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Figure 9: Vs (dotted) is computed as intersection of hemisphere boundaries (great circles) of Gs vertices (dashed) projected
as lines onto the plane Z = 1 and mapped back (of surface in Figure 2).

(a)

(b)

Figure 10: A trimmed region from the surface in Figure 2 is shown in (a). In (b), shown are its Gs (dashed), the silhouette
and boundary curves of its Ns(u; v), and its Vs (dotted).



Figure 8: Convex hull (dashed) is computed for the projected great circles as lines in the plane Z = 1, using central projection
(of surface in �gure 2).

Gs, central convex hull of the image of Gs;

Output:
Vs, tightly bounded visibility set of S;

Algorithm:

Hi ( hemispheres associated with vertices

of R
�
Gs
�
;

HP
i ( @Hi centrally projected on plane

Z = 1;
VP
s ( intersection set of @Hi half planes;

Vs ( R�1
�
VP
s

�
mapped back to S2;

Figure 9 shows an example of this projection, the result-
ing Vs in the plane Z = 1, and mapped back onto S2.

5 Extensions

Bounding cones based methods [16, 19] usually examine the
entire parametric domain of the surface. Adopting these
methods to support trimmed surfaces can be di�cult. In
contrast, the method presented herein can be easily ex-
tended to support trimmed surfaces. The boundary of the
Gauss map will be computed for the trimmed boundary
curves of N̂s(u; v), and its trimmed central silhouette curves.
No other part of the algorithms developed herein need to be
changed. Figure 10(a) shows a trimmed surface constructed
from the surface in Figure 2. In Figure 10(b), the extracted
silhouette and boundary curves of its Gauss map, its convex
hull, and the visibility set (in dotted lines), are all shown
mapped onto S2. Figure 11(a) shows a trimmed region out
of S2. Obviously, the Gauss map of this surface is identical
to the surface itself. In Figure 11(b) the Gauss map with its
convex hull and the resulting visibility set are shown.

Given a modelM consisting of several, possibly trimmed,
surfaces one can now answer the query, whether or not there
exists a direction from which all surfaces are visible. By
computing Vs for each surface, such a direction exists i�T

si2M
Vsi 6= �. Furthermore, any vector from the centrally

convex set of
T

si2M
Vsi can be exploited as a direction from

which all surfaces of M are visible in the local.

6 Conclusion

An algorithm to provide a tight bound on the visibility di-
rections of a given surface S(u; v) is described, combined
with an algorithm to compute bounds on the Gauss map of
S. This bound is tight since it provides the (centrally con-
vex) visibility set Vs of S(u; v). The algorithm can be easily
extended to provide a tight visibility bound for a trimmed
surface, and/or a set of surfaces.

The symbolic computation has a �xed complexity, given
the order and continuity of the surface. The complexity of
the convex hull computation of the image of the Gauss map
is nlog(n), where n is the number of vertices, which is the
optimal time. The visibility set is computed in linear time
from the Gauss map. The silhouette extraction (zero set

of


N̂s(u; v); N̂

2
s (u; v)

�
) is the only numeric computation in

this algorithm. Subdivision based techniques [10] were used
to compute its zero set.
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Figure 7: Let Gs be a great circle segment. Then, the boundary of Vs (dotted) is the boundary of the intersection of the two
hemispheres associated with the end vectors of Gs.

segments as line segments on the Z = 1 plane. It is neces-
sary for neither Gs nor Vs to be in the Z > 0 hemisphere.
Instead, a rotation, R, could map Gs or Vs into the upper
hemisphere. Further, if P is the plane through the origin
that dichotomizes S2 into two hemispheres, one strictly con-
taining Gs (or Vs), then R is the mapping that transforms
the normal of P to the z axis. One can �nd P by using loose
bounds such as bounding cones [16, 19] or by computing the
three dimensional convex hull of Gs (or Vs). Alternatively,
an O(n) algorithm to rotate points on a unit sphere as far
away from the equator as possible, is described in [3].

