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should be further investigated. Alternatively, robust and reasonably fast methods to
solve the two simultaneous nonlinear equations 1 and 2, should be explored, yielding a
possible solution for the accessibility problem for both the elliptic and the hyperbolic
surface regions.
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Figure 9: Using the MS mapping imposed by the teapot body, the spout and the
handle from Figure 8 are transformed to the orthogonal space D spanned by (u; v; �).
The hidden regions of the body, viewed from (0; 0;1), are then computed (dotted
lines).

Figure 10: Using hidden surface removal algorithms, the hidden portion of the body
of the teapot from Figure 9 is trimmed away. Left is the domain of the body that can
be milled using 5-axis 
at end mill with gouging to neither the spout nor the handle.
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(a) (b)

Figure 7: The inaccessible regions of the left side of the body using 5-axis 
at end
milling, near the spout (a) and near the handle (b) were machined with 3-axis ball
end tool.

Figure 8: The left side of the body of the Utah teapot is to be milled using a 5-axis

at end mill. The two check surfaces, the spout and the handle, were o�set by the

at end tool radius, before MS can be applied to them.

5-axis 
at end mill is calculated by trimming away the regions that are hidden by the
spout and the handle, in Figure 10.

5 conclusion

An approach to map the 5-axis accessibility problem of 
at end milling on a convex
surface to 3-axis accessibility problem is described. This method can be easily extend
to support trimmed surfaces. Because MS was required to be injective, it can only
be applied to regions that are completely convex. It is reasonable to assume that

at end milling will be used in convex regions only. However, side milling or ball
end 5-axis milling can be used in saddle-like or concave regions as well. Removing
the one-to-one constraint onMS should be carefully considered, while such extension
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Figure 5: The Utah teapot model, milled using a ball end 3-axis milling.

Figure 6: The Utah teapot model, partially milled using a 
at end 5-axis milling.

the left side of the teapot body. Note that the inaccessible regions of the left side of
the body of the teapot, due to the spout and the handle, are correctly detected and
milled using traditional 3-axis milling approach. Figure 7 shows a close-up of these
two regions for the 5-axis milled teapot in Figure 6

Figures 8, 9, and 10 demonstrates this process. In Figure 8, the left side of the
body of the Utah teapot is used as the convex surface to be milled in 5-axis 
at end
mode. The left side of the spout and the left side of the handle are both the check
surfaces and are therefore o�set by the 
at end tool radius. In Figure 9, the MS

mapping was applied to the left side of both the spout and the handle and the region
of the body of the teapot that is hidden by them is computed (bounded by the dotted
lines in Figure 9). Finally, the domain of the teapot body that can be milled using
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Both the metric kK � Kik2 and the composition T S � cKi, in algorithm 1 can
be computed symbolically for polynomial (B�ezier ) and piecewise polynomial and
rational (NURBs) domains, resulting is a representation that is accurate to within
the machine precision [15]. kK � Kik is not representable in the B�ezier and NURBs
domains, in general, due to the computation of the square root that is necessary.
Fortunately, computing the square of this L2 norm is su�cient for our purposes. The
Maximum( jEj ) in algorithm 1 can be computed by simply inspecting the coe�cients
of the control mesh of E and using its maximum, which by the convex hull property
of the B�ezier and NURBs representation, cannot be less than the maximum of jEj.

With the ability to approximate the transformation of a surface using MS map-
ping and globally bound the error of the transformation, one can now reduce the
accessibility problem of a 5-axis milling using 
at end tool to a 3-axis motion which
can be resolved using hidden surface removal algorithms.

Algorithm 2

Input:

Convex surface, S(u; v).
Check surface offset, K(s; t).
Flat end tool radius, r.

An error bound, �.

Output:

C, a set of curves describing the boundary of the accessible

domain of S using 5-axis flat end mill.

Algorithm:

K ( offset approximation of K by distance r.bK ( MS � K approximation within �, using algorithm 1.

C ( boundaries of the visible domains of S with respect to

K computed using hidden surface removal algorithm

in D space, and viewing point (0; 0;1).

4 Case study

The algorithm discussed in section 3 was used to help and prevent gouging into either
the spout or the handle of the Utah teapot while milling the left side of the body of
the Utah teapot, using 5-axis 
at end mill. The toolpaths that were used to mill both
parts in Figure 5 and Figure 6 were generated used the adaptive isocurve algorithm
developed in [18]. O�sets for the di�erent stages of this algorithm were computed to
within a global tolerance using the algorithm discussed in [8].

