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Moreover, if d > 1
�(t)

then the tangent vector T̂ ips direction as can be shown by its

dot product with T̂ . Rewriting equation 13 as

T̂ (t) = (x0(t); y0(t)) +
(�y00(t); x00(t))d

kT̂k +
(y0(t);�x0(t))kT̂k0d

kT̂k2

and substituting it into

T̂ (t) � T̂ (t) =
"
(x0(t); y0(t)) +

(�y00(t); x00(t))d

kT̂k +
(y0(t);�x0(t))kT̂k0d

kT̂k2
#
� (x0(t); y0(t))

= (x0(t)2 + y0(t)2) +
(�y00(t)x0(t) + x00(t)y0(t))d

kT̂k = (x0(t)2 + y0(t)2)� 	d

kT̂k
since the last term of T̂ (t) is perpendicular to T̂ (t). Using equation 10:

T̂ (t) � T̂ (t) = (x0(t)2 + y0(t)2)� 	d

kT̂k

=

8><
>:

(x0(t)2 + y0(t)2)� �(t)(x0(t)2+y0(t)2)
3

2 dp
x0(t)2+y0(t)2

= (x0(t)2 + y0(t)2)(1� �(t)d); 	 > 0

(x0(t)2 + y0(t)2) + �(t)(x0(t)2+y0(t)2)
3

2 dp
x0(t)2+y0(t)2

= (x0(t)2 + y0(t)2)(1 + �(t)d); 	 < 0:

Since C(t) is a regular curve, T (t) is never zero and so is (x0(t)2+y0(t)2) which is positive
everywhere. Therefore for cases were the mathematical normal, N(t), coincides with the o�set
normal, No(t) or 	 > 0 we get

sign(T̂ (t) � T̂(t)) = sign((x0(t)2 + y0(t)2)(1� �(t)d)) = sign(1� �(t)d): (15)

Now for small �(t) or relatively straight curve (1��(t)d) is positive. When �(t) reaches
1
d
the expression becomes zero or T̂ (t) = 0 since T̂ (t) is never zero. if �(t) is bigger than 1

d
the

expression becomes negative or T̂ (t) ipped its direction.

If 	 < 0 the expression is never zero since both d and �(t) are positive scalar. This
is not surprising result since such o�set only increases the curve osculating circle radius and
hence can never make it vanish.
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=

 
(x0(t)kT̂k+ x(t)kT̂k0 � y00(t)d)kT̂k � (x(t)kT̂k � y0(t)d)kT̂k0

kT̂k2 ;

(y0(t)kT̂k+ y(t)kT̂k0 + x00(t)d)kT̂k � (y(t)kT̂k+ x0(t)d)kT̂k0
kT̂k2

!

=

 
x0(t)kT̂k2 � y00(t)kT̂kd+ y0(t)kT̂k0d; y0(t)kT̂k2 + x00(t)kT̂kd� x0(t)kT̂k0d

kT̂k2
!

(13)

We now ready to inspect the value of T̂ (t) in a case where d is equal to 1
�(t)

. Using
equation 10:

d =
1

�(t)
=
kT̂k3
j 	 j :

Substituting d in the x component of T̂ (t) we have:

T̂x(t) = x0(t)kT̂k2 � y00(t)kT̂kd+ y0(t)kT̂k0d
kT̂k2

= x0(t)� y00(t)kT̂k2
j 	 j +

y0(t)kT̂kkT̂k0
j 	 j

=
x0(t) j 	 j �y00(t)x0(t)2 � y00(t)y0(t)2 + y0(t)x0(t)x00(t) + y0(t)2y00(t)

j 	 j

=
x0(t) j x0(t)y00(t)� x00(t)y0(t) j �y00(t)x0(t)2 � y00(t)y0(t)2 + y0(t)x0(t)x00(t) + y0(t)2y00(t)

j x0(t)y00(t)� y0(t)x00(t) j

=

(
� 0; 	 > 0
= 2x0(t) 	 < 0

(14)

since

kT̂kkT̂k0 =
q
x0(t)2 + y0(t)2

1

2
p
x0(t)2 + y0(t)2

(2x0(t)x00(t) + 2y0(t)y00(t))

= x0(t)x00(t) + y0(t)y00(t)

and

kT̂k2 = x0(t)2 + x0(t)2:

d may be substituted into the y component of T̂ (t), T̂y(t), in a similar way for the same
result. Therefore T̂ (t) � 0 in this situation or C(t) has a cusp if 	 = x0(t)y00(t)� x00(t)y0(t) > 0
or the binormal B(t) is positive and coincides with Bo(t) de�nition and so are N(t) and No(t).
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Appendix

A Cusp existence proof

This appendix shows that a cusp is formed in the o�set curve Cd(t) any time the curve, C(t),
has curvature �(t) equal to 1

d
where d is the o�set distance and the mathematical curve normal

N(t), coincides with o�set normal No(t). Conditions for detecting curvature higher than 1
d
are

also derived.

