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Figure 14: Curvature surface bound, �, of the surface in �gure 13.

faster results. The error introduced by an o�set approximation to a curve or a surface
can be globally bounded and represented as an error curve or an error surface. Similarly
it has been used to reduced the error of a curve or a surface o�set approximation to a
required tolerance [10].

The work presented here makes it practical to use second order surface analysis as a
tool to support the development of robust, accurate, optimal algorithms for NC toolpath
generation and to support alternative criteria for surface subdivision based on the second
order properties of the shape. Consideration of Figures 3 and 5 shows another area of use.
Users of NURBs are frequently unaware of the implications on the shape of the surface
from using di�erent orders. Manipulating the same control mesh can give di�erent,
unexpected, shapes depending on the order. The ability to accurately visualize second
order properties in a reasonable time will enable better inspection and understanding
of the e�ect of order, and potentially knot vector, changes. Furthermore, while NC
veri�cations frequently simulate the tool path moving over the surface geometry, they do
not check that a tool path for a convex region is actually cutting a convex region. The
work presented here can be used in implementing that larger visual process validation.
The viewer can use the understanding gained from exhibiting second order properties to
take e�ective action.
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Figure 13: The surface is subdivided into regions with di�erent curvature bounds.

takes an order of magnitude longer than the creation of the scalar �elds. A scalar or
a vector �eld is substituted into (13), forming a new nonrational scalar �eld, which is
contoured using a subdivision based approach [11].

Since milling is several magnitudes slower than even the contouring process, and
since the same toolpath may be used thousands of times, time is not a major factor in
optimizing the milling process. The ability to isolate regions in a surface with speci�c
curvature bounds makes it possible to mill the surface more optimally by using the largest
possible tool for each region.

The orders of the resulting scalar and vector �elds are high. A second fundamental
form determinant scalar �eld for a bicubic B-spline surface has degree 14. The degree of
the scalar �elds  (u; v), �(u; v) and �(u; v) is even higher, degree 30. However, because
the evaluation of B�ezier and B-spline representations is robust, the high order does not
introduce any numerical problems [15]. However, the numeric contouring process becomes
more time consuming, since the complexity of a single subdivision operation grow at least
quadratically with the order of the bivariate scalar �eld.

The analysis demonstrated in this paper exercises a combination of a symbolic compu-
tation in which a derived scalar �eld is computed, and numerically analyzed by evaluation
or contouring. Computation of the scalar �elds is robust for B�ezier surfaces since closed
form formulations exist for all operators. The use of interpolation to compute products of
NURBs was found to be unstable for higher orders (> 10) and therefore surfaces in such
cases were split into B�ezier patches. Since contouring methods for freeform surfaces are
well known and are, in general, robust, the whole analysis was found to be very stable.

Derived vector �elds can be used for other applications, and other second order surface
properties can be similarly computed, such as geodesic, Gaussian, or mean curvatures.
Furthermore, this methodology has been successfully used to solve other problems as well.
The silhouette extraction algorithm presented in [9] has been enhanced to use the zero
set (contour) of the z component of the normal vector �eld, nz(u; v), with more reliable,
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Figure 12: Utah teapot curvature estimation.

=
(g11l̂22 + l̂11g22 � 2g12l̂12)2 � 2 jGj

���L̂���
jGj2 kn̂k2 : (18)

+
p
� is bounded to be at most

p
2 greater than the larger magnitude of the principal

curvatures. This worst case occurs when the two principal directions have the same
magnitudes. Furthermore, � can be represented using the tools described in Section 3.
Figure 12 demonstrates this approach applied to the Utah teapot model. The use of
� may help to isolate regions with low curvature, which can be milled using larger ball
end tools in a more optimal way. Figure 13 shows such a surface subdivided in such
regions. The curvature bound surface, �(u; v), (Figure 14) of the surface in Figure 13 is
being contoured and regions with di�erent curvature bounds are formed. It is clear from
Figure 13 that the blue regions can be milled using a very large ball end cutter, the green
regions with a medium size cutter and only the yellow and red regions, which are less
than 5% of the whole surface area, should be milled with a small size tool.