The teapot in �gure 5 is a result of a 3-axis ball end milling using two �xtures,
one for the left and one for the right side of the teapot. The teapot in �gure 6 is
a result of the use of the 5-axis accessibility algorithm that is introduced here, for
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T S(u; v; �) � bK1(s; t) and let E(s; t) = kK(s; t)�K1(s; t)k2 be a scalar �eld measuring
the square of the Euclidean distance between the corresponding parametric locations.
If bK1(s; t) is exact, then K1 = T S � bK1 = T S � bK = K or E(s; t) � 0. Otherwise,
E(s; t) can directly be used not only as a measure to the error of the approximation,
but also to specify where K should be further re�ned. By using E(s; t) to measure
the approximation accuracy, a bound is established on the error of the approximation
of bK in the image space of T S , the space above S(u; v). Said di�erently, since we
cannot, in general, exactly computeMS �K, it is approximated numerically, while the
composition with T S, T S � (MS � K), is computed symbolically. Then, the error in
the numeric approximation ofMS �K can be measured by inspecting the magnitude
of the di�erence T S � (MS � K)�K.

Section 3 derives an iterative algorithm to compute an error bounded approxima-
tion to the transformation of a surface through the MS mapping, and use it to map
the 5-axis accessibility problem of a 
at end tool into a 3-axis visibility problem that
can be solved using hidden surface removal algorithms.

3 Algorithm

Using the approach described in section 2 we can now derive an iterative algorithm
to compute an error bounded approximation to the transformation of an o�set of a
check surface, K, by the MS mapping:

Algorithm 1

Input:

Convex surface, S(u; v).
Offset surface of a check surface, K(s; t).
An error bound, �.

Output:bK, K transformed by MS with error bounded by �.

Algorithm:

i ( 1.
K1 ( K.
do cKi ( MS � Ki, computed numerically over all control

points of Ki.

Ki ( T S � cKi, computed symbolically.

E ( kK�Kik2.
if ( Maximum( jEj ) � � )

begin

Ki+1 ( Ki refined in regions where jEj � �

i ( i + 1.

end

while ( Maximum( jEj ) � � ).
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Figure 4: The MS mapping. For each point qi above surface S, there exists one and
only one pi = S(ui; vi), such that qi = pi + �inpi

, where �i � 0 and npi
is the normal

of surface S at pi pointing outside. Then MS(qi) = (ui; vi; �)

Let C(t) be a curve above S and let bC(t) = MS � C(t). The error between a
C2 continuous function and its Schoenberg variation diminishing spline approxima-
tion [17] over a knot vector ftig is O(jftigj

2), where jftigj = maxifti+1 � tig. By
using a sequence of Schoenberg variation diminishing spline approximations to C(t),
each one based on a knot vector that is a re�nement of the previous one, and a se-
quence, fC i(t)g, of re�ned representations of C(t), based on the same sequence of
knot vectors, we form a convergent sequence of approximations to C(t). Therefore,
the sequence f bC i(t)g, where bC i(t) is formed by transforming each of the control points
of C i(t) using the MS mapping, converges to the curve bC(t).

A tensor product surface is a convex blend of curves and therefore the above
clearly holds for B�ezier and NURBs tensor product surfaces as well. In other words,
one can approximate bK, the MS mapping of K, by simply applying the mapping to
all the control points of K, and using re�nement, converge to bK.

The MS mapping of a single point above S, q, can be computed numerically.
From lemma 1 it is clear that only one such solution exists. Because the surface S

is convex, any point on S that is selected as a starting point to a numerical surface
marching that minimizes the distance to q would converge to the required solution
p 2 S such that q = p+ �qnp, resulting in a point-surface distance function with one
minimum, the minimum of interest and which therefore has a very stable behavior.
In practice, the node value associated with the control point of S that is closest to q

was used as a starting point. Only two or three iterations were necessary, in general,
to achieve a convergence of a six digits accuracy, using a steepest decent approach
that minimized the distance to q.

Although re�nement can improve this approximation, it is neither clear how good
such an approximation is nor what locations are the optimal candidates for re�nement.
Because bK is embedded in the domain of T S , it immediately follows that K is a result
of the following composition,

K = T S � bK (3)

as done numerically in [16], or symbolically in [15].
Let bK1(s; t) be the �rst approximation to bK(s; t) formed by numerically trans-

forming all the control points of K(s; t) using the MS mapping. Let K1(s; t) =
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Figure 3: Using the MS = T S�1 mapping, the 5-axis accessibility problem (a) can
be reduced to a 3-axis visibility problem (b). See also Figure 1.

surface S, and for any tangent plane, Tp, to a point p 2 S, S must lay on one side of
Tp, while p being the only surface point on Tp. Without loss of generality, we assume
kq � pk � kq � rk, where k � k denotes the L2 norm. But then r 2 S is either on Tp

(equality), or r and S are on the opposite sides of Tp (inequality), both contradicts
the condition that S lies completely on one side of Tp.

Using lemma 1, one can construct the following injective mappings onto W.