Therefore, an algorithm to compute the central convex
hull of Gs for surface S(u; v) follows,

Algorithm 1

Input:

S(u; v), input surface;

Output:

Gs, central convex hull Gauss map of S(u; v);

Algorithm:

N̂s(u; v) ( unnormalized normal surface of
S(u; v);

B ( Boundaries of N̂s(u; v), projected onto

S2;

S ( Central silhouettes of N̂s(u; v), as the

zero set of


N̂s; N̂ 2

s

�
, projected onto S2;

R ( Rotation to map B and S to the Z > 0
hemisphere;

G
P

s ( Central convex hull of R(B [ S);

Gs ( R�1
�
G
P

s

�
;

In section 4, Gs is used to compute the visibility set of
S(u; v), Vs.

4 Computing the Visibility Set

Gs is now used to compute a tight bound on Vs.

Lemma 3 The visibility set derived from Gs is the same as
the visibility set derived from the boundary of Gs, @Gs.

Proof: Recall that Gs is centrally convex. For each
interior vector ~� 2 Gs, there exists a great circle segment
C � Gs, such that ~� 2 C and the two end vectors of C are
in @Gs. Since the visibility set of C can be determined from
its two end vectors in @Gs by Lemma 2, we conclude that it
is enough to examine only (the vectors in) @Gs in order to

determine visibility set from Gs

The approximated boundary of Gs is a set of great cir-
cle segments. By Lemma 2, it follows immediately that it
is enough to examine the end vectors of these great circle
segments in order to determine the visibility of Gs (and Gs).
These end vectors are the vertices of @Gs.

Lemma 3 suggests an e�cient way to compute Vs from
Gs. Given the set of vertices of @Gs, F , we associate a
hemisphere Hi (Figure 5) with each vertex fi 2 F . The
intersections of all these hemispheres is Vs:

Vs =
\
fi2F

Hi (5)

As in section 3, one can use the central projection and
project these hemisphere boundaries (great circles) onto the
plane Z = 1 from the origin. These great circles are mapped
to lines in the plane (HP

i , the projection of Hi, is now a half

plane de�ned by a line). Furthermore, since Gs is centrally
convex, the intersection problem is reduced to intersecting
each line in the plane only with its two neighbors, the pre-
vious line and the next line. Therefore, the complexity of
this stage is linear (see Algorithm 1 for R):

Algorithm 2

Input:



~�

H

Figure 5: Each vector, ~� is associated with a hemisphere

H =
�
~� j k~�k = 1;



~�; ~�

�
� 0

	
.

a given direction ~�, ~� 2 H, 8H of all vectors in Ns(u; v).
That is, only a direction ~� contained in (the intersection of)
all hemispheres of all unit vectors in Ns(u; v) is in Vs.

Centrally mapped onto a plane, a hemisphere is a half-
plane. Because an intersection of convex regions is convex,
the domain of directions from which a surface is completely
visible, Vs, is centrally convex as well.

Lemma 2 Let R be a region of a cylinder. Then, Nr (and
Gr) is a great circle segment in S2 and Vr is equal to the
intersection of the two hemispheres associated with the two
end vectors of Gr (Figure 7).

Proof: Without loss of generality, one can assume R is
a region of a cylinder around the z axis. That is, R(u; v) =
(acos(u); asin(u); v). The unit normal of region R is equal
to Nr(u; v) = (�cos(u);�sin(u); 0) and is obviously a great
circle segment on S2 that is also in the xy plane. Call the
great circle segment C.

Let H be a hemisphere associated with a vector in C. Let
~�1 and ~�2 be the two vectors of the end points of the arc of
C and let H1 and H2 be the two hemispheres associated with
~�1 and ~�2, respectively. @H, the great circle boundary of
H, is in a plane that always contains the z axis. Therefore,
by moving the vector ~� along C in the xy plane, the great
circle @H rotates around the z axis. This transformation
is continuous and monotone, when R is regular. Since ~�1

and ~�2 provide the two extreme locations and H1 and H2

form the hemispheres for the two extrema locations, the
intersection of all hemispheres associated with a vector in
Gr is equal to H1

T
H2.

