
Plate 3

Raytraced image of the \house on the hill" model.

Plate 4

Aluminum milled version of the \house on the hill" model.

Plate 1

Raytraced image of the knight model.

Plate 2

Aluminum milled version of the knight model.

Figure 5: Adaptive isocurves toolpath for the Ô o�set of the \house on the hill" model.

Figure 4: Parallel plane contouring is used to generate 3 axes pockets for rough cutting.

(a) (b) (c)

Figure 3: Toolpath using isocurves will be not optimal in this complex surface (a). Contouring with
equally spaced parallel planes is too sparse in coplanar regions (b). Adaptive isocurves are more optimal,
exact, and still correctly spans the entire surface (c).

(a) (b) (c)

Figure 2: Isocurves are obviously not an optimal solution as a toolpath for this surface (a). Contouring
with equally spaced parallel planes is more optimal but is piecewise linear (b). Adaptive isocurves are,
in general, more optimal, exact, and compact (c).

r

r

Da

Sh

Figure 1: Given the tool radius, Sh can easily be derived from Da.

Table 1: CPU times for adaptive iso-curves extraction.

model cpu time # curves.

Figure 2c - surface 5.6 sec. 61
Plate 2 - knight 54.3 sec. 122
Plate 4 - house 132.0 sec. 1013

[19] S. W. Thomas. Scanline Rendering for 3-Axis NC Toolpath Generation, Simulation, and Veri�-

cation. Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,

MI 48109-2122, Technical Report CSE-TR-43-90, January 1990.

[20] D. Zhang and A. Bowyer. CSG Set-Theoretical Solid Modelling and NC Machining of Blend

Surfaces. The Second Computation Geometry Conference, ACM 1986.

[9] G. Elber and E. Cohen. Adaptive Isocurves Based Rendering for Freeform Surfaces. Submitted

for publication.

[10] G. Elber. Free Form Surface Analysis using a Hybrid of Symbolic and Numeric Computation.

Ph.D. thesis, University of Utah, Computer Science Department, 1992.

[11] C. M. Ho�mann. Geometric & Solid Modeling, An Introduction. Morgan Kaufmann Publisher,

Inc..

[12] Y. Huang and J. H. Oliver. Non-constant Parameter NC Tool Path Generation on Sculptured

Surfaces. ASME Computers in Engineering, v.1, August 1992, pp. 411-419.

[13] R. B. Jerard, J. M. Angleton and R. L. Drysdale. Sculptured Surface Tool Path Generation

with Global Interference Checking. Design Productivity Conference, Feb. 6-8, 1991, Honolulu, Hawaii.

[14] J .J. Chou. Numerical Control Milling Machine Toolpath Generation for Regions Bounded by Free

Form Curves and Surfaces. Ph.D. thesis, University of Utah, Computer Science Department, June

1989.

[15] J. M. Lane and R. F. Riesenfeld. Bounds on a Polynomial BIT 21 (1981), 112-117.

[16] G. Loney and T. Ozsoy. NC Machining of Free Form Surfaces. Computer Aided Design, Vol. 19,

No. 2, pp 85-90, March 1987.

[17] A. A. G. Requicha. Toward a Theory of Geometric Tolerancing. International Journal of Robotics

Research, Vol. 2, No. 4, pp. 45-49, Winter 1983.

[18] J. R. Rossignac and A. A. G. Requicha. Constant Radius blending In Solid Modeling. Com-

puters in Mechanical Engineering, pp 65-73, July 1984.

isocurve [10] and should be included when 4 or 5 axis milling is needed. Unfortunately, using 4 or 5 axis

milling operations introduces di�culties in detecting gouging and accessibility of locations. These areas

are under current research.

References

[1] S. Aomura and T. Uehara. Self-Intersection of an O�set Surface. Computer Aided Design, Vol.

