
(top). The surface second funda-
mental form property surface and its
zero set (bottom). This surface is the
same as in plate 2.

Plate 11

Teapot trichotomy is degenerated
into a ditochomy - no concave re-
gions exist.

Plate 12

Two developable surfaces, the top is
ruled along isoparametric direction
and the bottom is not.

Plate 13

Teapot curvature estimation using
curvature property surface computa-
tion.

Plate 14

The surface is subdivided
into regions with di�erent curvature
bounds.



Parametrization speed estimate for a
surface (same surface as in plate 2).

Plate 5

Parametrization speed estimate for
the teapot model.

Plate 6

Twist component of a surface (same
surfce as in plate 2).

Plate 7

Twist component of a at surface.

Plate 8

Twist component of the teapot model.

Plate 9

Twist component of a nonplanar
twisted surface.

Plate 10

Bicubic surface with convex and con-
cave regions meet at a single point



Plate 1

Surface curvature bounds computed
at a prede�ned grid (See also
plate 13).

Plate 2

Di�erent Slope or Steepness regions
of the surface

Plate 3

Continuous steepness of the surface
in plate 2

Plate 4



Figure 3: Curvature surface bound, �, of the surface in plate 14.

[Farin86] G. Farin. Curves and Surfaces for
Computer Aided Geometric Design. Aca-
demic Press, Inc. Second Edition 1990.

[Farou88] R. T. Farouki and V. T. Rajan.
Algorithms For Polynomials In Bernstein
Form. Computer Aided Geometric Design
5, pp 1-26, 1988.

[Faux79] I. D. Faux and M. J. Pratt. Com-
putational Geometry for Design and Man-
ufacturing. John Wiley & Sons, 1979.

[Forr79] A. R. Forrest. On the Rendering of
Surfaces. Siggraph 1979, pp 253-259.

[Elber90] G. Elber and E. Cohen. Hidden
Curve Removal for Free Form Surfaces. Sig-
graph 90, pp 95-104.

[Elber92] G. Elber. Free Form Surface Analy-
sis using a Hybrid of Symbolic and Numeric
Computation. Ph.D. thesis, University of
Utah, Computer Science Department, 1992.

[Elber] G. Elber and E. Cohen. Second Or-
der Surface Analysis Using Hybrid Sym-
bolic and Numeric Operators. To appear
in Transaction on Graphics.

[McCol88] T. McCollough. Support for
Trimmed Surfaces. M.S. thesis, University
of Utah, Computer Science Department,
1988.

[Mill77] Millman and Parker. Elements of
Di�erential Geometry. Prentice Hill Inc.,
1977.

[Morken] K. Morken. Some Identities for
Products and Degree Raising of Splines. To
appear in the journal of Constructive Ap-
proximation.

[Kaji82] J. T. Kajiya. Ray Tracing Paramet-
ric Patches. Siggraph 1982, pp 245-256.

[Stok69] J. J. Stoker. Di�erential Geometry.
Wiley-Interscience 1969.

[Schw83] D. L. Schwitzer. Interactive Sur-
face Visualization Using Raster Graphics.
Ph.D. dissertation, University of Utah, Au-
gust 1983.



3.5 Bounding the Curvature

In [Elber] it is suggested that the sum of the
squares of the principal curvatures may be a
relevant measure of shape and can be repre-
sented as

�

= (�1n)
2
+ (�2n)

2

=
(g11l̂22 + l̂11g22 � 2g12l̂12)

2 � 2kGkkL̂k
kGk2kn̂k2 :

(15)

� is bounded to be at most
p
2 larger than

the larger absolute value of the two princi-
pal curvatures. Furthermore, � can be repre-
sented using the tools described in section 2.
In plates 12 and 13, the � property has been
computed for the two developable surfaces
and for the Utah teapot model respectively
and used as a texture mapped through a color
map table.

Plate 14 shows a surface subdivided into
regions based on �. The property surface
�(u; v) of the surface in plate 14 is contoured
in �gure 3 and regions with di�erent curvature
bounds are formed.

4 Conclusions

Surfaces derived from both �rst and second
order analysis of sculptured surfaces are rep-
resented as NURBs surfaces using a small set
of operators. We show that a combination of
symbolic and numeric operators can be used
to globally represent, approximate, or analyze
these property surfaces. Other properties that
cannot be represented as piecewise rationals
have approximations that bound these prop-
erties and are representable. Further, we in-
troduce two new derived surfaces to help vi-
sualizing and understanding surface shapes -
speed and slope.