Let C(t) be a regular planar parametric curve. C(t) is not necessarily arc length pa-
rameterized. Without lose of generality assume C(t) is in the x � y plane. Let Cd(t) be the
o�set curve of C(t) by amount d. Let T , N and T , N be their unit tangents and normals
respectively. A non unit length vector will be tagged with a hat. I.e T̂ .

The tangent T of the planar curve C is equal to

T (t) =
T̂ (t)

kT̂ (t)k =
(x0(t); y0(t))p
x0(t)2 + y0(t)2

: (9)

From di�erential geometry theory [13, 20]

�(t)B(t) =
C0(t)� C 00(t)

kC0(t)k3 =
(x0(t); y0(t); 0)� (x00(t); y00(t); 0)p

x0(t)2 + y0(t)2
3 =

(0; 0; x0(t)y00(t)� y0(t)x00(t))

kT̂k3

=
(0; 0;	)

kT̂k3 : (10)

Since Bo(t) as been selected to be in +z direction (see equations 1 and 2), No(t) is equal
to

No(t) = Bo(t)� T (t) =
(�y0(t); x0(t))p
x0(t)2 + y0(t)2

=
(�y0(t); x0(t))

kT̂k : (11)

The o�set curve Cd(t) of the planar curve C(t) by amount d is de�ned as (equation 2)

Cd(t) = C(t) +No(t)d = (x(t); y(t)) +
(�y0(t); x0(t))

kT̂k d

=
(x(t)kT̂k � y0(t)d; y(t)kT̂k+ x0(t)d)

kT̂k : (12)

The �rst derivative T̂ (t) of the o�set curve Cd(t) is:

T̂ (t) = C0
d(t)
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Figure 8: Global loop classi�cation is based on Ni(t
1
i ) � Ti(t2i ) sign.

in such detection. Trimming surface loops is much more di�cult since they are, in general,
not isoparametric. Furthermore surface self-intersections may not be complete, that is the
intersection curve may not subdivide the surface parameter space into two separate regions.
These topics are current research areas. The approach taken [1] for the self-intersection curve
tracing using surface \walking" may be used.
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Figure 6: Product of a curve and its o�set tangents is used to identify local loops.

Figure 7: Global loop are being trimmed using numerical techniques.

the intersecting curve (with tangent T (t1i )) in Pi is closer locally (P4 in Fig. 8) to the original
curve than the o�set amount. Since curves are continuous, it implies the whole loop is closer
than the o�set amount and therefore should be removed (loop 4 in Fig. 8). Similarly, the dot
product is found to be positive in P5 (Fig. 8) so in the neighborhood of P5, loop 5 distance
to the o�set curve in the N5 direction is larger than the o�set amount and therefore loop 5
is locally (and globally) valid. The loops are tested while following the parameter values of
the curve beginning to its end. For each intersection of an untested loop i, the tangent Ti of
the current curve parameter is computed along with the o�set normal Ni for the other curve
parameter of the intersection point i. Using the example in Fig. 7, loop 1 is tested �rst. T1 �N1

is found negative and therefore loop 1 should be purged. Since T2 �N2 is positive loop 2 should
not be purged etc.. This approach has been used to trim out the global loops of Fig. 7.

The curve o�set local loop detection method may be extended to surfaces as well. If
the surface radius is smaller than the o�set distance, the normal of the o�set surface ips its
direction. Therefore the dot product of the original and o�set surface normals may be used
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Figure 4: Variable distance surface o�set (u direction linear, v constant).

Figure 5: O�set operation local loops are trimmed using a distinct characteristic.

back. See Figs. 5 and 7 for some examples.