22, No. 7, pp 417-422, September 1990

[2] J. E. Bobrow. NC Machine Tool Path Generation From CSG Part Representations. Computer

Aided Design, Vol. 17, No. 2, pp 69-96, March 1985.

[3] B. K. Choi and C. S. Jun. Ball-End Cutter Interference Avoidance In NC Machining of Sculptured

Surfaces. Computer Aided Design, Vol. 21, No. 6, pp 371-378, July/August 1989.

[4] B. Cobb. Design of Sculptured Surfaces Using The B-spline representation. Ph.D. thesis, University

of Utah, Computer Science Department, June 1984.

[5] R. T. Farouki. The Approximation of Non-Degenerate O�set Surfaces Computer Aided Geometric

Design, Vol. 3, No. 1, pp 15-43, May 1986.

[6] I. D. Faux and M. J. Pratt. Computational Geometry for Design and Manufacturing. John

Wiley & Sons, 1979.

[7] G. Elber and E. Cohen. Second Order Surface Analysis Using Hybrid Symbolic and Numeric

Operators. ACM Transactions on Graphics, Vol. 12, No. 2, pp 160-178, April 1993.

[8] G. Elber and E. Cohen. Error Bounded Variable Distance O�set Operator for Free Form Curves

and Surfaces. International Journal of Computational Geometry and Applications, Vol. 1., No. 1, pp

67-78, March 1991.

model was milled using a ball end tool in 3 axis mode. Plate 3 shows a raytraced version of the model,

while Figure 5 shows the adaptive isocurve toolpath used in the �nish stage of the model in Plate 4. The

o�set of the model was automatically computed using the the bO o�set method described in section 3.

Furthermore, it was unnecessary to introduce any auxiliary check or driver surfaces [6] as part of this

automated toolpath generation process.

To gain some insight regarding this algorithm, Table 1 provides some timing results for computing the

adaptive isocurve toolpaths for the tests displayed. Tests were run on a SGI4D 240 GTX (R3000 25MHz

Risc machine). The surface in Figure 2 is a B-spline ruled surface with 3 B�ezier patches (patches of a

NURBs surface are enumerated as the number of B�ezier patches that would result from subdividing the

NURBs surface at each original interior knot). The knight is a far more complex NURBs surface. Its 56

B�ezier patches account for its long processing time. Although the \house on the hill" model is de�ned

by seven NURBs surfaces, none of them is as complex as the single surface de�ning the knight.

6 Conclusion

The adaptive isocurve extraction method for freeform surfaces introduced in [9] was used as the foundation

for the nearly optimal toolpath generation method described. This algorithm eliminates most of the

redundancy that occurs when equally spaced complete isocurves are used as a toolpath, while retaining

all the advantageous properties of isocurve toolpaths. The toolpath is exact, easy to trim, and now almost

optimal.

The use of this algorithm in three-axis milling has been demonstrated. The adaptive isocurve extrac-

tion algorithm can be used to generate toolpaths for 4 or 5 axis milling, virtually unmodi�ed. Multi-axis

milling operations require additional information to orient the tool. Normal information was propagated

with the adaptive isocurve toolpath to orient the tool in 5-axis
at end milling mode, in a similar way to

the normal computation approach taken in the rendering application of the adaptive isocurve algorithm [9]

The surface normal information can be represented as a normal isocurve accompanying the position

O(Si) does not intersect O(Sj). For open surfaces, one solution that forms correct intersection curves is

to extend them in the cross boundary tangent directions.

4 Rough Cutting Stage

The toolpath derived in section 2 cannot, in general, be directly applied to the stock from which the

model is to be machined. In some cases, the depth of milling required is simply too large. A rough

cutting stage is usually applied in which the excess material is removed crudely. Then, in the �nal stage,

when the toolpath derived in section 2 is applied, it is necessary to remove only a limited amount of

material.