5 Conclusions

A method to partition a surface into three disjoint trimmed surfaces (convex, concave,
and saddle) and to determine global bounds on surface curvatures, has been presented
which combines symbolic and numeric methods. The hybrid method was found to be
robust and fast. The computation involved in the creation of a derived vector �eld, that
is exact to machine accuracy, usually takes less than a second for a B�ezier surface on an
SGI 240/GTX (25MHz R3000). This symbolic computation creates closed forms with
complexity directly bounded by the surface orders and continuity (knot vectors). Given
a surface to analyze, the evaluation of the derived scalar �elds (equations (14), (15), (16),
(18)) is performed using the symbolic operators de�ned in section 3. Contouring usually



Second Order Surface Analysis G. Elber and E. Cohen 15

Figure 10:  (u; v) (left), �(u; v) (right), for the surface in Figure 9.

Figure 11: Curvature estimate using surface dichotomy, for the surface in Figure 9.

= (�1n)
2 � 2�1n�

2
n + (�2n)

2
: (17)

Or

� = (�1n)
2 + (�2n)

2

= �+ 2�1n�
2
n

= �+ 2K

= �+ 2
jLj
jGj

=
(g11l̂22 + l̂11g22 � 2g12l̂12)2 � 4 jGj

���L̂���
jGj2 kn̂k2 + 2

jLj
jGj

=
(g11l̂22 + l̂11g22 � 2g12l̂12)2 � 4 jGj

���L̂���
jGj2 kn̂k2 + 2

���L̂���
jGj kn̂k2
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Figure 8: Teapot trichotomy is degenerated into a ditochomy - no concave regions exist.

Figure 9: Surface dichotomy - saddle and convex regions.

F (u; v) at the parameter value (u; v) depend on the value of the square root of  (u; v)
in convex and concave regions, and on the value of the square root of �(u; v) in saddle
regions. Using this technique, one can enhance the display of regions with high curvature,
low curvature, or within certain bands of curvatures. Figures 9 through 11 demonstrate
this. In Figure 9, the surface has been �rst subdivided into a saddle region (yellow) and
a convex region (red).  (u; v) has been used as the pseudo color in the convex region
of the surface while �(u; v) has been used for the same purpose in the saddle region, to
render the image in Figure 11. Figure 10 shows  (u; v) and �(u; v). Not surprisingly,
 (u; v) is wider in the highly curved convex region since the two principal curvatures
cancel each other in �(u; v).

A di�erent approach can be used to achieve a better bound. By expanding �,

� = (�1n � �2n)
2
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Figure 7: Bicubic surface with convex and concave regions meeting at a single point
(top), and the scalar �eld of its second fundamental form with its zero set (bottom).

Both (15) and (16) can be represented without square roots and are therefore repre-
sentable as NURBs using the model and tools de�ned in Section 3.

By characterizing the scalar �eld  (u; v) = (�1n(u; v)+�
2
n(u; v))

2, curvature estimates
for the convex and concave regions can be determined so the computed curvature will be
at most twice as large as the real normal curvature in the extreme case where both �1n(u; v)
and �2n(u; v) are equal. One can obtain similar bounds by using � = (�1n(u; v)��2n(u; v))2
as the curvature estimator for saddle regions.

 (u; v) and �(u; v) can be used as curvature estimates for the appropriate trimmed
regions and can be contoured to isolate regions with curvature larger than some allowable
threshold. Furthermore, one can use (the square root of)  (u; v) and �(u; v) as pseudo
color values to render the input surface F (u; v) according to its curvature and provide
visual feedback on which regions are highly curved. In other words, make the color of
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Figure 6: Bicubic with isolated convex and concave regions surrounded by saddle region.

� If the region has a saddle shape, then one of the principal curvatures, �1n, is positive
while the other, �2n, is negative.

� If the region is convex both principal curvatures are negative.

� If the region is concave both principal curvatures are positive.

Using quadratic equation properties from (7), it can easily be shown that:

 = (2H)2

=
�
�1n + �2n

�2

=

 
� b
a

!2

=

 
�g11l22 + l11g22 � 2g12l12

jGj

!2

=

�
g11l̂22 + l̂11g22 � 2g12l̂12

�2
jGj2 kn̂k2 (15)

and

� = (�1n � �2n)
2 =

b2 � 4ac

a2

=
(g11l22 + l11g22 � 2g12l12)2 � 4 jGj jLj

jGj2

=
(g11l̂22 + l̂11g22 � 2g12l̂12)2 � 4 jGj

���L̂���
jGj2 kn̂k2 : (16)
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Figure 4: Biquadratic polynomial trichotomy.

