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Figure 4: The error function does not convergence to zero, for general curves.

Step Error Comments
1 2.574
2 1.43
3 0.964
4 0.804
5 0.733
6 0.691
...

...
20 0.616 No improvement - re�nement stage
21 0.296
22 0.238
23 0.186
24 0.146
25 0.115
26 < 0.01 Tolerance is met.

Table 3: Errors in convergence of sphere o�set using control points perturbation.
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Figure 3: Error function convergence to zero, for three 120 degrees arcs in the curve

Step Error Comments
1 0.22
2 0.197
3 0.187
4 0.182
5 0.179
...

...
16 0.178 No improvement - re�nement stage
21 0.083
22 0.040
23 < 0.04 Tolerance is met.

Table 2: Errors in convergence of sphere o�set using control points perturbation.

after perturbing it. Table 3 provides the convergence steps for this case, up to the
prespeci�ed tolerance of 0.01.

5 Conclusions
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Figure 1: Control points perturbation converges to exact o�set circle.

Figure 2: The error function convergence to zero, of the circle in �gure 1.

Step Error Comments
1 0.49
2 0.387
3 0.291
4 0.211
5 0.149
6 0.104
7 0.071
8 0.048
9 0.033
10 0.022
11 0.015
12 < 0.01 Tolerance is met.

Table 1: Errors in convergence of the sphere o�set sequence using control points
perturbation.
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MaxErr(min(LastMaxErr; �(t) highest error)
i( i+ 1

While (MaxErr > � and MaxErr < LastMaxErr)

The error function is computed in each iteration and each control point is moved in
the normal direction by the o�set error amount at the node parameter value associated
with this control point. This process repeats itself until no improvement is gained in
the maximum error (i.e. no convergence) or the required tolerance is achieved. This
iterative algorithm is interleaved with re�nement to guarantee convergence [7]. In
each step algorithm 1 is invoked. If it improves the approximation to the required
tolerance the whole process stops. Otherwise re�nement takes place in the regions
with high o�set error and algorithm 1 is invoked again. Algorithm 1 directly extends
to surfaces. The process is exactly the same for surfaces where � is a scalar surface,
i.e. �(u; v), and the control mesh is pertubed in the direction of the surface normal.

In section 4 several examples on the a�ect of perturbing control points are being
provided.

4 Examples

Figure 1 shows a unit circle composed of four 90 degree quadratic arcs. The �rst
o�set is obviously underestimated, but it converges quite quickly to the exact o�set
by moving only the corner points. These points have non zero error, as can be seen
from �gure 2 which also shows the respective error function as the process converges.
The points in the error function in �gure 2 in which the error is always zero correspond
to the points the circular curve interpolate the control points (the end points of the
quadratic B�ezier segments). Since the normals for the corner control point node
values are in the direction (vectors (�a;�a)) pointing to the corner control points of
a larger similarly represented circle, this process converges to an exact o�set circle,
with no re�nement.

In Figure 3 the quadratic curve consists of three arcs of 120 degrees and three
lines. The o�set error along the line is zero and no improvment is applied there.
The arcs can be improved to the exact representation. The required tolerance of 0.01
terminated this process at that accuracy as can be seen in table 1.

Figure 4 is a case in which exact representation of the o�set in the NURBs does
not exist. Control points perturbation can only improve the result, but re�nement is
still necessary to meet the required tolerance of 0.04 as can be seen from table 2.

Figure 5 shows the same process applied to a unit sphere. This time the process
does not converge to the exact representation since the normals at the node values
of the corner points are not in the exact direction (vectors (�a;�a;�a)). Even so
the improvement gained is quite signi�cant. The right side of �gure 5 is the regular
o�set while the left side shows the same surface (and same number of control points)
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The above method can be applied equally well to �nding errors of o�set surfaces.
�(t),  (t) and �(t) would be simply explicit surfaces, �(u; v),  (u; v) and �(u; v),
instead of explicit curves.

3 Getting A Better Approximation of O�sets

In [7] a technique was developed to provide a global bound using a global error
function and used with re�nement to reduce maximum error. Here we show how to
reduce the error by using this bound and perturbing control points. For each control
point, one could compute the gradient direction that maximize the local change in
the error function and move the control point in that direction. However, such a
computation would be extremely expensive and slow. By re�ning and o�setting in
the normal direction, it is known that the sequence of approximations to the o�set
converges to the exact o�set [7]. A simple candidate for a preferred direction in
which to o�set is the normal direction. We also show that perturbing in the normal
direction results in an exact representation of o�set of circular curves in a rational
quadratic representation with no re�nement at all. Therefore, the curve or surface
normal direction at the node value associated with the respective control point is used
as a �rst order approximation for the gradient to minimize the o�set approximation
error. The amount that the control point is moved is determined from the amount
of error in the o�set approximation, as is evaluated from � at that location. The
iterative algorithmic process for curves follows:

Algorithm 1

Input:

�, required offset curve tolerance.

C(t), input curve.

Ca
d (t), offset approximation to input curve.

d, offset distance.

Output:

Ĉa
d (t), improved curve approximation.

Algorithm:

Ca
0 (t)( Ca

d (t)
i( 0
MaxErr ( Infinity

Do

Compute offset error �(t) for C(t), Ca
i (t) (equations 3,4)

Ci+1(t) ( Ci(t) perturbed according to �(t) at node values.

LastMaxErr(MaxErr
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either a polynomial or a piecewise polynomial. Thus, o�sets of freeform curves and
surfaces used in computation will, in general, be approximations.

Let Cad (t) be an approximation to the o�set curve of C(t) by an amount d (equa-
tion 1), and let �(t) = Cad (t)� C(t) be the di�erence curve. Ideally, if Cad (t) � Cd(t),
then �(t) � dN(t).