De�nition 2 De�ne the map T S : D ! W 2 R3, D 2 R3 imposed by S, as

T S(u; v; �) = S(u; v) + �ns(u; v), where ns(u; v) is the unit normal of S pointing

outside. The map MS :W ! D is de�ne as the inverse map, T S�1.

MS exists and has the same continuity as T S by the inverse function theorem
since by lemma 1 T S is one-to-one and T S is onto W.

In other words, the maps prescribed by de�nition 2 uniquely identify any point
qi above S by a location (ui; vi) on S and elevation in the surface normal direction
above this location, �. T S(u; v; �) is a trivariate function that maps an orthogonal
subspace of R3, D, to a warped subspace of R3, W. The trivariate representation
was used in [16] to embed bivariate surfaces and deform them using the T S mapping.
Given surface bK(s; t) = (u(s; t); v(s; t); �(s; t)) embedded in T S domain, the image of
the composition K(s; t) = T S � bK(s; t) is the deformed surface. This composition can
be computed symbolically [15] or approximated as described in [16]. Figure 4 shows
an example of this mapping.

If one can transform the o�set of the check surface, K, using the inverse mapping of
T S,MS, imposed by S, then the set of (u; v) values on the surface S for which the 
at
end tool is tangent to K while being perpendicular to S can be resolved using hidden
surface removal algorithms as in 3-axis milling accessibility testing. Unfortunately,
the MS mapping is nonlinear and has no closed form, in general. Although T S can
be computed symbolically as a composition operation, its inverse cannot. Aside from
lines along the normals of S or the � parameter, straight lines are not mapped by
MS to straight line, nor angles are preserved.
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2 Background

In the ensuing discussion we assume surfaces are regular and C1 continuous. Let S
be a convex surfaces. That is, for any point p 2 S, the two principal curvatures [14]
are positive. The sphere is an example of a convex object. In the ensuing discussion
it is also assumed that the normals of a convex surface span an angular domain of
less than 180 degrees, and that the surface is C1 continuous. In other words, the
Gauss map [14] of the surface can be �t into a open hemi-sphere. The Gauss map is
a mapping from surface S to the unit sphere, S2, and is injective or one-to-one if S
is a completely convex region with the above angular bounds. That is, for each point
p 2 S, there exists only one and only one point on the Gauss map of S and visa versa.
An arbitrary convex surface can always be subdivided until this condition hold.

De�nition 1 Let q be a point above S. That is, there exists a point p 2 S such that

q = p + �qnp, where np is the unit normal of surface S at p pointing outside, and

�q � 0.

Let K(s; t) be a check surface [12] with some points above S(u; v). Let K(s; t)
be the o�set of K by the 
at end tool radius. One can derive the conditions in
which the 
at end tool is tangent to the check surface K while it is normal to S.
Because this condition is equivalent to the condition that the tool central axis is
tangent to K (Figure 1), one can derive (see Figure 3(a)) the following constraints.
The orthogonality constraint of surface normals at the tangent point can be expressed
as, D

nK(s; t); ns(u; v)
E
= 0; (1)

where h�; �i denotes the inner product. In order to satisfy a positional constraint we
can have, D

nK(s; t); (S(u; v)�K(s; t))
E
= 0: (2)

Both equation are necessary conditions that are satis�ed when the tool is tangent
to K and aligned along the normal of S. Because both equations need to satisfy a
zero set condition, the surface normals in these equations need not necessarily be unit
normals. This allow one to solve these equations and �nd the zero sets of four-variate
B�ezier or NURBs scalar �elds, by symbolically representing the unnormalized normals
as n̂s = @S(u;v)

@u
� @S(u;v)

@v
[15]. One can consider applying a numeric or a subdivision

based methods to solve for the simultaneous zero set of these nonlinear equations,
an approach that needs further investigation. However, equations 1 and 2 are not
su�cient, since they do not coerce the vector (S(u; v)�K(s; t)) to be collinear with
ns, nor make sure that � � 0. Alternatively, one can try and map this problem into
a simpler one with a known solution, an approach taken herein.

Lemma 1 Let q be a point above convex surface S. There is one and only one point

p 2 S such q = p+ �qnp, where np is the unit normal of surface S at p pointing out,

and �q � 0.

Proof: Assume there exists another point r 2 S, such that q = r + �qnr, where
nr is the unit normal of surface S at r pointing outside, and �q � 0. For a convex
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Figure 2: Using 3-axis milling, solving the problem of tool access to the original
surface is equivalent to solving the computer graphics hidden line removal problem
on the o�set to the surface. Accessible regions are drawn using wide lines.

to the o�set of the model, the accessible and therefore millable regions of the model
immediately result (see Figure 2). A similar approach can be utilized for 5-axis 
at
end milling in which the check surface [12] is o�set by the 
at end tool radius as in
Figure 1. Then again, the accessibility problem is transformed into a hidden sur-
face removal problem. This time, however, the variable tool direction, following the
surface normals, immensely increase the level of di�culty in solving this problem.