Figure 5: Bicubic surface trichotomy: same control mesh as Figure 3.

its zero set, as a function of u and v.
Finally, Figure 8 demonstrates this method on a more realistic object. The Utah

teapot trichotomy degenerated into a dichotomy since no concave regions exist in the
teapot model.

4.2 Bounding the Curvature

The extrema of the surface curvature are important for analyzing the curvature of a given
surface. Normal curvature extrema occur in the principal directions [16, 20, 24], but the
direct application of quadratic equation solution for (7) would require �nding a square
root. However, since the surface has been subdivided into convex, concave, and saddle
regions, each region carries the following property:
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Figure 3: Biquadratic surface tricho<tomy with 16 polynomial patches.

However, in general, this behavior should not be expected, or even anticipated, for
biquadratic surfaces, since even a single biquadratic patch may contain both convex and
saddle regions simultaneously as shown in Figure 4.

The surface in Figure 5 uses the same control mesh as the one in Figure 3 but is
bicubic. Both surfaces in Figure 3 and Figure 5 uses appropriate uniform open end
condition knot vectors. A comparison of these two Figures graphically demonstrates the
in
uence of the order of the tensor product spline surface on the shape, as shown by
comparing the shapes and locations of the convex and concave regions. This phenomena
is somewhat counterintuitive to the common belief that two NURBs surfaces with the
same mesh but di�erent order are very similar, except that the one with higher order is a
smoother version. The curvature characteristics have actually been changed. Figure 3 has
one concave region, one convex region and two 
at regions, all of which have isoparametric
boundaries. Figure 5, however, has only one concave region and one convex region. The
union of the two regions have a �gure eight boundary, where convex and concave change
at a single point. The curved boundaries of those regions are di�erent than the straight
line boundaries in Figure 3.

Figure 6 shows that the combination of symbolic computation (of jLj as a scalar �eld)
with numeric analysis (zero set contouring) can detect widely separated and isolated
regions. In addition, it demonstrates the robustness of this methodology by accurately
detecting two very shallow concave regions in the middle of the surface. In Figures 5
and 7, another ill conditioned case is shown in which several convex and concave regions
meet at a single point. Since trimmed surfaces are formed, it was necessary that the
boundaries be completely and correctly de�ned. The points where the three regions
meet are correctly detected and determined and the topology of the regions is correctly
maintained, which also demonstrates another type of robustness.

To provide a better sense of the process, the bottom of Figure 7 also shows the scalar
�eld surface representation for the determinant of the second fundamental form, jLj, with



Second Order Surface Analysis G. Elber and E. Cohen 9

and �ve axis milling. Flat end cutters, as oppose to ball end cutters, can mill faster and
remove more material per unit time. Furthermore, the surface �nish of 
at end cutters
is usually better. Using the trichotomy operator, convex regions within surfaces can be
detected and milled in more e�cient way and with a better �nish. The Utah teapot in
Figure 8 is mostly convex (red regions) and therefore this particular model may be milled
mostly using a 
at end cutter.

The determinant of L, jLj, in (7) is the key to this second order surface analysis. If
jLj = 0, one of the normal curvature extrema �in must be zero. Assuming the surface is
curvature continuous, adjacent regions for which �in has a di�erent sign must be separated
by a curve, Cs, for which jLj = 0, that is, one of the �in = 0. Furthermore, if jLj > 0
at some point p on the surface F , the surface is either convex or concave at p, while if
jLj < 0 the surface locally is a saddle. In order to compute a scalar �eld representing
jLj using (5), it is necessary to �nd a square root to compute n(u; v), which cannot be
represented, in general, as a polynomial or as a piecewise rational. However, by reordering
the operations to use the unnormalized surface normal n̂(u; v) and noting n(u; v) appears
twice as a factor in each term of jLj, jLj can be represented exactly as a rational function
and with no square roots,

jLj = l̂11l̂22 � l̂21l̂12

kn̂k2 : (14)

This equation is representable as a NURBs using only operations from Section 3. n̂ is
a cross product of two surface partials @F

@u
and @F

@v
. The components of L, l̂ij, are inner

products of n̂ with second order partials of F . Since only the zero set is of interest,
and F is assumed to be a regular surface, it is necessary to examine only the numerator
of (14). Once the zero set of jLj has been computed, trimmed surfaces are created, each
of which is completely convex, concave or saddle. The sign of jLj at a single point on
each trimmed surface is then used to classify the saddle regions while convex and concave
regions are distinguished from each other by simply evaluating the sign of l̂11, for example,
at that single point. While the saddle region is an intrinsic surface characteristic, the
convex/concave classi�cation is parameterization dependent. Flipping the u or v (but
not both) surface parameterization direction will 
ip the normal direction n(u; v) and
therefore the sign of l̂11.

