf

−y,x) −Eg
x,y

−(RθF
f
y,−x)x,y −Fg

x,y

]−1

(29)

to be solved even more efficiently as a series of2 × 2 matrix
inverses and multiplications,

iEg_xy=inv(Eg_xy);
RphiFf_xy=Rphi*Ff_xy;
dRphiFf_xy=d*RphiFf_xy;
Fg_xyiEg_xy=Fg_xy*iEg_xy;
RphiEf_xy=Rphi*Ef_xy;

H=Fg_xyiEg_xy*(RphiEf_xy+dRphiFf_xy)-
RphiFf_xy;
iH=inv(H);
J=iH*[Fg_xyiEg_xy -eye(2)];

A=[J; iEg_xy*(RphiEf_xy*J+
dRphiFf_xy*J-[eye(2) zeros(2)])];

Proof: From Eqs.24,26, we may write

u̇g = Eg
x,y
−1[RθE

f
x,yu̇f + βFf

−y,xu̇f − v]. (30)

Substituting into Eq.25, we have

FgEg
x,y
−1[RθE

f
x,yu̇f +βFf

−y,xu̇f−v]+ω = −RθF
f u̇f . (31)

Gatheringu̇f ,

FgEg
x,y
−1[RθE

f
x,y + βFf

−y,x + RθF
f ]u̇f = FgEg

x,y
−1v − ω.

(32)
Expressing this equation as a linear system, we have

Hu̇f = FgEg
x,y
−1v − ω, (33)

for which we can solve for the contact coordinates for surfacef ,

u̇f = H−1[FgEg
x,y
−1 − 12x2]

[
v
ω

]
, (34)

For convenience, let us represent
J2x4 = H−1

[
FgEg

x,y
−1 − 12x2

]
so that

u̇f = J

[
v
ω

]
, (35)

Now substituting this solution back into Eq.30,

u̇g = Eg
x,y
−1[RθE

f
x,yJ

[
v
ω

]
+ βFf

−y,xJ

[
v
ω

]
− v]. (36)

= Eg
x,y
−1[RθE

f
x,yJ + βFf

−y,xJ− [12x2 02x2]]

[
v
ω

]
(37)

Finally, letting
Jb = Eg

x,y
−1[RθE

f
x,yJ+βFf

−y,xJ− [12x2 02x2]], we may write

u̇ =

[
J
Jb

][
v
ω

]
. (38)

The matrixA from Eq.29 is

[
J
Jb

]
, completing the proof. The

solution is roughly as efficient as previous methods since the in-
verse of two2 × 2 matrices and nine matrix multiplications, rather
than four2 × 2 matrix inversions and six matrix multiplications, is
required (see pseudocode fragment). The optimized matrix inverse
and multiplication implementation is a constant cost and is a small
fraction of the cost associated with a surface evaluation.



7.2 Cartesian and Quaternion Generalized Veloci-
ties

Now we express the relative surface velocities in terms of world
frame body coordinate velocities so that integration of orientation
is possible (integration of angular velocity is meaningless). Define
the local contact frame through the rotation matrix

Rloc =
[

xg yg zg

]T
. (39)

Let Gf = G(qf,rot), Gg = G(qg,rot), whereG(qrot) is the
matrix operator mapping quaternion velocities to angular velocities
[Haug, 1992, Shabana, 1998], given by

G(qrot) = 2

[ −qrot2 qrot1 qrot4 −qrot3−qrot3 −qrot4 qrot1 qrot2−qrot4 qrot3 −qrot2 qrot1

]
. (40)

The velocity[vT ωT ]T is the motion of surfaceg relative to sur-
facef . We write our world space velocities in terms of the local
frame. We relate relative angular velocity and world frame quater-
nion velocity by

ω = Rloc

[ −TfGf TgGg

] [
q̇f,rot

q̇g,rot

]
, (41)

and relative linear velocity to Cartesian velocity through

v = Rloc(q̇g,tr − q̇f,tr + (ωgl
g − ωgl

f )× (g(u)− qg,tr)). (42)

× denotes the vector cross product.Tf and Tg are rota-
tions from the local frame to the world frame defined by quater-
nionsqf,rot andqg,rot. We write the relative surface velocities
[vT , ωT ]T as[

v
ω

]
=

[
Rloc −Rloc(g(u) − qg,tr)×
0 Rloc

]
∗

[
−I3x3 03x4 I3x3 03x4

03x3 −2TfGf 03x3 2TgGg

] [
q̇f

q̇g

]
(43)

where× in Eq. 43 denotes the3x3 skew symmetric matrix that
performs the operation of a cross product (obtained from the three

components of a vector, i.e.a× =
[

0 −az ay
az 0 −ax
−ay ax 0

]
). From

Eq. 38, the truncated part[vT
x,y, ωT

x,y]T is all that is required. Let
B contain the first two rows and rows four and five of Eq. 43. Sub-
stituting[vT

x,y, ωT
x,y]T into Eq. 38, yields

u̇ = AB

[
q̇f

q̇g

]
. (44)

7.3 Non-Orthogonal Surface-Curve Velocity For-
mulation

Similarly, it may be shown that the surface-curve extremal distance
equations may be extended to for arbitrary surface parameteriza-
tions.

The time derivative of the parametric contact coordinates for sur-
facef and curveg may be written as a function of linear and angular
velocity multiplying a matrix operator,

u̇3x1 =

[
Rθ(E

f
u + dFf

x,y) −gux,y

−RθF
f
x,y −kgsin(φ)gux,y

]−1

3x3

[
vx,y

ωy

]
3x1

,

(45)

where

kg =
||gu × guu||

||gu||3 (46)

andφ is the angle between the curve normal (which is−zf for
the extremal distance case) and the curve binormalb, about the
curve x axisgu. The binormal is

b =
gu × guu

||gu × guu|| . (47)

Eq. 43 is again used to establish this relation in terms of quater-
nion and Cartesian velocities, using rows 1,2, and 5.
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