Global loops have no such characteristic and are therefore more di�cult to isolate. It
is necessary to �nd all the self-intersections of a curve. However, a curve which is monotone
in one dimension can never intersect itself. Therefore, one way to approach this problem is to
split the curve into monotone subcurves, intersect all the subcurves against each other using
curve-curve intersection algorithms, and isolate all the self-intersection points if any. Loops
can now be formed by tracing the self-intersection points along the parameter space. Given
an intersection point Pi, when C(t1i ) = C(t2i ), the sign of the dot product T (t1i ) � No(t2i ) may
be used to determine if a loop is to be purged or not. Given Pi, the normal No(t

2
i ) de�nes

the relative position of the original and o�set curve. If the dot product is negative, it means
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Figure 3: Variable distance curve o�set (left) using a scalar distance function (right).

be grouped in pairs, which is not a natural process to this technique. We use a more robust
method to correctly detect all loops.

Luckily, local loops have a very distinct characteristic. If T (t) be the tangent vector to
Cd(t) and if �(t), the curvature of C(t), is equal to 1

d
at t = t0 then kT (t0)k = 0 or Cd(t) has a

cusp at t0 (see [5] and appendix A). So, if C(t) is curvature continuous, each time �(t) = 1
d

and N(t) = No(t), kT (t)k = 0. If �(t) > 1
d
and the normals coincide, T (t) ips its direction

180o. When �(t) continuously changes from < 1
d
to > 1

d
and then back to < 1

d
and the normals

coincide, two cusps will be formed in Cd(t) at the places where �(t) = 1
d
.

Using this characteristic, one can identify the cusp pairs by �nding the zero set of
�(t) = T (t) � T (t). The regions where �(t) is negative are the regions where T (t) ips its
direction (i.e. normals coincide and �(t) > 1

d
). Fig. 6 demonstrates this process. The tangent

curves T (t) ((a) in Fig. 6) and T (t) ((b) in Fig. 6) have been derived. Their dot product ((c) in
Fig. 6), �(t) = T (t) � T (t), is computed and used to identify the two local loops in the resulting
o�set approximation in its two negative regions. ((d) in Fig. 6). Once the two loop have been
identi�ed, they can be trimmed away ((e) in Fig. 6).

The usage of �(t) to identify local loops make this process more robust, even if no cusps
are formed in the o�set approximation. The tangent vector, T (t), still ips its direction and
still makes �(t) negative (Fig. 6 (c)). Furthermore, by detecting the negative regions of �(t)
the cusps are virtually paired since each cusp pair is the negative �(t) region boundary.

Once a local loop has been identi�ed using �(t), the curve should be split into three
parts, the region before the �rst cusp, the region after the second cusp, and the region between
the two cusps. The third part, between the cusps, must be deleted. The �rst two should then
be intersected against each other to �nd the self intersection point using standard curve-curve
intersection algorithms [4, 12, 19], trimmed properly to the intersection point, and then merged
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Figure 2: Error bounded o�set surface example, using simultaneous auto re�nement.

parameter value, t, one needs to specify the o�set distance required at that location. A scalar
explicit distance function d(t) (or d(u; v) for surfaces) having the same domain as C(t) (S(u; v))
can be used. The only change that must be made to the method developed in section 2 is that
Eq.6 should now read:

�(t) =  (t)� d2(t); (8)

where d, which used to be constant, is now a distance function. In Eq.7 it was shown that
the global error bound depends on d, so now the extrema of d(t) are used to bound the error.
Alg. 2.1 described in section 2 is identical to the one that should be used here. Figs. 3 and 4
show some simple examples of the operator's power, for both curves and surfaces.

4 Trimming Self Intersection Loops

Two types of loops are sometimes created in Ca
d (t) when C(t) is a C

1 continuous curve. If �(t),
the curvature of C(t), is bigger than 1

d
, where d is the o�set distance, a loop will be formed (see

Fig. 5). Since this loop is local to a region in which the curvature is too high, this type of loops
will be referred to as a local loop. However, not all loops resulting from o�set operations are of
this kind. Some of the loops formed, as can be seen in Fig. 7, are the result of two separate
regions in C(t) so close that the o�set curve in those regions intersects itself. This type of loop
is referred to as a global loop.