Corollary 2 Suppose the Gauss map of S is two isolated
points on S2. Then, Vs, is the same as if Gs was the great
circle segment connecting the two vectors on S2.

Given Gs, for any two vectors ~�1; ~�2 2 Gs, one can in-
clude a great circle segment between them, selecting the

Figure 6: Central convex hull (dashed) of the silhouette and
boundary curves of Ns in Figure 4.

smaller one ( ~�1 and ~�1 have at least two such segments, one
that is greater then or equal to 180 degrees and one that
is less than or equal to that), without a�ecting Vs. Much
like a planar convex hull, in which for each two points in the
convex hull, the line segment between the two points is also
in the convex hull, for each two points in a central convex
hull on S2, the great circle segment between them is also
contained in the central convex hull:

De�nition 10 The central convex hull, CH � S2, of some
set S � S2, is the smallest subset of S2 containing S bounded
by a centrally convex curve (De�nition 8).

The edges of CH are great circle segments, seen as straight
lines from the origin. For any two points in CH, the great
circle segment on S2 between them is completely in CH.
Speci�cally, for any two points in Gs, one can add the great
circle segment between them having no a�ect on the visi-
bility set. Applying Corollary 2 allows one to employ the
central convex hull of Gs, Gs, instead of the exact and pos-
sibly topologically complex boundary of Gs (see Figures 4
and 6), while obtaining the same tight bound on the visibil-
ity set, Vs.

The convex hull must be computed centrally. That is,
edges of the convex hull are great circle segments on S2 (see
Figures 6 and 8). Optimal planar convex hull algorithms
have been known for sometime [1, 14]. We cannot use planar
convex hull algorithms directly, since we are interested in
the central convex hull. A central projection from S2 onto
a plane (De�nition 7) that maps great circles to straight
lines is �rst employed. Then, we apply the planar convex
hull algorithm to the two dimensional planar set only to
centrally project the edges of the convex hull back onto S2

as great circles.
Gs and Vs are required to strictly �t into a hemisphere

so that the mapping to a plane is homeomorphic, a require-
ment equivalent to the constraint for the surface to be visible
in the local from at least one direction. Satisfying this re-
quirement always allows one to uniquely project great circle



(a)
(b)

N̂s(u; v)

N̂s(u0; v0)

N̂ 2
s (u0; v0)

N̂s(u; v)

N̂s(u0; v0)

N̂ 2
s (u0; v0)

Figure 3: Central view extrema occur along boundaries and central silhouettes. Two-dimensional (a) and three-dimensional

(b) cases are considered. The central silhouette set of N̂s(u; v) (for the surface S(u; v) in Figure 2, in (b)) is equal to the zero

set of


N̂s(u; v); N̂ 2

s (u; v)
�
. At (u0; v0) we �nd such a central silhouette point.

S(u; v)

N̂s(u; v)
Ns(u; v) � S2

Figure 4: The silhouette set in the central projection of Ns(u; v) can be extremely complex. On the left, is a bicubic surface,

with its complex normal surface, N̂s, in the middle. The boundaries and central silhouette set of N̂s are projected on S2, on
the right.



Let q 2 R3, kqk 6= 0. Let L be a ray from the origin O
to q, and let qs2 be the point where L intersects S2.

De�nition 6 q is said to be centrally projected from O onto
S2 using L, and that qs2 is its projected point. This mapping
is called a central or gnomonic [5] projection.

In the ensuing discussion and unless stated otherwise, O
is assumed to be the center of the central projection. Let
P be an arbitrary plane that does not contain O, and qp be
the intersection point of L with P .

De�nition 7 q is said to be centrally projected onto a plane
P using L, and that qp is its projected point.

In De�nition 7, we notice that the perspective projection,
used in computer graphics, is a special case of a central
projection onto a plane.

De�nition 8 A closed curve, C(t) � R3, is said to be cen-
trally convex, if there exist a plane P that does not contain
O such that the central projection of C(t) onto P is a closed
convex curve. That is, the line segment connecting two ar-
bitrary points on the central projection of C(t) onto P is
totally within the closed region of P bounded by the central
projection of C(t).