By considering a discrete approximation to the hidden surface removal, rendering
techniques can be applied. An image is rendered viewed from the 3-axis tool direction,
and which holds a \z-depth" image instead of shaded colors. The \z-depth" image
is used for generating or verifying machining toolpaths in [6, 7], and for shadow
generation in [13]. This technique is becoming popular in simulating and verifying
3-axis toolpaths.

Unfortunately, all these hidden surface removal methods are relevant for the use of
3-axis milling only. If the tool orientation is not �xed, as is the case for 5-axis milling,
none of these methods can be e�ectively used. In this paper, we describe an approach
that allows one to map the 5-axis accessibility problem into a 3-axis accessibility
problem which can then be solved using hidden surface removal algorithms.

Section 2 provides the required background and discusses a possible theoretical
approach. In section 3, an algorithm to compute the mapping that reduces the 5-
axis accessibility problem into a 3-axis visibility or accessibility problem is described.
Finally, in section 4 we discuss an example in which this approach was used. The left
side of the body of the Utah teapot was milled using 5-axis 
at end tool, while global
gouging prevention was computed using the introduced algorithm.
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Figure 1: Using 5-axis milling, the 
at end tool axis is aligned with the surface normal
(a). The 
at end tool will be tangent to the check surface, K, if and only if the tool
central axis is tangent to the o�set of K by the tool radius, K (b).

are usually provided, as in the spherical coordinate system, spanning any directional
orientation on the unit sphere. This approach permits the use of a 
at end mill,
if it is positioned with its central axis aligned with the normal of the surface (see
Figure 1(a)) because then the tool will not gouge into the surface, provided the
surface is convex. Symbolic approach to isolate the convex regions of a surface was
developed in [9]. This milling mode in known as 5-axis milling, for the �ve degrees of
freedom required. Not only that o�set approximation to surfaces are unnecessary for
the generation of toolpaths, but the surface �nish that result from the use of a 
at end
mill is superior to the surface �nish by a ball end mill resulting in a smaller scallop
height (compare Figures 5 and 6). Furthermore, a 
at end tool can mill faster than
the same radius ball end tool because of the vanishing cutting speed at the bottom
of the ball end tool.

Other uses for 5-axis milling are with the side of the tool tangent to the surface,
a milling operation known as side or peripheral milling. A di�erent need for 5-axis
milling rises when the accessibility using 3-axis approach is limited. Cavities, like the
inside of the teapot in Figures 5 and 6, cannot be milled using 3-axis milling and a
single �xture. Using 5-axis milling, a single �xture might be su�cient.

With all the advantages of adding rotational degrees of freedom, there is the
question why is it that 5-axis milling so rarely used? The answer is not obvious and
several factors have to be considered. Clearly 3-axis operations are easier to perceive
than 5-axis. The complex intermixed motion of a 5-axis operations is di�cult to
comprehend, and therefore to compute, simulate and verify.

Several computer graphics algorithms where developed for removing hidden sur-
faces [10, 11]. It is clear that 3-axis milling tool cannot have access to the regions
that are found hidden. The hidden surface removal algorithms can almost directly be
employed in deciding what (visible) portion of the model can be milled using 3-axis
and a given �xture or tool directional orientation. Unlike the light ray, the milling
tool has a cylindrical shape of a �nite radius. However, by o�setting the model by the
tool radius, and applying the computer graphics hidden surface removal algorithms
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Abstract

Using algorithms from computer graphics, namely hidden line and surface

removal, techniques have been constructed to derive the 3-axis visible or mil-

lable set of a computer model from a given orientation or simulate and verify

machining toolpaths. In this paper, an approach that reduces the accessibility

problem of 5-axis milling using a 
at end tool into a 3-axis accessibility prob-

lem is discussed. Using this approach, global detection of possible gouging into

other parts, while a 5-axis 
at end mill is in use, is made feasible and collisions

can be avoided.
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1 Introduction

Several methods are in use, when freeform computer models are realized using milling
machines. Possibly the most common approach utilizes a ball end tool with three
degrees of freedom, namely translation in x, y, and z [1, 2, 4, 5, 6, 7]. The ball end
center of the tool follows an o�set [8] to the model by the tool radius while the ball
end surface is tangent to the model. This method is known as 3-axis milling.

One way to generalized the use of 3-axis ball end milling is to add rotational
degrees of freedom to the tool. The tool can now not only be positioned at a speci�c
location, but can also be arbitrarily oriented. Two extra rotational degrees of freedom
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