Figures 3 through 7 show some examples. Figure 3 is a biquadratic B-spline surface
with three internal knots in each direction (patches of a B-spline surface are counted
as how many B�ezier patches would result from subdividing the NURBs surface at each
interior knot, so this surface yields 16 polynomial patches), while Figure 4 is a single
biquadratic patch. The bicubic surfaces in Figures 5 and 6 have two internal knots in
each direction, yielding 9 polynomial patches. Figure 7 top is a bicubic NURBs surface
with a single internal knot in each direction, yielding four B�ezier patches. All Figures
have been colored consistently, with yellow marking the saddle regions, red representing
a convex region and green representing a concave region.

The biquadratic surface of Figure 3 is not C2 along each internal knot, and the surface
trichotomy is isoparametric along the internal knots lines.
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scalar or vector �eld can be used as trimming curves for the original surface [19], so the
trimmed surface will hold all regions of the original surface with values larger (or smaller)
than the contouring level.

Computing the contours is closely related to computing surface-surface intersections
and ray-surface intersections, problems with inherent numerical complexities.

Let F (u; v) = ( x(u;v)
w(u;v)

;
y(u;v)
w(u;v)

;
z(u;v)
w(u;v)

) and P = Ax + By + Cz +D = 0 be a bivariate
vector �eld and a contouring plane, respectively. By substituting the components of
F (u; v) into P , one can solve for all values of u and v in the parametric domain for which
F (u; v)\ P is not empty.

S(u; v) = A
x(u; v)

w(u; v)
+B

y(u; v)

w(u; v)
+ C

z(u; v)

w(u; v)
+D

=
Ax(u; v) +By(u; v) + Cz(u; v) +Dw(u; v)

w(u; v)
: (13)

A single NURBs surface representation for (13) can be found using the operations
de�ned in section 3.1, namely surface addition and surface multiplication. The zero set
of the surface S(u; v), in (13), is the set of parametric values for the required intersection,
and can be found using a subdivision based approach [11]. Since both F (u; v) and S(u; v)
share the same parametric domain, mapping the parametric domain information back
to F (u; v) is trivial. S(u; v) is a scalar surface, which leads to a simpler and faster
computation. Assuming w(u; v) 6= 0, the zero set of S(u; v) can be computed using
only the numerator of S(u; v). Thus, even if F (u; v) is a rational surface, contouring
computations can be performed on scalar polynomial surfaces. If F (u; v) is a scalar

�eld, that is F (u; v) = ( z(u;v)
w(u;v)

), constant z contouring can be performed in a similar way,

but with S(u; v) = C
z(u;v)
w(u;v)

+ D = Cz(u;v)+Dw(u;v)
w(u;v)

. In the following section, the tools
discussed above are used. The basic operations for surfaces, addition, subtraction, and
multiplication are combined with di�erentiation to compute or approximate bivariate
scalar and vector �elds, as necessary. Then, the contouring algorithm will be used to
analyze and extract useful information from these surfaces.

4 The approach

The tools de�ned in Section 3 can now be used to symbolically compute the second order
properties discussed in Section 2 of a given surface. Bivariate vector �elds represented
as NURBs are derived whenever possible so that the method can take advantage of the
computational characteristics of NURBs.

4.1 Surface Trichotomy

Use of the curvature trichotomy of a surface can result in a more optimal freeform surface
milling process. Only convex regions (see Figure 1) are millable using 
at end cutters
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respective coe�cients [11, 12, 14], once the two curves are in the same space. This
requirement can be met by representing them as NURBs vector �elds with the same
order (using degree raising [5, 6] on the lower order one, if necessary) and the same
continuity (using re�nement [7] of knot vectors for NURBs).

C1(t)� C2(t) =
kX
i=0

piB
k
i;�(t)�

kX
i=0

qiB
k
i;� (t)

=
kX
i=0

(pi � qi)B
k
i;� (u); (11)

where pi and qi are vector coe�cients of the scalar blending functions. This result easily
extends to tensor product surfaces as well [11].