3 Computation of the Image of the Gauss Map

Given an unnormalized normal surface N̂s(u; v) our goal is
to compute the image of the Gauss map and represent the
boundary of this image, @Gs, on S2. One can compute a
loose bound on the image of the Gauss map using cones
bounding the partials derivatives of S and then compute
the bounding cone for the normal �eld as their cross prod-
uct [16, 19]. Alternatively, one could compute N̂s(u; v) sym-
bolically, centrally project it onto S2 and compute a bound
on the projected image. In [15], the control mesh of N̂s(u; v),
represented as a B�ezier surface, was centrally projected onto
S2 and used as a bound for the directions of the normals of
the surface. In this section, we provide an arbitrarily precise
computation of @Gs by detecting the exact extreme points
of N̂s(u; v).

A surface displayed in an orthographic view can assume
extreme values only along its boundary or its silhouette
locations. Similarly, a surface centrally projected onto a
plane can assume extreme values on the plane only along
its boundary or its central silhouette. In a central projec-
tion, the viewing direction is a line through both the ori-
gin, O, and the viewed point S(u; v). Therefore, the cen-
tral projection viewing direction of S(u; v) is collinear with
S(u; v)�O = S(u; v).

De�nition 9 The central silhouette set of S, Ss, is the set
of parameter values for which N̂s is perpendicular to the
central projection viewing direction,

Ss =
�
(u; v)j



S(u; v); N̂s(u; v)

�
= 0

	
: (3)

To �nd the extreme values that N̂s can assume in a
central projection, one needs to compute the boundaries
and the central silhouette of N̂s. At a silhouette point
N̂s(u0; v0) (see Figure 3) the vector N̂s(u0; v0) is perpen-

dicular to N̂ 2
s (u0; v0). In order to compute the silhouette

Figure 2: This simple bicubic surface is used throughout
this paper as an example.

curves of N̂s(u; v), one can compute the unnormalized nor-

mal vector �eld of N̂s(u; v), N̂ 2
s (u; v), and �nd the zero set

of their inner product,

S =
�
(u; v) j



N̂s(u; v); N̂

2
s (u; v)

�
= 0

	
; (4)

to yield the set of all central silhouette points.
For a surface S,



N̂s; N̂ 2

s

�
can be symbolically computed

and represented as a piecewise polynomial or rational scalar
�eld [6, 7, 10, 18]. Once a representation is found, subdi-
vision based techniques can be used to �nd an arbitrarily
precise approximation to its zero set [10], as a set of piece-
wise linear curves.

It is necessary to compute square roots to �nd the pro-
jection of the boundary and central silhouette curves of N̂s

onto S2. The square root operation is not representable, in
general, as (piecewise) polynomial or rational curves. As a
result, an arbitrarily dense set of points can be determined
using the central projection, a set that de�nes a piecewise
linear approximation of the boundary and central silhouette
curves projected onto S2.

The smallest locally simply connected set that contains
the boundary and the central silhouette curves of Ns is the
exact boundary of Gs. Thus, Gs can be computed using a
two-dimensional boolean union operation on all the regions
bounded by the extracted boundary and silhouette curves
on S2.

The set of boundary and silhouette curves of N̂s(u; v)
may be topologically complex (see Figure 4), making the
computation of this two-dimensional boolean union di�-
cult. Fortunately, for the application demonstrated herein,
namely the computation of the visibility set [3, 4], Vs, it is
unnecessary to compute the exact boundaries of Gs in order
to �nd the exact boundaries of Vs.

The approach to the computation of Vs from Gs gener-
alizes the approach taken in [3, 4] to encompass freeform
surface representations.

Lemma 1 The directional domain from which a surface is
completely visible, Vs, is centrally convex.

Proof: For a vector ~� 2 S2 there exists a hemisphere
H � S2 from which a surface point with normal ~� is locally
visible (see Figure 5),

H =
�
~� j k~�k = 1;



~�; ~�

�
� 0

	
:

H holds all vectors in S2 that have a nonnegative inner
product with ~� (De�nition 5). For S(u; v) to be visible from



Figure 1: A surface can be locally visible, yet can hide itself
globally by looping around itself.

direction ~v i� there exist a small open disk D � Int(S) such
that each q 2 D is locally visible from ~v.

