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ABSTRACT

Detailed analysis of manymathematical properties of sculptured models has been

hindered by the fact that the properties do not have the same representation as

the surface. For example, unit tangents, surface normals, and principal curvatures

are typically computed at prede�ned discrete sets of points on the surface. As

such, aliasing can occur and features between samples can be missed. Synthesizing

information about the shape of an object and operating on the model, whether by

physical machining tools, graphics display programs, or mathematical analysis, has

been treated as either a discrete or local problem in general. The research being

reported on here has focused on another approach, that of creating algorithms that

construct the mathematical properties in closed form, or construct approximations

to those mathematical properties through symbolic computation. Global analysis

can then be applied while an accurate error bound is obtained.

Basic tools required for such symbolic computation are presented and their usage

in a broad range of applications from o�set approximations through curvature

analysis to generation of machining toolpaths are demonstrated. The combination

is not only shown to be powerful but it also provides a novel approach to problem

solving in an elegant and robust way.
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CHAPTER 1

INTRODUCTION

\Where shall I begin, please your Majesty?" he asked. \Begin at the

beginning," the King said, gravely, \and go on till you come to the end:

then stop."

Alice's Adventures in Wonderland, Lewis Carroll

The �eld of CAGD has evolved signi�cantly in the last decade. The B-spline

representation, introduced to the �eld of CAGD during the 70s, has become a

dominant representation in mechanical design. Techniques to manipulate, evaluate,

mill, render, and analyze freeform surface based models have undergone extensive

research. It is common for surfaces/curves to be approximated by a set of poly-

gons/polylines for milling, rendering, and analysis purposes. Other properties are

computed at discrete locations and interpolation is used to provide the information

over the entire domain.

This thesis applies symbolic computation to some of these problems. The power

of symbolic computation for freeform curves and surfaces will be demonstrated

throughout this document. Symbolic computation provides the ability to compute

properties with exact precision. It virtually eliminates the fundamental problems

that rise from discrete sampling. If the domain being sampled contains information

in higher frequencies than that of the samples, the original data cannot be recon-

structed precisely (Nyquist theorem). Unfortunately, many important problems

have that characteristic.

The use of symbolic computation opens the door for solving problems using a

global approach. It may be useful to demonstrate the di�erences between global and



2

local methods using an example from computer graphics. Two commonmethods are

used to render realistic scenes: ray tracing and radiosity. The �rst \�res" a single

ray at a time and samples the world along that particular line. This is clearly a

local approach. The second looks over the problem globally and �nds all the energy

distribution simultaneously in the equilibrium state. Given a scene, this second

technique is ideally global because it takes into account all data. We say \ideally"

because several approximations are commonly performed in this method to obtain

faster results. It is not surprising then, that ray tracing methods face severe aliasing

problems. Major research e�orts in the computer graphics community are devoted

to overcoming the ray sampling problems. The ideal radiosity method does not

introduce aliasing problems, although the scene subdivision and polygonization

stage does, simply because most of the subdivision techniques are local.

Another way to distinguish global techniques from local ones is that global tech-

niques can arrive at all their results at the same time while local methods provide

the viewer with sequential information. A global method may be used to analyze a

whole surface at once. The ray tracing technique from the above example processes

one sampled ray at a time, whereas the radiosity method computes and returns the

light distribution information for all elements in the scene simultaneously.

Greedy algorithms are local, as shown by the coin based example in [1], pp. 321

emphasizing their global ine�ciency. Taylor approximations are another example

of exploiting local information. The Newton Raphson curve root �nding is clearly

a local technique in that it converges to roots in a neighborhood of the initial

guess. Recall that it does not ensure �nding all the roots. On the other hand, if

an algorithm uses properties of the entire surface and makes decisions based on

both local and global information, it is referred to as a global algorithm. An ideal

method should �nd all the solutions quickly and so must be global.

We use derived surfaces, called property surfaces, whose de�nitions are derived
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from di�erent attributes of the original surface as auxiliary surfaces to help analyze

the original surface. For example, @F

@u
(u; v) is a property surface of F , and so

is n(u; v), the surface of unit normals. The two surfaces of principal curvatures,

�1
n
(u; v) and �2

n
(u; v) are also property surfaces.

De�nition 1.1 Suppose S1 and S2 are vector spaces of surfaces. An

operator P : F ! p 2 S2, for all F 2 S1, is called a property operator

if the image surface, p, is associated with a property of F , the domain

surface. In that case, p is called a property surface.