Detection of these loops is a di�cult. A search for cusps was suggested as a method
to detect local loops [8]. However, since Cad(t) is only an approximation, it is possible that no
cusps will be formed (see �rst (top) stage of Fig. 1). Moreover the cusps, when detected, must
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Max. Err. = 0.017198

Max. Err. = 0.004370

Max. Err. = 0.000344

Max. Err. = 0.000095

Num. Pts. = 17

Num. Pts. = 72

Num. Pts. = 253

Num. Pts. = 319

Figure 1: 4 stages in global error bounding �(t) and simultaneous auto re�nement.

the tolerance level. Also provided in Fig. 1 are the number of control points and the respective
error function �(t) for each iteration. The error is improved by almost an order of magnitude
on each iteration up to the required tolerance of 0.0001.

Finding approximations to o�sets of surfaces are usually more di�cult, but the above
method can be applied to �nding errors of o�set surfaces as well. �,  and � would be simply
explicit surfaces instead of explicit curves, i.e. �(u; v),  (u; v) and �(u; v). In Fig. 2, this error
bounding extension surface is used to automatically iterate, re�ne, and improve an o�set B-
spline surface to a speci�ed tolerance. It is interesting to compare the two o�set surfaces in
Fig. 2. They both have the same tolerance but the o�set distance is di�erent. The o�set error
increases as d becomes larger and therefore more re�nements are required to achieve the same
accuracy.

3 The O�set Operator as a Modeling Tool

The o�set operator can be used as a modeling tool. In fact, one can extend the global error
�nding method developed in section 2 and allow variable distance o�sets as well. Given a
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error is based on maximum error bounds over local regions. Hence, we need only re�ne over
intervals where the error is large, as determined by the extrema of �.

We derive an iterative algorithm in which each step uses the direct polygon transfor-
mation method [3] to compute o�set approximations. The criteria for proceeding to the next
step uses the magnitude of the extrema of �(t). Then, the locations of the extrema are used to
re�ne C(t) (going from Ci(t) to Ci+1(t) and to create a new approximation to the o�set. The
process terminates when the magnitudes of the extrema of � are within the tolerance.

Algorithm 2.1

Input:

Tolerance, required offset curve accuracy.

C(t), input curve.

d, offset distance.

Output:

Ca
d (t), offset curve approximation within Tolerance accuracy.

Algorithm:

C0(t) = C(t)
i = 0
Do

Compute offset approximation Ca
d(t) for Ci(t)

Compute offset error �(t) for Ci(t) and Ca
d(t) (Eqs. 5,6)

Ci+1(t) ( Ci(t) refined at �(t) highest error region(s).

i = i + 1

While (�(t) highest error > Tolerance).

Alg. 2.1 retains its curve re�nement history in the Ci(t) sequence. The last curve in
the sequence can be o�set to within a provided tolerance by an amount d. Since the algorithm
\knows" more about the curve, improvements can be applied in a more optimal way than
simply subdividing the curve at its midpoint as has been done in the past. Even for polynomial
representations such as Bezier curves, it is common to split the curve at the middle of the
parametric domain if the accuracy of the o�set is not good enough. Using the global error
measure, one can now split the curve near the parameter value with the highest error. This
will usually result in requiring fewer subdivisions to achieve a given tolerance.

One can compute and re�ne the curve at the maxima of �(t) only in each iteration.
However, simultaneous re�nement of all regions whose respective errors were bigger than al-
lowable was found to be much faster. The computation of �(t) is much demanding than single
knot insertion and by using simultaneous re�nement this computation is fully exploited.

Fig. 1 shows 4 stages of Alg. 2.1, using global re�nement, operating on a chess pawn
crosssection. Single knots have been inserted in all parametric regions whose error was above
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(T̂(t) � �(t))(T̂(t) � �(t))
kT̂ (t)k2k�(t)k2 : (4)

Although a representation for Eq.4 is computable as a piecewise rational, it is a complex
process.

Instead, a second test can be applied to determine the accuracy of Cad(t) by measuring
the magnitude of �(t). Computationally it is much more attractive. Current o�set techniques
usually evaluate this test on a set of sampled points. Direct representation of k�(t)k still requires
the representation of a square root, so  (t) = k�(t)k2 is used instead and compared with d2.

 (t) = k�(t)k2 = �x(t)
2 + �y(t)

2 + �z(t)
2 (5)

where �x(t), �y(t) and �z(t) are the components of �(t).