De�nition 4 The visibility set of surface S, Vs, is the set of
points on S2 that correspond to directions from which every
point p 2 Int(S) has local neighborhood visibility. That is,
~v 2 S2 is also in Vs if for all p 2 Int(S), p has local neigh-
borhood visibility from ~v. We say that S is locally visible
from each element of Vs

De�nition 4 prescribes the set of directions from which
the entire surface is locally visible. Those points are only
globally visible if the surface does not loop around itself, as
that in Figure 1, or if another surface is not closer to the
eye.

A common and simple method to determine a bound on
the normal directions of a given surface S is based upon
the computation of a bounding cone [16, 19] of all possible
normal directions of S. The normal cone is derived from the
cross product relation between the two cones representing all
the possible partial derivative directions. The normal cone
bound of the image of the Gauss map of S is fairly loose and
can provide insu�cient information in many applications.

In this paper, a method is presented to compute an arbi-
trarily precise bound on the directions from which a surface
is completely locally visible. That is, we present an approach
to the computation of Gs and Vs that prescribes an arbitrary
precise representation of the boundaries of Gs and Vs, not a
conical upper bound. Unlike existing schemes that exercise
bounding cones [16, 19] or convex hull bounds using a mesh
of the normal surface [15], the method presented herein can
be easily extended to provide Gs and Vs of a trimmed surface
or even of a set of several trimmed surfaces with arbritrary
precision.

Section 2 discusses the necessary background. In sec-
tion 3, we develop a method to compute the image of the
Gauss map, Gs, of a given surface S. Gs, as a unit vector
�eld [2], is represented and bounded by its boundary curves
on the unit sphere, S2.

One application that demonstrates the importance of the
Gauss map is the computation of the visibility set of a sur-
face. We follow the approach proposed in [3, 4] and gen-
eralize it to support freeform surfaces. Using the methods
presented herein, the image of Gs is used to compute the

visibility set, Vs, of S(u; v) in section 4. Vs bounds all the
directions from which S(u; v) is completely locally visible
and is also represented by determining its boundary curves
on S2.

All �gures in this paper were created from an implemen-
tation of the algorithms using the Alpha 1 solid modeler
developed at the University of Utah.

2 Background

Given a regular C1 surface S(u; v), let Ns(u; v) = nS(u;v) be
the unit normal surface to S(u; v). We use this new notation
to emphasize that np, de�ned in De�nition 1, is dependent
on the parametrization. Thus,

Ns(u; v) =
@S(u;v)

@u
� @S(u;v)

@v

k @S(u;v)
@u

� @S(u;v)
@v

k
: (1)

A surface is considered completely locally visible from
direction ~� if the following holds.

De�nition 5 Given a C1 surface S(u; v), and a vector ~�,
S(u; v) is completely locally visible from direction ~� i� each
point in S is locally visible from ~�.

A surface S is partially locally visible from ~� if only some
of the points in S are locally visible from ~�. As de�ned,
surface normals must point to the \inside" of the surface
(object).

Using De�nition 5, one can immediately see from De�-
nition 4 that

Corollary 1

Vs = f~� j h~�;Ns(u; v)i � 0;8u; v; k~�k = 1g.

Vs � S2 since it contains only unit vectors. In this paper,
we compute @Vs, the boundary of Vs, for a given surface
S(u; v). We assume that the surface is completely locally
visible from at least one direction, i.e. Vs is not empty.
This is obviously not always the case. S2 itself, consid-
ered as a single surface, has no direction from which it is
completely locally visible. However, a surface can always be
subdivided and tested using loose bounding techniques, such
as the bounding cones [16, 19], until this criterion holds.