As shown in [7] the magnitude of �(t) can be e�ciently computed to determine the
accuracy of Cad (t). Current o�set techniques usually test this accuracy by evaluating
this magnitude on a presepci�ed collection of sampled points. Direct representation
of k�(t)k would require the representation of a square root, so instead [7] uses  (t) =
k�(t)k2 and compares to d2.

 (t) = k�(t)k2 = �x(t)
2 + �y(t)

2 + �z(t)
2; (3)

where �x(t), �y(t) and �z(t) are the components of �(t).
Equation 3 can be represented in closed form using multiplication and addition

which are computable for rationals and piecewise rationals. Hereafter, assume that
the coe�cients of  (t) can be computed and  (t) can be represented as a scalar
NURBs curve. If Cad (t) were exact ,  would be a constant curve equal to d2, so
by subtracting d2 from  one could �nd the error di�erence curve for a particular
approximation:

�(t) =  (t)� d2: (4)

The extremal values of the coe�cients of � provide a global error measure. It is
important to examine the consequences for computing �(t) instead of "(t) = k�(t)k�d,
the real error between the exact o�set curve and its approximation:

�(t) =  (t)� d2 = k�(t)k2� d2 = ("(t) + d)2 � d2 = "(t)2 + 2d"(t) � 2d"(t) (5)

In other words, by computing the di�erences of the squared magnitude, the re-
sulting error bound is scaled by the magnitude of twice the o�set distance, 2d, which
is a constant and therefore easy to control. "(t)2 has been ignored since it is much
smaller than 2d"(t), as the error converges to zero.

The problem of �nding the global o�set error has been reduced to a problem
of �nding the extrema of a freeform explicit curve. Since the values of a scalar B-
spline curve over an interval lie between the maximum and minimum values of the
coe�cients of the non-zero B-spline functions, a simple and computationally e�cient
way of locally bounding the curve is immediately available.

An iterative process in which each step uses the direct polygon transformation
method [3] to compute o�set approximations is used and the error function, �(t) is
computed for it. the curves (or surface) is then re�ned at the regions with error larger
than can be tolerated and the process repeats itself. The process terminates when
the magnitudes of the extrema of �(t) are within the tolerance.
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in [12] and used successfully in [10]. The second method attempts to approximate
the o�set by directly transforming the curve representation, in particular the control
points [13, 3, 14, 8, 9, 5]. To improve the accuracy of the approximation in the second
method, the original curve is subdivided [13, 8, 9] or manually re�ned [3] when the
error is above prespeci�ed tolerance level and the same technique is applied to each
of the subdivided pieces. The original curve is usually subdivided in the middle of its
parametric domain [13, 8, 9], although that is usually not the optimal location. Curve
in
ection points have also been considered as splitting points for planar o�sets [9].

Both approaches do not bound the o�set error globally. In [7] the error of the
approximation to the o�set is computed as a function, and analyzed to provide a
global tolerance bound. Furthermore this error function is also used to automatically
identify the regions with larger error. An automatic iterative process is used to re�ne
these regions so that an approximated o�set representation is generated whose global
error is to within a prespec�ed tolerance.

Section 2 develops the necessary background for this paper. In section 3 we show
how perturbing control points by analyzing the error function results in better o�set
approximation. Section 4 provides several results for curves and surfaces. Section 5
concludes.

2 Background

Let C(t) be a planar regular parameterized curve, which without loss of generality, is
assumed to be in the x� y plane. An o�set curve for C(t) by an amount d is de�ned
mathematically as

Ĉd(t) = C(t) +N(t)d (1)

where N(t) is the unit normal to the curve at t.
Similarly for surfaces, an o�set surface for surface S(u; v) by an amount d is

mathematically de�nes as

Sd(u; v) = S(u; v) + n(u; v)d (2)

where n(u; v) is the surface unit normal to the surface at parameter values (u; v).
In the paper we will concentrate on characterizing methods for the NURBs repre-

sentation since the B�ezier representation is a subset of it. Given two freeform NURBs
curves C1(t) and C2(t) (surfaces S1(u; v) and S2(u; v)), their sum, di�erence and
product is also a NURBs curve (surface) [6, 4, 11, 7]. Derivatives of NURBs curves
(surfaces) are also NURB curves (surfaces) [4].

Therefore, if N(t) (n(u; v)) could be computed and represented as a NURBs, so
could Cd(t) (Sd(u; v)), respectively. Unfortunately, however, the general form of a unil
normal requires the square root of a function which is usually not representable as
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Abstract

There does not usually exist a closed general NURBs representation of the
o�set curve (or surface) to a NURBs curve (surface). In a related paper [7]
a method was developed to determine a sequence of approximations to the
o�set curve (surface) of a given curve (surface) with the properties that the
global error of each approximation from the true o�set can be bounded and the
sequence converges to the true o�set. In this paper we take the next step and
develop a method using the analysis of the o�set error function that perturbs
the curve or surface control points of a speci�ed NURBs approximation to an
o�set of a NURBs curve (surface) so a better approximation to the o�set results.

1 Introduction

O�set surfaces are very important in manufacturing, and computation so �nding
approximations of o�set curves and surfaces have undergone extensive research. Cre-
ating an o�set to a curve is an intuitive operation and has been mathematically known
for more than a hundred years [2, 15, 16]. The o�set operator is closed for arcs and
lines, i.e. an o�set of an arc and a line are an arc and a line, respectively. This is not
so for B�ezier and NURB curves, in general, so approximations are usually derived.

Two methods for �nding approximations to o�set curves are commonly used. The
�rst approximates the curve using piecewise lines and arcs and then �nds the rep-
resentation of the exact o�set to the approximation. That approach was introduced
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