One way to discard the excessive material using 3 axis milling is to slice the o�set approximation

of the model with several parallel planes and remove the material external to the part at each contour

level. Two-dimensional pocketing operations [14] can be used to remove the excessive material at each

contoured layer. Figure 4 shows those contours of a \house on the hill" model. The rough cutting stage

can be automated, similar to the adaptive isocurve extraction algorithm.

5 Results

Several results are presented in this section, as are some timing considerations. The adaptive isocurve

toolpaths for the knight in Figure 3c have been used to mill the complete knight. Two �xtures, one for

the right side and one for the left side of the knight, have been used. Plate 1 shows a raytraced version

of the model while Plate 2 shows the milled piece. A ball end tool was driven along an o�set [8] of the

knight surface in 3 axis milling mode. The knight model consists of a single highly complex NURBs

surface.

The adaptive isocurve toolpath algorithm produces only isoparametric curves that are simple to clip

against the surface trimming curves de�ning a trimmed surface.

A \house on a hill" model, consisting of several trimmed surfaces was used for this example. This

hence O(A \ B) could be empty but O(A) \O(B) might be nonempty.

Several types of manufacturing o�sets can be de�ned for piecewise C1 models [17, 18] that are gen-

erated via constructive solid geometry. In general, one should attempt to prevent gouging even at the

expense of not being able to mill the entire model. A C1 discontinuous concave corner created by a union

of two surfaces cannot be milled using a ball end tool of any size. One could de�ne the o�set operator

for a piecewise C1 model so that at no time the center of the ball end tool would be closer than its radius

to any of the surfaces of the model. Using such de�nition it can be guaranteed that during the entire

milling process,

kc� Si(u
i; vi)k2 � r; 8i; (2)

where c and r are the center and the radius of the ball end tool, respectively, Si(u; v) is the ith surface

in the model, and (ui; vi) is a parametric location in the untrimmed domain of surface Si.

If O(Si) designates the exact o�set surface to surface Si at distance r, it is clear that the ball end

tool could not gouge Si if c were kept on O(Si). We de�ne the manufacturing o�set of a Boolean

union operation of two surfaces, Si
S
Sj , to be the union of the o�set surfaces, that is bO(SiSSj) �

O(Si)
S
O(Sj), even though the model might not be completely milled along the intersection curve of

Si and Sj in concave regions, Such a de�nition guarantees that the tool will gouge neither Si nor Sj.

Similarly, the manufacturing o�set of a Boolean intersection operation of two surfaces, Si
T
Sj is de�ned as

the intersection of the o�set surfaces, that is bO(SiTSj) � O(Si)
T
O(Sj). Since the Boolean intersection

operation only \removes material", it is not possible for it to form concave corners from an intersection

of two C1 continuous surfaces. Thus the bO de�nition of an o�set of a Boolean intersection operation

supports the milling of the entire region along the intersection curves.

Since an o�set of a single surface is another single surface [8], Boolean operations can be performed on

the o�set surfaces in much the same way they were computed for the original models. Consider surfaces

Si and Sj that intersect. If the intersection occurs near the boundary of either surface, it can happen that

on the scallop height.

3 The O�set Computation

Since the toolpath generated by the adaptive isocurve algorithm provides a valid coverage of the surface,

it can serve as a toolpath for both 3 axis and 5 axis milling. In this discussion, we will concentrate on

3 axis milling using ball end tools. Such a method requires the computation of an o�set surface to the

model at a distance equal to the radius of the ball end tool. This simpli�es the toolpath generation since

keeping the center of the ball end tool on the o�set surface, keeps the tool tangent to the original surface

so it cannot gouge.

The adaptive isocurve toolpath is computed for each surface of the original model. The toolpath

is not trimmed yet even if the surfaces are trimmed surfaces. Instead, an o�set model is computed by

o�setting all the surfaces of the model an amount that is equal to the tool radius and retrimming the

surfaces in their new o�set position. The adaptive isocurve toolpath is then mapped, using the same

parametric domain values, to the o�set surfaces and only then is the toolpath properly trimmed, creating

the �nal toolpath. The result is a gouge free toolpath, even in concave corners of the model.