Some property surfaces are of the same \type" as the original surface whereas

others are not. If F is a tensor product NURBs surface, then @F

@u
(u; v) is a property

surface which is also a tensor product NURBs surface with the same knot vectors,

but with di�erent (lower) order and continuity properties. @F

@u
(u; v) � @F

@v
(u; v)

is also a property surface, that is, a tensor product NURBs surface, but with

di�erent knot vectors, di�erent (higher) order, and di�erent (lower) continuity.

These two property surfaces share the trait with F that they are NURBs surfaces,

but n(u; v), �1
n
(u; v) and �2

n
(u; v) are not NURBs surfaces, in general. They cannot

be represented as a piecewise parametric rational functions, as we shall later see,

and hence, cannot be represented as NURBs surfaces.

We restrict ourselves (de�nition 1.1) to using property surfaces that are either

representable as NURBs or to property surfaces for which we can derive approx-

imations that are representable as NURBs. This restriction enables us to apply

any algorithmic approach developed for the NURBs representation to the property

surfaces. Not every property is representable as a NURBs surface. A unit normal

surface has a square root in the denominator of its normalization which is not

representable as a NURBs.

Contouring techniques [4, 45, 59] developed for freeform surfaces can be applied

immediately to a NURBs representation of a property surface. Because both the
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original and the property surfaces share the same parametric domain, one can

easily create a trimmed surface consisting of those regions in the original surface

having the desired property values. In other cases the zero set of certain property

surfaces may be required. For example, let n̂z(u; v) be the z component of n̂(u; v),

where n̂(u; v) = @F (u;v)

@u
�

@F (u;v)

@v
is orthogonal to the parametric surface F (u; v) at

(u; v). Then the set of zeros of n̂z(u; v) is simply the parameter values along the

silhouettes of the original surface when F is being viewed from (0; 0;1). Hence, the

silhouette extraction problem is equivalent to a root �nding problem (contouring),

which is usually simpler. Trimmed surfaces [9, 47] are the natural way to represent

the regions de�ned by the contouring operator. In fact, the parameter values of

the contours of certain property surfaces can serve as the parameter values of a

trimming curve for the original surface.

In this thesis, we apply global techniques based on symbolic computation to a

broad range of problems. In Chapter 2, we develop the tools, some of which are

described above, that will be used throughout this dissertation. It may be a surprise

how small the number of required tools is.

As is discussed in Chapter 3, o�sets of freeform piecewise polynomial/rational

curves and surfaces are not, in general, representable in the same domain. Ap-

proximation techniques are used instead. However, we use a symbolic method to

compute the error function of these approximations. We use this error function in

two ways. First its extrema serve as a bound on the error. In addition, isolation of

the regions of the error function with large error allow us to automatically improve

the approximation until a prescribed tolerance is achieved.

In Chapter 4, surface curvature analysis is performed globally using symbolic

computation of curvature property surfaces. Curvature analysis has applications in

modeling as well as in manufacturing. Symbolic computation provides the ability

to trichotomize a surface into three regions, convex, concave, and saddlelike regions.
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This trichotomy, which can dramatically improve milling algorithms e�ciency, is

almost impossible without a global approach.

In Chapter 5, the questions of toolpath generation for NC machining is dealt

with. Optimal toolpaths for freeform surfaces is known as a di�cult problem and

current approaches fails in extreme cases. We will present a symbolic algorithm

that generates a toolpath for machining freeform surfaces that performsmuch better

than current local schemes. This algorithm is then enhanced so it can automatically

generate machining toolpaths for real models consisting of several trimmed surfaces

while avoiding any gouging. Because the algorithm provides a bound on the

redundancy in the generated toolpath, it was successfully modi�ed and used as a

rendering tool. The toolpath curves are rendered using curve rendering techniques

to form the image.

Finally in Chapter 6, several other applications are addressed. Approximation

of higher order curves using lower order ones is the �rst. We also add a composition

operator to the set of operators we de�ned in Chapter 2 and discuss its potential.

Other surface properties such as speed, and slope are de�ned and considered, and

twist is considered as part of a global symbolic approach.



CHAPTER 2

SYMBOLIC AND NUMERIC

COMPUTATION

Equations are more important to me, because politics is for the present,

but an equation is something for eternity.

Albert Einstein

This Chapter develops the symbolic representational and numeric computational

tools required to carry out the analysis performed throughout this document.

The derivations of the tools for the B�ezier representation are presented while

the appropriate references to derivations for the equivalent tools for the NURBs

representation are made.

2.1 Symbolic Representation

The following basic symbolic representations will be required for B�ezier and

NURBs curves and surfaces:

� derivative representation.

� sum/di�erence representation.

� product representation.