The full power of the NURBs representation
can be used to analyze and to globally deter-
mine characteristics of these derived surfaces,
which can then be used to visualize results or
for feedback into design. For the �rst time the

designer can guarantee that the steepness of
the whole surface will be less than a speci�ed
slope or that a whole surface will have speed
bound smaller than a speci�ed value.

We show that symbolic computation sup-
ports robust computation and simpli�es vi-
sualization of surface properties. Its useful-
ness is demonstrated in [Elber92] for applica-
tions from error bound for o�set approxima-
tion to adaptive and almost optimal toolpaths
for machining purposes, as well as the surface
analysis discussed in this paper.
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Figure 2: Degenerated boundary provides the two extremes on speed bound.

where l12, and = l21 are two of the compo-
nents of second fundamental matrix form, L
(see [Carmo76, Mill77, Stok69]).

Obviously, this time the l12 component in
the at surface in plate 7 is zero showing
no twist in the normal direction. Further-
more, the use of this property showed that the
teapot has virtually no twist in the normal di-
rection as well. All the twist in plate 8 was a
result of the nonisometric mapping. Plate 9
shows a nonplanar surface, similar to the one
in plate 7 using l12 as property surface map-
ping colors onto the surface, as texture.

Since now one can compute both the to-
tal twist (equation 12), and the twist in the
normal direction (equation 13), one can con-
sider computing the twist in the tangent plane
to the surface as the di�erence of the two
quantities. This di�erence would provide an-
other measure as to the quality of the surface
parametrization.

3.4 Surface Trichotomy

It is frequently desired to provide a bound on
the angularity of a surface. It is also desired
in some cases to detect and isolate concave or
convex regions. In 5-axis NC milling, a at
end cutter is usable only for the convex part
of the surface.

In [Carmo76, Elber] it is shown that one of
the principal curvatures must be zero along
the boundaries of convex, concave, or saddle-
like regions and that this immediately necessi-
tates that kLk = 0 where kLk is the determi-
nant of the second fundamental matrix form.

It is also shown in [Elber] that the zero set of
kL̂k can be used instead where

L̂ = (lij) =

2
664
�
n̂; @

2S

@u2

� �
n̂; @2S

@u@v

�
�
n̂; @2S

@u@v

� �
n̂; @

2S

@v2

�
3
775 ; (14)

and n̂ is the unnormalized normal n̂(u; v) =
@S

@u
� @S

@v
to the surface.

Each element of L̂ is representable as a
NURBs, using the tools developed in sec-
tion 2. The bottom of plate 10 shows the
scalar surface kL̂k with the zero plane and
their intersection. The top of plate 10 uses
these intersection curves to form the surface
trichotomy into convex (red), concave (green),
and saddle (yellow) trimmed regions. Plate 11
demonstrates this method on a more realis-
tic object. The teapot trichotomy degenerates
into a dichotomy since no concave regions ex-
ist in the teapot model.

Finally, it is interesting to note that a suf-
�cient condition for a surface to be devel-
opable [Faux79] is that its Gaussian curvature
is zero everywhere, i.e. K(u; v) � 0. Since
K(u; v) = kLk

kGk
, where G is the �rst funda-

mental form [Carmo76, Mill77, Stok69], this
condition is equivalent to the condition that
kLk � 0, for regular surfaces when kGk 6=
0. A simple practical test that can answer
whether a surface is developable or not is to
symbolically compute and compare each of
kLk coe�cients to zero. Plate 12 shows two
developable NURBs surfaces, one ruled along
an isoparametric direction while the other is
not.



with
q�

du

dt

�2
+
�
dv

dt

�2
= 1, for all t. Then

����
����dS(u(t); v(t))dt

����
����
2

=

����
����@S@u dudt + @S

@v

dv

dt

����
����
2

=

�
@x

@u

du

dt
+
@x

@v

dv

dt

�2

+

�
@y

@u

du

dt
+
@y

@v

dv

dt

�2

+

�
@z

@u

du

dt
+
@z

@v

dv

dt

�2

�
�
@x

@u

�2
+

�
@x

@v

�2

+

�
@y

@u

�2

+

�
@y

@v

�2

+

�
@z

@u

�2

+

�
@z

@v

�2
;(8)

since

�
@x

@u

du

dt
+
@x

@v

dv

dt

�2

=

��
@x

@u
;