Unfortunately, the exact o�set of a freeform piecewise polynomial or rational surface is not repre-

sentable, in general, as a piecewise polynomial or rational surface [8]. Quite a few methods have been

developed in recent years to provide approximations to surface o�sets [1, 4, 5, 8]. In [8], a technique

to approximate o�sets of freeform B�ezier and NURBs surfaces by B�ezier and NURBs surfaces was

developed with the property that error in the approximation surface is globally bounded. That global

bound can be used directly to determine a global bound on the accuracy of the milling and the amount

of gouging that may occur.

Extending the generation of surface toolpaths to models de�ned using constructive solid geometry [11]

and consisting of several, possibly trimmed, surfaces is not obvious. Let O(A) denote the exact o�set of

A. It is unfortunate, but O(A \ B) is not always the same as O(A) \ O(B). For example, A \ B and

Algorithm 1Algorithm 1: Adaptive isocurve extraction. Iso-v curves are assumed.

Input:

Surface S(u; v).
Iso-distance tolerance �.

Output:

Adaptive isocurve toolpath for S(u; v).
Algorithm:

AdapIsoCurve(S(u; v), �)

begin

C1(u), C2(u) (S(u; v) two u boundary curves.

return AdapIsoCurveAux(S(u; v), �, fC1(u); C2(u)g).

end

AdapIsoCurveAux(S(u; v), �, fC1(u); C2(u)g)

begin

�2

12
(u)(kC1(u)� C2(u)k2, iso-distance between C1(u) and C2(u).

if (�2

12
(u) < �2, 8u) then

return ;.
else if (�2

12
(u) > �2, 8u) then

begin

C12(u) (Middle isocurve between C1(u) and C2(u).

return
AdapIsoCurveAux(S(u; v), �, fC1(u); C12(u)g)

S
AdapIsoCurveAux(S(u; v), �, fC12(u); C2(u)g).

end

else

begin

fCi
1
(u); Ci

2
(u)g (subdivided fC1(u), C2(u)g at all u

such that �2

12
(u) = �2.

return
S

i AdapIsoCurveAux(S(u; v), �, fCi
1
(u); Ci

2
(u)g).

end

end

Furthermore, since the resulting set of isocurves covers the entire surface S, it can serve as a valid

toolpath for S with maximum tolerance distance �.

Algorithm 1, the adaptive isocurve extraction algorithm, generates a valid and more optimal coverage

by minimizing the cutting speed motion required. This is accomplished by minimizing redundancies while

providing a bound on the scallop height via the bound on the distance between two adjacent isocurves.

It is important to realize that bounding the distance between adjacent isocurves is a necessary condi-

tion to bound the scallop height. The surface curvature bound (See [7]) could be added to the de�nition

of validity to decide whether to introduce a middle isocurve in algorithm 1 and obtain a tighter bound

De�nition 4 The iso-distance function �12(u) between two adjacent (sub) isocurves along their common
domain U is equal to

�12(u) = kC1(u)� C2(u)k2

=
q
(cx

1
(u)� cx

2
(u))2+ (cy

1
(u)� cy

2
(u))2+ (cz

1
(u)� cz

2
(u))2: (1)

Given two isocurves, C1(u) and C2(u), on a surface S(u; v), one can compute and represent the square

of the iso-distance, �2

12
(u), between them symbolically as a NURBs or as a B�ezier curve [10]. Computing

the coe�cients for the representation of �2

12
(u) requires the di�erence, sum, and product of curves, all

computable and representable in the polynomial and piecewise polynomial domains [10]. Furthermore,

given some tolerance �, it is possible to compute the parameter values where the iso-distance between