Representation of the product of two scalar �elds or one vector �elds and one scalar
�elds is the last symbolic tool required. For B�ezier curves [14, 12],

C1(t)C2(t) =
mX
i=0

piB
m
i (t)

nX
j=0

qjB
n
j (t)

=
m+nX
k=0

rkB
m+n
k (t); (12)

where

rk =
X
i; j

i+ j = k

piqj

�
m

i

��
n

j

�
�
m+n
k

� :

This result can also be extended to tensor product surfaces [11]. It is also necessary to
represent scalar products as part of representing sums and di�erences of rational curves
and surfaces, as well as for representing derivatives of rationals.

Finding a representation for the product of NURBs is far more di�cult. One might
consider subdividing the surfaces into B�ezier patches at all the interior knots, computing
the product, and merging the results back. However, the continuity information along
the interior knots is lost. The NURBs representation can be computed in two di�erent
ways. One recently developed method [21] supports symbolic computation of the coef-
�cients of the product after �nding the knot vector of the product curve. Since this is
computationally expensive and complex to implement, one might choose to exploit the
B-spline representation's uniqueness property and compute the coe�cients of the product
by solving an equivalent interpolation problem [11].

3.2 Contouring operator

We would be interested in �nding the zero set of a bivariate scalar or vector �eld or the
constant set of it. These sets, referred to as contours, in the parameter space of the
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∆

n

Figure 2: Normal curvature �n (circle) of F (u; v) at (u; v) in direction �.

3 Tools and Operators

In order to symbolically represent curvature properties as bivariate B�ezier or NURBs
vector �elds, one must be able to represent a surface which is the symbolic sum, di�erence,
and product of surfaces, or the derivative of a surface, as a single B�ezier or NURBs
surface. Methods to represent, as a single B�ezier or NURBs surface, the results of the
above operators on B�ezier or NURBs surfaces, are presented below.

3.1 Symbolic computation

Given a B�ezier or NURBs curve, the NURBS representation of the derivative is well
known [12] to be,

dC(t)

dt
=
d
Pm�1

i=0 PiB
k
i;� (t)

dt
= (k � 1)

m�2X
i=0

Pi+1 � Pi

ti+k � ti
Bk�1
i;� (t); (10)

where Pi are points of the control polygons of C(t). This result easily extends to tensor
product surfaces.

The symbolic computation of sum and/or di�erence of vector �eld represented as
B�ezier or NURBs curves is achieved by computing the sum and/or di�erence of their
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=

*
n(u; v);

@2F

@u2

+ 
du

dt

!2
+ 2

*
n(u; v);

@2F

@u@v

+
du

dt

dv

dt
+

*
n(u; v);

@2F

@v2

+ 
dv

dt

!2

=

"
du

dt

dv

dt

#
L

"
du

dt

dv

dt

#T

= II

 
du

dt
;
dv

dt

!
: (4)

II is known as the second fundamental form, with matrix L equal to:

L = (lij) =

2
6664
D
n; @

2F

@u2

E D
n; @2F

@u@v

E
D
n; @2F

@u@v

E D
n; @

2F

@v2

E
3
7775 : (5)

Let l̂ij denote the inner product with the unnormalized normal n̂(u; v). For example,

l̂11 =
D
n̂; @

2F
@u2

E
.

The normal curvature on the surface F (u; v) in some tangent direction �, where

� =
D
�;
�
dF

du
; dF

dv

�E
, and � =

�
du

dt
; dv

dt

�
, is de�ned [3, 16, 20, 24] as:

�n =
II(du

dt
; dv
dt
)

I(du
dt
; dv
dt
)
=
�L�T

�G�T
: (6)

The normal curvature depends on the surface tangent direction �, and is equal to the
curvature of the osculating circle to the intersection curve between F (u; v) and the plane
through n(u; v) and � at (u; v) (Figure 2). The extremal values of the normal curvature
serve as bounds on the components of curvature not contained in the tangent plane.