Eq.5 can be directly represented using multiplication and addition which are computable
for rationals and piecewise rationals. Hereafter, assume  (t) can be computed and represented
as a scalar NURB curve. For exact o�sets,  is a constant curve equal to d2 and by subtracting
d2 from  one can �nd the di�erence curve for a particular approximation:

�(t) =  (t)� d2: (6)

The extremal values of the coe�cients of � provide a global error measure. It is important
to examine the consequences for computing �(t) instead of "(t) = k�(t)k � d, the real error
between the exact o�set curve and its approximation:

�(t) =  (t)� d2 = k�(t)k2 � d2 = ("(t) + d)2 � d2 = "(t)2 + 2d"(t) � 2d"(t) (7)

In other words, by computing the di�erences of the squared magnitude, the resulting
error bound is scaled by the magnitude of twice the o�set distance, 2d, which is a constant and
therefore easy to control. "(t)2 has been ignored since it is much smaller than 2d"(t).

The problem of �nding the global o�set error has been reduced to a problem of �nding
the extrema of a freeform explicit curve. Since the values of a scalar B-spline curve over an
interval lie between the maximum and minimum values of the coe�cients of the non-zero B-
spline functions, a simple and computationally e�cient way of locally bounding the curve is
immediately available.

The error between a C2 continuous function and its Schoenberg variation diminishing
spline approximation over a knot vector ftig is O(jftigj2), where jftigj = maxifti+1 � tig. By
using a sequence of Schoenberg variation diminishing spline approximations to No(t), each one
based on a knot vector that is a re�nement of the previous one, and a sequence, fCi(t)g, of
re�ned representations to C, based on the same sequence of knot vectors, we form a convergent
sequence of approximations to Cd. If the approximation is close over one interval, it is unnec-
essary to re�ne over that interval just to make the mesh norm smaller, since the approximation
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detect and trim loops formed by self-intersections of the o�set. The Alpha 1 solid modeler,
using NURBs as its only representation, has been used to create all the examples in this paper.

2 Global Bound for the o�set operator

Let C(t) be a regular planar parametrized curve. Without loss of generality, assume C(t) is in
the x� y plane. An o�set curve for C(t) by an amount d is de�ned mathematically as

Ĉd(t) = C(t) +N(t)d (1)

where N(t) is the unit normal to the curve at t. Since N(t) ips its direction by 180o at
inection points, a di�erent de�nition for N(t) should be used to de�ne a manufacturing or
design o�set. De�ne the o�set binormal, Bo(t), to always point in +z direction, and then de�ne
the o�set normal, No(t) as No(t) = Bo(t)� T (t), where T (t) is the unit tangent to the curve.
Throughout this paper, and unless otherwise speci�ed, only the o�set normal, No(t), will be
used:

Cd(t) = C(t) +No(t)d (2)

Similarly for surfaces, an o�set surface for surface S(u; v) by an amount d is mathemat-
ically de�nes as

Sd(u; v) = S(u; v) + n(u; v)d (3)

where n(u; v) is the surface unit normal to the surface at parameter values (u; v).

Given two freeform NURB curves C1(t) and C2(t), one can compute and represent as
B-spline curve their sum, di�erence and product [14, 6]. Derivatives of NURB curves are also
representable as NURB curves, as are constant functions (i.e. d in Eqs. 2,3).

Therefore, if No(t) (n(u; v)) could be computed and represented as a NURB, so could
Cd(t) (Sd(u; v)). Unfortunately, however, the representational form of a normal involves a
square root which is usually not representable in either P (polynomials) or in PP (piecewise
polynomials). Thus, o�sets of freeform surfaces will, in general, be approximations.

Let Cad (t) be an approximation to the o�set curve of C(t) by an amount d (Eq. 2), and
let �(t) = Cad (t)� C(t) be the di�erence curve. Ideally, if Cad(t) � Cd(t), �(t) = dNo(t).