C1(u) and C2(u) is exactly � by computing the zero set of (�2

12
(u) � �2) [15]. By subdividing the two

curves at these parameters, new sub-isocurve pairs, fCi
1
(u); Ci

2
(u)g, are formed with the characteristic

that each pair is always iso-distance smaller or always larger than �, in their open interval domains. If

the two curves in the pair fCi
1
(u); Ci

2
(u)g are closer than � in the iso-distance metric, then the Euclidean

distance tolerance condition is met for that pair. If, however, the two curves' iso-distance is larger than

�, a new sub-isocurve, Ci
12
(u), is introduced between Ci

1
(u) and Ci

2
(u) along their common domain U

and the same iso-distance computation is recursively invoked for the two new pairs fCi
1
(u); Ci

12
(u)g and

fCi
12
(u); Ci

2
(u)g.

Starting with the two U boundaries or two V boundaries of the surface, the algorithm can invoke this

iso-distance computation recursively and ensure two adjacent isocurves will always be closer than some

speci�ed distance � by verifying that their iso-distance is not larger than �. Because � is small, there will

be only a small variation in the speed in the v direction of the surface S, @S
@v
. Since a middle isocurve

is introduced i� the iso-distance is larger than � and � is small, resulting iso-distances between adjacent

isocurves, as computed, are rarely signi�cantly less than �
2
.

It is appealing to use isocurves since the representation is compact, exact, and straightforward to use

as milling toolpaths. Isocurves can be approximated more compactly and accurately using piecewise arcs

(and lines), if circular motion is supported by the milling machines, than piecewise linear approximation

allows. Furthermore, isocurves can be sent directly to a milling machine that supports NURBs or B�ezier

curve toolpaths. Isocurves are also invariant under a�ne transformations and therefore are view direction

independent, unlike the results of the contouring technique. Scallops resulting from isocurve-based tool-

paths are usually more attractive than those resulting from contoured-based toolpaths since they follow

the model's basic streamlines (see Plates 2 and 4). Finally, when computing toolpaths for models having

trimmed surfaces, it is easier to trim isocurves to the appropriate domains than to trim contours whose

parametric domain representations can be arbitrary.

Recent literature [2, 3, 13] has suggested that the contact point numerical improvement approach,

such as used by APT [6], is unstable and slow. Computations of a toolpath for a single surface are usually

measured in minutes [3, 13]. A di�erent approach [13] was selected in this work. The model was o�set

by the tool ball end radius and toolpaths for the tool center were generated using the o�set surface.

Section 2 brie
y discusses the adaptive sub-isocurve algorithm. Section 3 describes the o�set compu-

tation required for ball end tool milling, and section 4 deals with the method used for the rough cutting

process. Finally, section 5 presents some results obtained from an implementation of the new algorithm

for NURBs-based models using the Alpha 1 solid modeler.

2 Adaptive Isocurves Extraction Algorithm

Using isocurves as the coverage for a surface, we de�ne adjacency and iso-distance between isocurves.

De�nition 3 Two (sub) isocurves of surface S(u; v), C1(u) = S(u; v1), u 2 [us
1
; ue

1
] and C2(u) = S(u; v2),

u 2 [us
2
; ue

2
], v1 � v2, from a given set C of isocurves forming a valid coverage for S are considered adjacent

if, along their common domain U = [us
1
; ue

1
] \ [us

2
; ue

2
], there is no other isocurve from C between them.

That is, there does not exist C3(u) = S(u; v3) 2 C, u 2 [us
3
; ue

3
] such that v1 � v3 � v2 and [us3; u

e
3
]\U 6= ;.

Selection of the parallel plane spacing and the parallel plane direction to create a valid toolpath is not

obvious, although work has been done in estimating plane spacing based on estimating a planar curvature

in the direction orthogonal to that of the cutting plane at discrete points [12]. Even if an algorithm could

be created to adaptively space a next cutting plane based on the coplanarity of one region of the surface

with the the cutting plane direction, this spacing would be �xed over the entire next tool path, being

much closer than might be necessary in another noncoplanar region. Local coplanarity in one region of

the surface would dictate the spacing for the entire model.