The normal curvature is an intrinsic property [20, 24] of the surface, that is, not
dependent on parametrization. By di�erentiating (6) with respect to �, the problem of
�nding extrema of �n is transformed [3, 16, 20, 24] into the problem of solving for the
roots of

jGj�2n + (g11l22 + l11g22 � 2g12l12)�n + jLj = a�2n + b�n + c = 0; (7)

where jGj and jLj denotes the determinants of G and L, respectively.
The Gaussian curvature is a scalar value and is de�ned as the product of the two

roots of (7), �1n and �2n,

K = �1n�
2
n =

jLj
jGj : (8)

The mean curvature is de�ne as their arithmetic average,

H =
�1n + �2n

2
= �(g11l22 + l11g22 � 2g12l12)

2 jGj : (9)
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2 Di�erential Geometry

Surface curvature is well understood mathematically and the theory behind it is developed
in most introductory di�erential geometry books [3, 20, 24]. The set of analysis equations
that are based on the second fundamental form are used extensively in locally evaluating
surface curvature. Because these equations are crucial to our discussion, they are brie
y
stated here.

Let F (u; v) be a C(2) regular parametric surface. Let the unnormalized normal to a
surface F (u; v), n̂(u; v), be de�ned as

n̂(u; v) =
@F

@u
� @F

@v
; (1)

and de�ne the unit normal, n(u; v), to be

n(u; v) =
@F

@u
� @F

@v

k@F
@u

� @F

@v
k : (2)

Since F (u; v) is regular, kn̂(u; v)k 6= 0 and n(u; v) is well de�ned.

Let C(t) = F (u(t); v(t)) be a regular curve on F , that is



dC(t)

dt




 6= 0. The rate of

change of the arc length of C with respect to its parameter, t, is ds

dt
=



dC(t)

dt




 where s is
arc length. Since dC(t)

dt
=
�
@F

@u

du

dt
+ @F

@v

dv

dt

�
, one can show [16, 20, 24] that

 
ds

dt

!2

=

"
du

dt

dv

dt

#
G

"
du

dt

dv

dt

#T
= I

 
du

dt
;
dv

dt

!
:

I is known as the �rst fundamental form, with matrix G equal to:

G = (gij) =

2
6664
D
@F

@u
; @F
@u

E D
@F

@u
; @F
@v

E
D
@F

@v
; @F
@u

E D
@F

@v
; @F
@v

E
3
7775 ; (3)

where h�; �i denotes an inner product.
By considering all such curves, C(t), through a point (u; v) and di�erentiating twice,

one can extract second order properties of the surface F at (u; v). The second order
derivatives of C(t) contain terms with @F

@u
and @F

@v
as factors. However, the inner prod-

uct of these terms with n is always zero since the partials are in the tangent plane of

F (u; v). Therefore,
D
n(u; v); d

2C(t)
dt2

E
, the component of d2C(t)

dt2
pointing in the direction

perpendicular to the surface is composed of second order derivatives only.

*
n(u; v);

d2C(t)

dt2

+
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In this paper a hybrid approach using both symbolic and numeric operations for
computing curvature properties is developed. We use scalar and vector �elds whose def-
initions are derived from di�erent attributes of the original surface, as auxiliary scalar
and vector �elds to help analyze the original surface. The zero set of the second funda-
mental form computed symbolically as a scalar �eld is used to robustly and completely
trichotomize the surface into saddle, convex and concave regions. Bounds on the curva-
ture of the surface are also computed from scalar �elds and are analyzed. For example,
@F

@u
(u; v) is a vector �elds from F , and so is n(u; v), the vector �eld of unit normals. The

two surfaces of principal curvatures, �1n(u; v) and �
2
n(u; v) are scalar �elds.

Some surfaces have the same domain as the original surface while others do not. If F
is a tensor product NURBs surface, then @F

@u
(u; v) is a vector �eld which is also a tensor

product NURBs surface with the same knot vectors, but with lower order and continuity
properties. @F

@u
(u; v) � @F

@v
(u; v) is also a vector �eld that is a tensor product NURBs

surface, but with di�erent knot vectors and order, and lower continuity. However, n(u; v),
�1n(u; v), and �

2
n(u; v) cannot be represented as piecewise rational parametric functions,

as we shall later see, and hence, cannot be represented, in general, as NURBs surfaces.
Contouring techniques [2, 18, 22] developed for freeform surfaces can be applied im-

mediately to bivariate scalar and vector �elds once they are represented as NURBs. Since
both the original surface and the derived scalar and vector �elds share the same para-
metric domain, one can easily trim the regions in the original surface having certain
values. In other cases, the zero sets of the scalar and vector �elds might be required. For
example, let n̂z(u; v) be the z component of n̂(u; v), where n̂(u; v) = @F (u;v)

@u
� @F (u;v)

@v
is an

orthogonal vector to the parametric surface F (u; v) at (u; v). Let the orthographic view
direction be +z. Then the set of zeros of n̂z(u; v) is simply the parameter values for the
silhouettes of the original surface. In other words, the silhouette extraction problem can
be mapped to a root �nding problem (contouring), which is usually simpler. Trimmed
surfaces [4, 19] are the natural way to represent the regions de�ned by the contouring
operator. In fact, the parameter values of the contours of the bivariate vector �elds can
serve as the parameter values of trimming curves of the original surface.