@x

@v

�
�
�
du

dt
;

dv

dt

��2

=

����
����
�
@x

@u
;

@x

@v

�
�
�
du

dt
;

dv

dt

�����
����
2

�
����
����
�
@x

@u
;

@x

@v

�����
����
2 ����
����
�
du

dt
;

dv

dt

�����
����
2

=

����
����
�
@x

@u
;

@x

@v

�����
����
2

=

�
@x

@u

�2
+

�
@x

@v

�2
: (9)

If �@S

@u
= @S

@v
(see �gure 2 with collinear

partials along the surface boundary, which
implies the surface is not regular there) and
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dt
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and the upper bound established in equation 8
is reached. Therefore, this bound is minimal.

Since it is not possible to represent the
square root of equation 8 as a (piecewise) ra-
tional surface, in general, we compute instead

Ŝ(u; v)

=

 �
@x

@u

�2

+

�
@y

@u

�2

+

�
@z

@u

�2

+

�
@x

@v

�2

+

�
@y

@v

�2
+

�
@z

@v

�2!
:(11)

Plates 4 and 5 are two examples of using
Ŝ(u; v) to compute a speed bound on the sur-
face.

The speed surface can be used to provide
a measure on the quality of the parametriza-
tion. This can becomes especially important
if the surface is to be evaluated (for any pur-
pose, including rendering) at a prede�ned set
of parameter values.

3.3 Variations on Surface Twist

Also interesting is the ability to visualize sur-
face twist. Basically, the twist is de�ned as
the cross derivative component:

T (u; v) = @2S(u; v)

@u@v
: (12)

This equation is representable and can al-
ways be computed symbolically for (piece-
wise) rationals. Plates 6, 7 and 8 shows this
property as a texture mapped on the surfaces.

Using equation 12 as a twist measure has
a major drawback as can be seen in plate 7.
Even though the surface is at, the twist
component is not zero since the speed of
the parametrization is changing. In other
words, the mapping from the parametric space
to the Euclidean space is not isometric. It
would be more helpful to use the twist com-
ponent in only the surface normal direction
(see [Barn88]) to eliminate the twist as a re-
sult of a non isometric mapping.

l12 = l21 =

�
n;
@2S(u; v)

@u@v

�
(13)



compute surface slope, one need only compute
the angle between the surface normal and the
z axis. Let n be the surface unit normal and
let nz be its z component. Then, the tangent
of the slope angle P is equal to:

tan(P) =
p
1� n2z
nz

: (5)

When nz = +1 the surface orientation is
horizontal. If nz = 0 the surface is vertical,
and �nally if nz = �1 that surface is horizon-
tal again, but this time facing down.

Inspection of the surface unit normal equa-
tion shows that n(u; v) cannot be computed
directly using the symbolic tools of section 2.1
because of the need to determine the square
root. However, the z component of the unnor-
malized normal surface, n̂, is equal to:

n̂z(u; v) =

@x(u; v)

@u

@y(u; v)

@v
� @y(u; v)

@u

@x(u; v)

@v
;(6)

where x(u; v) and y(u; v) are the x and y com-
ponents of surface S(u; v).

Then, nz(u; v) = n̂z(u; v)=kn̂(u; v)k, where
kn̂(u; v)k is the magnitude of n̂(u; v)

Even though nz(u; v) contains a square root
factor, it is a scalar function, and can be
squared so that nz(u; v)

2 can be represented.

Given a slope P in degrees (or radians) the
conversion to the n2z(u; v) value required is
straightforward using equation 5. Therefore,
given a certain slope P , one can compute the
required nz and n2z using equation 5. Since
n2z is representable using (piecewise) rationals,
one can contour this surface at the required n2z
level. Plate 2 demonstrates this exact process
for several slope levels.

Alternatively, one can use the symbolically
computed property n2z(u; v) as a scalar map
designating the color of the surface at each
location, much like a texture map. Plate 3
is an example for this approach, for the same
surface as in plate 2.

The technique presented here has also been
used to compute silhouette curves of sur-
faces [Elber90], and is equivalent to the zero
set of equation 6. n̂z(u; v) is symbolically com-
puted and its intersection (contouring) with

Figure 1: Silhouettes are equivalent to the
zero set of equation 6 (rotated view).

the plane Z = 0 provides the required sil-
houette curves in parametric space. Figure 1
shows one such example.