Two tests can be applied to �(t) to determine the accuracy of the o�set approximation.
First, the deviation of �(t) from the direction of No(t) can be measured. If T̂ (t) = C0(t), the

T (t) = T̂ (t)

kT̂ (t)k
is the unit tangent of C(t). The deviation from the o�set normal direction can be

tested by �nding the deviation of the magnitude of T̂ (t)

kT̂ (t)k
� �(t)

k�(t)k
, which is equal to the cosine

of the angle between the two vectors, and for the exact o�set curve is equal to 0. However
�nding T (t) and k�(t)k require representing square roots, and hence are quite impractical using
a piecewise rational representation. However one can represent the square of this inner product:
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Two methods for �nding approximations to o�sets are commonly used for freeform
curves. The �rst approximates the curve using piecewise lines and arcs and then �nds the exact
o�set to the approximation. Such a technique was introduced [15] and has been used success-
fully [11]. The second method attempts to approximate the o�set by directly transforming the
control polygon [16, 3, 17, 9, 10, 5]. To improve the accuracy of the approximated o�set in
the second method, the original curve is usually subdivided or re�ned when the error is above,
prespeci�ed tolerance level and the same technique is applied to each of the subdivided pieces.
The original curves are usually subdivided in the middle of their parametric domain [16, 9, 10],
although that is not the optimal location, in general. Curve inection points have also been
considered as splitting points for o�sets [10].

Both method are unable to bound the o�set error globally. In order to bound the error
introduced by the piecewise arcs and lines approximation, a curve-line and a curve-arc maximum
global distance computation is required, which is traditionally performed using a �nite set of
samples. A bound on the maximum error over the entire curve region can not be guaranteed
using such a technique. In the second method, a �nite number of samples are examined to
estimate the error for the entire curve region (typically one, in the middle of the parametric
domain), which again can not insure global error bound. Both methods usually result in a
piecewise representation of the approximation to the o�set, a more di�cult representation to
use in further applications if the o�set is to be used as a modeling tool. Only the use of B-
spline re�nement [3], results in a single curve. Approximations to o�sets of freeform surfaces
are more di�cult to determine because the subdivided components are subsurfaces. Bicubic
patches have been used to approximate the o�set surface of a given surface [7]. This method
loses continuity across patches, unlike the re�nement technique [3], which can be adapted for
surfaces and which maintains the original continuity.

Because of the advantages of the curve/surface B-spline re�nement technique, we have
used this method as the basis of this implementation for bounding the global error. However,
the presented method for bounding error is not limited to this type of representation.

Trimming the loops formed by the self-intersection curves of the o�set is considered a
di�cult problem [11]. An attempt has been made to attack this problem using numerical tech-
niques by using a direct search for cusps to detect and identify self-intersections [8]. However,
an approximation to the o�set may have no cusps simply because it is exactly that, an approxi-
mation. Unidimensional successive searches have been used to isolate self-intersection points by
minimizing the ratio of the Euclidean space distance (which goes to zero at a self-intersection
point) over the parametric space distance (which should be nonzero at such point) [1]. Since
this method converges to a local minimum, the initial guess location is crucial and is picked
at random. Thus robustness is not guaranteed. The curve of self intersection has been traced
using surface \walking" technique [1] and that method can be combined with the detection
methods developed here.

Section 2 develops the error bounding method and then shows how to use the informa-
tion extracted from the curve in that method to isolate the maximum error regions, so local
improvement steps may be applied iteratively and in more a optimal way than using current
methods. Section 3 extends this method to support a variable o�set operator that can be used
as a modeling tool. Section 4 shows how to use the tools developed in section 2 to robustly
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Abstract

Most o�set approximation algorithms for freeform curves and surfaces may be classi�ed
into two main groups. The �rst approximates the curve using simple primitives such as
piecewise arcs and lines and then calculates the (exact) o�set operator to this approximation.
The second o�sets the control polygon/mesh and then attempts to estimate the error of the
approximated o�set over a region. Most of the current o�set algorithms estimate the error
using a �nite set of samples taken from the region and therefore can not guarantee the o�set
approximation is within a given tolerance over the whole curve or surface.

This paper presents new methods to globally bound the error of the approximated o�set
of freeform curves and surfaces and then automatically derive new approximations with
improved accuracy. These tools can also be used to develop a global error bound for a
variable distance o�set operation and to detect and trim out loops in the o�set.

1 Introduction

O�set surfaces are very important in manufacturing, and their computation and approximation
have undergone extensive research. The curve o�set is an intuitive operation and has been
mathematically known for more than a hundred years [2, 18, 21]. The o�set operator is closed
for arcs and lines, i.e. the o�sets of an arc and a line are an arc and a line, respectively. This
is not so, in general, for Bezier and NURB curves, so approximations are usually derived.
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