Whenever possible, the unnormalized normal surface will
be used instead of Ns(u; v). The unnormalized normal, re-

ferred to as N̂s, is de�ned as,

N̂s(u; v) =
@S(u; v)

@u
�

@S(u; v)

@v
; (2)

which has a parametrization dependent magnitude. In the
ensuing discussion, we symbolically compute the unnormal-
ized normal surface of N̂s, and refer to it as N̂ 2

s . S(u; v) is

assumed to be regular, that is kN̂s(u; v)k 6= 0, for all u; v,

and su�ciently di�erentiable so that N̂s(u; v) and N̂ 2
s (u; v)

are continuous.
Algorithms to symbolically compute the sum, di�erence,

and product of B-spline or B�ezier surfaces are well known [6,
7, 10, 18]. This paper will exercise symbolic computation
and representation of surfaces, computed as scalar and vec-
tor �elds that represent properties such as curvature [11],
normals [8], o�set error [13], or surface slopes and speed
bounds [12]. For example, the B�ezier or NURBs representa-

tions of N̂s(u; v) is a normal vector �eld that can be symbol-
ically computed as the (cross) product of the partial deriva-
tives of S(u; v) (equation (2)).



Arbitrarily Precise Computation

of

Gauss Maps and Visibility Sets

for

Freeform Surfaces 1; 2

Gershon Elber
3

Elaine Cohen

Department of Computer Science Department of Computer Science

Technion, Israel Institute of Technology University of Utah

Haifa 32000, Israel Salt Lake City, UT 84112 USA

Abstract

The need to compute visibility and accessibility
of surfaces occurs in a broad range of applica-
tions from computer aided design and manufac-
turing to computer graphics and vision. Surface-
surface intersection is an essential task in mod-
eling systems that support boolean operations.
Recently, Gauss maps and visibility sets were
shown [3, 4, 20, 21] to be helpful in robustly solv-
ing the above problems.

This paper presents a symbolic based method
to both compute and exploit the Gauss map of
a freeform surface or a model consists of sev-
eral, possibly trimmed, freeform surfaces. Un-
like other approaches to the computation of the
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1This work was supported in part by DARPA (N00014-92-J-4113).
All opinions, �ndings, conclusions or recommendations expressed in
this document are those of the authors and do not necessarily reect
the views of the sponsoring agencies.

2This work was supported in part by grant No. 92-00223 from the
United States-Israel Binational Science Foundation (BSF), Jerusalem,
Israel. However, opinions, conclusions or recommendations arising
out of supported research activities are those of the author or the
grantee and should not be presented as implying that they are the
views of the BSF.

3While visiting at the University of Utah.

1 Introduction

The directions from which a surface is completely visible are
of fundamental interest for many applications. In graphics,
this problem is closely related to the hidden surface removal
problem [8, 9]. In manufacturing, a surface can be machined
only when it can be reached or \seen" by a tool. In [21],
the directions from which a feature can be approached for
machining purposes without interference is investigated.

The Gauss map of surface S [2, 17], Gs, and the visi-
bility set of surface S [3, 4, 20], Vs, can be used for both
shape recognition and matching since they provide a unique
characterization of a surface. Throughout this paper, a sub-
script will denote the surface for which the map or the set
is computed.

We �rst review some intuitive elementary aspects of vis-
ibility. For a point p on a surface S to be visible to an
observer's eye located at a point E two tests must be satis-
�ed. First, p must be \forward facing" and not on the \back
side" of S, which can be determined by locally examining
the surface. Second, p cannot be occluded by another part
of S or by a di�erent surface in the scene, that is, another
surface lies along the ray from the eye to p but is closer to
the eye than p. This last property can only be determined
by examining global properties. We will more rigorously de-
�ne the �rst requirement, and consider collections of such
eye points.

De�nition 1 We de�ne Gs, the Gauss map of a surface S,
to be a map from the surface S to the unit sphere, S2, which
takes each point p 2 S to its unit normal vector, ~np. That
is, ~np = Gs(p).

De�nition 2 Given a unit direction vector ~v, we say that a
point p 2 S, is locally visible from direction ~v i� h~v; ~npi � 0.

Denote by Int(S) the interior of S. Then,

De�nition 3 Given a unit direction vector ~v, we say that
a point p 2 Int(S) has local neighborhood visibility from