Slope is not an intrinsic surface property.
In fact, since it is orientation dependent, it
provides the designer with a measure on the
planarity of the surface as well as on its ori-
entation.

3.2 Surface Speed

The speed of a curve is de�ned as the dis-
tance moved in Euclidean space per unit of
movement in parameter space. For a curve,

S(t) =

����
����dC(t)dt

����
����

=

s�
dx

dt

�2

+

�
dy

dt

�2

+

�
dz

dt

�2

:(7)

We de�ne the speed bound of surface S(u; v)
as the supremum of the speeds of all curves on
the unit circle of the tangent plane using the
�rst partials as a basis.

Let �(t) be a curve in the parametric do-
main of S(u; v), that is �(t) = (u(t); v(t)).
By providing this speed bound of the sur-
face parametrization, one can compute cer-
tain properties on �(t) and use the speed
bound to extrapolate and provide bounds on
the properties on the composed curve S �� =
S(u(t); v(t)).

Let (t) be an auxiliary arc length
parametrized curve with its image in the para-
metric space of S(u; v), i.e. (t) = (u(t); v(t)),
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This result can also be extended to tensor
product surfaces. It is also necessary to rep-
resent scalar products as part of representing
sums and di�erences of rational curves and
surfaces, as well as derivatives of rationals.

Finding a representation for the product
of NURBs is far more di�cult. A direct al-
gorithmic approach has recently been devel-
oped [Morken] which supports symbolic com-
putation of the coe�cients of the product
after �nding the knot vector of the prod-
uct curve. However, since it is computation-
ally expensive and complex to implement, one
might choose to exploit the B-spline represen-
tation uniqueness property and compute the
coe�cients of the product by solving an equiv-
alent interpolation problem [Elber92].

2.2 Contouring operator

It is frequently useful to know the zero set
of a property surface or to have all regions
in which the values of the property is larger
than some threshold, either for itself or to
use in further analysis. Contours in the pa-
rameter space of the property surface can be
used as trimming curves for the original sur-
face [McCol88], so the trimmed surface will
consist of all regions of the original surface
with property values larger (or smaller) than
the contouring level. The problem of comput-
ing the contours is closely related to �nding
surface-surface intersections and ray-surface
intersections [Kaji82], problems with inherent
numerical complexities and instabilities.

Let F (u; v) =
�
x(u;v)
w(u;v)

; y(u;v)
w(u;v)

; z(u;v)
w(u;v)

�
and

P = Ax + By + Cz + D = 0 be the prop-
erty surface and the contouring plane, respec-
tively. By substituting the components of
F (u; v) into P one can solve for all values of
u and v in the parametric domain for which
F (u; v) \ P 6= ;.

S(u; v)

= A
x(u; v)

w(u; v)
+B

y(u; v)

w(u; v)
+ C

z(u; v)

w(u; v)
+D

=
Ax(u; v) + By(u; v) + Cz(u; v)

w(u; v)

+
Dw(u; v)

w(u; v)
(4)

A single NURBs surface representation for
equation 4 can be found using the operations
de�ned in section 2.1, namely surface addi-
tion and surface multiplication. The zero set
of the surface S(u; v), in equation 4, is the set
of parametric values for the required intersec-
tion. Since both F (u; v) and S(u; v) share the
same parametric domain, mapping the para-
metric domain information back to F (u; v) is
trivial. S(u; v) is a scalar surface, which leads
to a simpler and faster computation. Assum-
ing w(u; v) 6= 0, the zero set of S(u; v) can be
computed using only the numerator of S(u; v).
Thus, even if F (u; v) is a rational surface,
contouring computations can be performed on
scalar polynomial surfaces.

In the following section, the tools de�ned
in this section will be used. The four basic
operations for surfaces: addition, subtraction,
multiplication, and division will be combined
with di�erentiation to de�ne or approximate
property surfaces, as necessary. Then the con-
touring algorithm will be used to analyze and
extract useful information from them.

3 Examples

3.1 Surface slopes

The slope of a planar curve at a given point is
equal to the angle between the tangent to the
curve and a reference line, usually the hori-
zontal axis. In an analogous way we de�ne the
surface slope at a given point, p, as the angle
between the plane tangent to the surface at p
and a reference plane. Without loss of gener-
ality, in the discussion below we assume that
the reference plane is the xy plane.