Attempts to improve the techniques described above have been geared mainly toward local adaptation

of the algorithm to speci�c regions which require a di�erent number of samples to achieve the required

tolerances [13, 16]. Adaptation of scanline rendering has been used by other researchers [19, 20] to obtain

a piecewise linear approximation for the toolpath.

An adaptive sub-isocurve extraction approach is introduced for rendering in [9]. This scheme provides

a more optimal and valid coverage of the surface by adaptively introducing partial sub-isocurves in regions

void of existing sub-isocurves (de�nition 1). Furthermore, the algorithm frees the user from the need to

determine either the surface parameter spacing or contour plane spacing, depending on prior method used,

and the direction to use to insure adjacent isocurve distances produce a valid coverage. Instead, a bound

on the required distance between adjacent sub-isocurves can be speci�ed, and guaranteed automatically.

It is clear that a valid coverage generated using complete isocurves can be very ine�cient (see Fig-

ure 2a), which can increase machining time and a�ect part �nish. If the redundant portion of each

complete isocurve could be a priori detected and not be generated as part of the valid coverage, one

would be able to generate a more optimal toolpath with the appeal of the isocurves. The adaptive

isocurve extraction algorithm exploits this approach for rendering (see Figures 2c and 3c). Although the

adaptive isocurve extraction algorithm is developed for rendering in [9] it will be brie
y discussed here.

isocurves usually span the entire parametric domain of the surface (see Figure 2a) and will be referred

to as complete-isocurves. Isocurves that span only a portion of the surface parametric domain (see

Figure 2c) will be referred to as sub-isocurves. Although simple to determine, toolpaths created using

complete isocurves equally spaced in parametric space are clearly not optimal according to de�nition 2

and are redundant, as can be seen in the example of Figure 2a, where the toolpath is redundant in the

middle region of the surface. In order to guarantee the validity of the toolpath, a certain parametric

stepsize is selected for the complete isocurves (for example, derived by the top and bottom regions of

the surface in Figure 2a). This undoubtly leads to a much smaller distances between adjacent complete

isocurves in other surface regions than required causing redundancy (in the middle of the surface in

Figure 2a). Further, it might be di�cult for the system that invokes the toolpath generator to determine

the parameter stepping tolerance that will create valid toolpaths to within a given �, even if the top

and bottom regions of the surface in Figure 2a are treated separately. Further, it is the shape of the

represented geometry and the associated milling that is of interest so the parametric representation of

the surface should be internal and not be shown in the e�ects of milling.

An alternative method for generating toolpaths is based on contouring planes, in which the surface

is intersected by (frequently geometrically equally spaced) parallel planes. The resulting numerically

derived intersection curves are used to drive the milling tools [2, 3]. Sometimes this curve is modi�ed

as it is evaluated to remove sections that might gouge along this plane [12] The resulting toolpath is, in

general, only a piecewise linear approximation to the real intersection, and the size of the piecewise linear

approximations of the intersection curves is usually several orders of magnitude larger than isocurve data.

For relatively
at surfaces, the contouring algorithm seems to yield acceptable results (see Figure 2b).

However, as for the complete isocurves algorithm, some frequently occurring surfaces can be pathological

to this contouring algorithm. If the surface has regions almost coplanar to the contouring plane, adjacent

contours would be distant from each other invalidating the toolpath, as can be seen from Figure 3b.

De�nition 1 A set of curves C in a given surface S is called a valid coverage for S with respect to some
constant � if, for any point p on S, there is a point q on one of the curves in C, such that kp� qk2 < �,
where k � k2 denotes the Euclidean distance.