Throughout this paper examples and properties will be shown using the B�ezier and
NURBs surface representations. However, any other representation which has analogous
subdivision, variation diminishing, and convex hull properties, and supports the operators
in Section 3 can be used. All surfaces and images were created and rendered using the
Alpha 1 solid modeler developed at the University of Utah.

Section 2 brie
y develops the di�erential geometry used in the analysis. In Section 3
we develop the tools and operators that are required in this analysis while in Section 4
we use these tools to compute second order properties, and use visualization to better
understand the shape of a given surface.
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Figure 1: Mainly concave (left), convex (middle) and saddle (right) regions.

De�nition 1.1 A surface trichotomy is a partition of a surface into three
types of regions: convex, concave and saddle shapes (Figure 1).

The ability to trichotomize sculptured surfaces into convex, concave or saddle regions
(Figure 1) is thus essential to the use of 
at end cutters in milling freeform surfaces.
Also, regions with small curvature can be accurately milled faster with larger ball end
cutters. Since tool changes are time consuming operations they should be minimized.
Such minimization can be achieved by subdividing the surface into regions with di�erent
curvature bounds, each of which can be milled using tools appropriate to that region.

Methods in use do not support the separation of original surfaces into trimmed sur-
faces each of which has only one of the three characteristics throughout. That is, either
convex everywhere, concave everywhere, or saddle everywhere. Second order surface
properties are usually estimated locally by numerically evaluating them at a grid of
points or at a �nite set of sampled points along the planned milling tool path, in man-
ufacturing. Research into computing curvature has been done in the context of o�set
operator approximations with cubic B-spline curves [25] and bicubic patches [13].

There have been attempts [1, 2, 8, 17] to understand and compute second order
surface properties as well as twist, by evaluation on a prede�ned grid. The methods
use the Gaussian curvature K(u; v) = �1n(u; v)�

2
n(u; v) and mean curvature H(u; v) =

�1
n
(u;v)+�2

n
(u;v)

2
, where �1n(u; v) and �

2
n(u; v) are the principal curvatures at the parameter

value (u; v), in an attempt to provide a bound on the surface angularity. However, if
the surface is a saddle at (u; v), then �1n and �2n have di�erent signs so the magnitude of
H is not a useful measure of such a bound. In the extreme condition when the surface
is minimal [3], H � 0 regardless of the surface angularity. The magnitude of K can
also be ine�ective. Even if �1n is large, K may be small because �2n is small. Therefore,
neither K nor H by itself can provide su�cient shape information for subdivision and/or
e�cient NC applications. This problem has been recognized by some of the authors
cited above. These curvature estimation techniques are local, since they make use of
local surface information only. More surface information might improve an algorithm or
change a decision. Local information is inferior to global information in complex settings.
Symbolic techniques can be used to help make decisions based upon the entire aspect of
a surface rather than a limited number of local samples.
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Abstract

Results from analyzing the curvature of a surface can be used to improve the

implementation, e�ciency, and e�ectiveness of manufacturing and visualization of

sculptured surfaces.

In this paper, we develop a robust method using hybrid symbolic and numeric

operators to create trimmed surfaces each of which is solely convex, concave, or

saddle and partitions the original surface. The same method is also used to identify

regions whose curvature lies within prespeci�ed bounds.

1 Introduction

A critical characteristic for many applications in computer graphics and in CAD is the
shape of the model's surface. Second order surface analysis can be used to understand
curvature characteristics, and thus shape, and to improve the implementation, e�ciency
and e�ectiveness of manufacturing and analysis processes. Fundamental operations, such
as adaptive subdivision and re�nement, use shape information to decide where and how
many knots to add. Algorithms for the creation of tool paths for NC (Numerically Con-
trolled) code generation for freeform surfaces are usually based on ball end cutters with
their spherical centers following an (approximate) o�set surface of the original surface.
Flat end cutters can remove material faster and have a better �nish; however, 
at end
cutters can be used only with 5 axis milling in convex regions (see Figure 1).
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