Since the angle between two planes, is equal
to the angle between their two normals, to



method to accurately subdivide S into convex,
concave, and saddle regions. Using symbolic
tools developed in section 2 this trichotomy
becomes feasible [Elber92], as is demonstrated
in section 3.

In section 2, we describe the required sym-
bolic computation tools so properties such as
Gaussian curvature, surface normal, surface
slope, surface twist, and surface speed bound
may be computed and represented as freeform
surfaces. We call such derived surfaces prop-
erty surfaces. We emphasize the NURBs and
B�ezier representations although other repre-
sentations could be used, including any (piece-
wise) polynomial or (piecewise) rational repre-
sentations. In section 3, we apply these tools
to some examples and demonstrate their e�ec-
tiveness. Visualization is used extensively in
the section to communicate the relationship
these properties have with the shape of the
surface.

2 Background

Surprisingly enough the set of symbolic tools
one needs for the analysis treated here is
small. One needs to have representations for
the derivative, sum, di�erence, and product
of scalar curves and surfaces. Any manipu-
lation of curves or surfaces using these tools
will result in a curve or a surface of the same
type. The resulting curve or surface is exact to
within the accuracy of the numerical compu-
tation, since these operation have closed forms
and are, in fact, symbol manipulators. There-
fore, we refer to the usage of these tools as
symbolic computation.

Contouring will also be used as a tool to ex-
tract information from the symbolically com-
puted property surfaces.

2.1 Symbolic Tools

Given a B�ezier or NURBs curve, the form of
the derivative as a curve in vector space is well
known [Farin86],

dC(t)

dt

=
d
P

i=0 PiB
k
i (t)

dt

= (k � 1)
m�2X
i=0

(Pi+1 � Pi)

ti+k � ti
Bk�1
i (t); (1)

and this result easily extends to tensor prod-
uct surfaces.

The symbolic computation of sum and/or
di�erence of two scalar B�ezier or NURBs
curves is achieved by computing the sum
and/or di�erence of their respective control
points [Elber92, Farin86, Farou88], once the
two curves are in the same space. This re-
quirement can be met by representing them
as curves with the same order (using degree
raising [Cohen86a, Cohen86b] on the lower or-
der one, if necessary) and the same continuity
(using re�nement [Cohen80] of knot vectors
for NURBs).
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k
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k
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This result easily extends to tensor product
surfaces as well.

Representation for product of scalar curves
is the last requirement. For B�ezier
curves [Farin86, Farou88],
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where
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Abstract

Freeform surfaces are commonly used in com-
puter aided geometric design, so accurate
analysis of surface properties is becoming in-
creasingly important. In this paper, we de-
�ne surface slope and surface speed, develop
visualization tools, and demonstrate that they
can be useful in the design process. Generally,
surface properties such as curvature and twist
are evaluated at a �nite set of predetermined
samples on the surface. This paper takes a dif-
ferent approach. A small set of tools is used
to symbolically compute surfaces representing
curvature, twist and other properties. These
surfaces are then analyzed using numeric tech-
niques.

The combination of symbolic computa-
tion to provide an exact property representa-
tion (up to machine accuracy) and numerical
methods to extract data is demonstrated to
be powerful and robust. This approach sup-
ports a uniform treatment once the surfaces
are computed and also provides global infor-
mation, so questions such as `is a surface de-
velopable?' or `what are the hyperbolic re-
gions of a surface?' can be answered robustly.
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1 Introduction

Sculptured surface representations are funda-
mental forms in computer graphics and in
computer aided geometric design. During dif-
ferent stages of modeling with sculptured sur-
faces, quite a few properties of the surfaces
may be of interest to the designer or required
for a proper design. The designer may need
to isolate regions with surface slopes, de�ned
in this paper, which are too high or too low,
to detect all regions with twists larger than
prespeci�ed values, to have a visual bound
on the distance traveled in the Euclidean do-
main while moving in the parametric domain
(which we refer to as speed bound), or even
to isolate all the hyperbolic (saddle) regions
in the model.

Previous work directed at computing �rst
and second order surface properties evaluated
them over a discrete grid. Normals were com-
puted and visualized by drawing them as ar-
rows, called \hedgehogs" [Schw83], over the
grid. There have been attempts [Barn88,
Beck86, Dill81, Forr79] to understand and
compute second order surface properties such
as mean and Gaussian curvatures, as well as
twist, by evaluating them over the prede�ned
grid (plate 1).

Given a surface S(u; v), there is no common
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