De�nition 1 provides a validation criterion on a given toolpath and a tolerance � such that any point

on the surface is at most � from the nearest toolpath curve. De�nition 1 takes into consideration only the

distance between an arbitrary point p on the surface and the closest point q on the toolpath. One can

easily derive a condition on the scallop height Sh (see Figure 1) from the distance between two adjacent

toolpaths Da and the tool radius, r. If two adjacent isocurves of a valid coverage are closer than 2r,

where r is the tool radius, an upper bound of 2r is immediately established on the scallop height, since

the scallop may span at most 180 degrees of the ball end circumference. If a curvature of zero is assumed,

a tighter bound of r�
q
r2 � (Da

2
)2 is established. Using other criteria, such as bounds on the curvature,

a tighter bound on the scallop height can be achieved without the zero curvature assumption and without

a�ecting how the rest of the algorithm works.

Now consider the optimality of a valid toolpath.

De�nition 2 A toolpath for a given surface is considered optimal if it provides a valid coverage for S

and its path length is minimal.

De�nition 2 considers optimality based only on the cutting motion part of the toolpath. Tool retraction

and traversals are not used as optimality conditions in this paper. One might decide to traverse the iso-

curves in incremental cross iso-direction so that the portion of the surface of the machining tool that

performs the actual milling is approximately the same throughout the milled surface. Any other type

of traversal might, in some stage of the milling, require the tool to cut using its entire milling surface

perimeter, an undesired tool machining motion. Unfortunately, the time to �nd an optimal traversal of

the piecewise cutting motion toolpath is exponential in nature; more on this problem can be found in [14].

We will not address this issue in this paper.

There are two main approaches used to generate tool paths for freeform surfaces. In one, isoparametric

curves are extracted from the surface, usually in equally spaced parametric steps [3, 6, 14, 16]. These

Tool Path Generation

for

Freeform Surface Models
�

Gershon Elbery z and Elaine Cohen

Department of Computer Science

University of Utah

Salt Lake City, UT 84112 USA

Abstract

Generating optimal NC code to drive milling machines for models de�ned by freeform trimmed
surfaces is a di�cult problem. In practice, Two main approaches are used to generate toolpaths for
surfaces, neither of which is optimal, in general. The �rst exploits the parametric representation
and generates isocurves that are uniformly distributed across the parametric domain. This approach
is not optimal if the surface mapping into Euclidean space is not isometric. The second approach
contours the models by intersecting the surfaces with planes equally spaced in Euclidean space, resulting
in a piecewise linear toolpath approximation which is nonadaptive to the local surface geometry.
Furthermore, the toolpath generated by contouring is suitable for 3 axis milling but is inappropriate
for 5 axis milling.

In this paper, an algorithm developed to adaptively extract isocurves for rendering [9] is adapted
and enhanced to generate milling toolpaths for models consisting of trimmed surfaces, and can be used
in both 3 and 5 axis milling. The resulting toolpaths do not gouge locally and combine the advantages
of both prior approaches. The output toolpath is appealing since it is composed of isoparametric
curves and is therefore compact, exact, and easy to process. Furthermore, it is more optimal than the
previous methods in that the resulting toolpath is shorter and it provides a direct quantitative bound
on the resulting scallop height. This algorithm has been used to compute gouge avoiding toolpaths
for automatically milling freeform surfaces without requiring the introduction of auxiliary check and
drive surfaces.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling-Splines; Curve, surface, solid, and object representations.

Additional Key Words and Phrases: NURBs, adaptive isocurves, machining toolpath.

1 Introduction

In order to evaluate the quality of toolpaths, two criteria are introduced. One deals with the validity of

a set of toolpaths and the other with its optimality.

�This work was supported in part by DARPA (N00014-92-J-4113) and the NSF and DARPA Science and Technology
Center for Computer Graphics and Scienti�c Visualization (ASC-89-20219). All opinions, �ndings, conclusions or recom-
mendations expressed in this document are those of the authors and do not necessarily re
ect the views of the sponsoring
agencies.

yAppreciation is expressed to IBM for partial fellowship support of the �rst author.
zCurrent address: Computer Science Department, Technion, Haifa 32000, Israel.

1