This quite minimal set of representations is extremely powerful tool as is demon-

strated by the following Chapters. Because a division by a scalar entity can always

be de�ned as a rational expression, we never have to compute such an operation
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explicitly: x=y � x

y
. It should be carefully noted that these representations

represent the result of symbolic operators. That is, they represent the result by

means of symbols instead of evaluating it numerically at a single point. More

practically, the result is represented in the same B�ezier or NURBs domain as a curve

or a surface, so a closure is formed. This closure enables arbitrary composition of

these operators.

2.1.1 Derivatives Representation

Representing the derivatives of B�ezier and NURBs curves and surface is straight-

forward [27]. Di�erentiation of a single B�ezier basis function may be expressed as

a linear combination of two lower order B�ezier basis functions:

Bn

i

(1)(t) =

 
i

n

!
iti�1(1� t)n�i �

 
i

n

!
(n� i)ti(1� t)n�i�1

= n

 
(n� 1)!

(i� 1)!(n� i)!
ti�1(1 � t)n�i �

(n� 1)!

i!(n� i� 1)!
ti(1 � t)n�i�1

!

= n

  
i� 1

n� 1

!
ti�1(1� t)n�i �

 
i

n � 1

!
ti(1 � t)n�i�1

!

= n(Bn�1
i�1 (t)�Bn�1

i
(t)): (2.1)

For curves it immediately follows that:

dC(t)

dt
=

nX
i=0

PiB
n

i

(1)(t)

=
nX
i=0

nPi(B
n�1
i�1 �B

n�1
i

)

= n(
nX

i=0

PiB
n�1
i�1 �

nX
i=0

PiB
n�1
i

)

= n(
nX

i=1

PiB
n�1
i�1 �

n�1X
i=0

PiB
n�1
i

)

= n
n�1X
i=0

(Pi+1 � Pi)B
n�1
i

: (2.2)
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Extension to tensor product surfaces is straightforward because there is no

dependency between the two surface parameters (m is the degree).

@S(u; v)

@u
=

mX
i=0

nX
j=0

PijB
m

i
(u)

(1)
Bn

j
(v)

= m
m�1X
i=0

nX
j=0

(P(i+1)j � Pij)B
m�1
i

(u)Bn

j
(v); (2.3)

and similarly for
@S(u;v)

@v
.

Di�erentiation in the NURBs domain follows the same procedure [27] (k is the

degree):

dC(t)

dt
=

n�1X
i=0

PiB
k

i;�
(t)

(1)
(t)

= k
n�2X
i=0

(Pi+1 � Pi)

ti+k � ti
Bk�1

i;�
(t); (2.4)

and for surfaces:

@S(u; v)

@u
=

mX
i=0

nX
j=0

PijB
k

i;�
(u)

(1)
Bl

j;�
(v)

= k
m�1X
i=0

nX
j=0

P(i+1)j � Pij

tu
i+k

� tu
i

Bk�1
i;�

(u)Bl

j;�
(v): (2.5)

2.1.2 Representation of Sum/Di�erence

Finding a representation for the sum or di�erence of two B�ezier or NURBs curves

or surfaces can be achieved by bringing them to a common representation. If the

two curves do not share the same parametric domain, their knot vectors can always

be a�nely transformed without modifying the curves, so their parametric domains

will match. If the two curves or surfaces are not of the same polynomial order, the

lower one should be degree raised [16, 17] to the higher order. If internal knots

(of a B-spline curve) have di�erent multiplicities in the two curves, at each knot,

the curve with the lower multiplicity should be re�ned [7, 15] to match the higher
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multiplicity. Once both curves are transformed to have a common order and knot

vector, their control polygons can simply be summed or di�erenced because:

C1(t)� C2(t) =
mX
i=0

PiB
m

i;�
(t)�

mX
i=0

QiB
m

i;�
(t)

=
mX
i=0

(Pi �Qi)B
k

i;�
(u) (2.6)

This condition also holds for surfaces. Once the two surfaces share the same

orders and knot vectors, their meshes can be simply subtracted or added:

S1(u; v)� S2(u; v) =
kX

i=0

lX
j=0

PijB
m

i;�u
(u)Bn

j;�v
(v)�

kX
i=0

lX
j=0

QklB
m

i;�u
(u)Bn

j;�v
(v)

=
kX

i=0

lX
j=0

(Pij �Qkl)B
m

i;�u
(u)Bn

j;�v
(v) (2.7)

Bringing two B�ezier curves to a common domain only requires elevating the

degree of the lower one.

(1� t)Bn

i
(t) =

n!

i!(n� i)!
ti(1 � t)n�i+1

=
n � i+ 1

n+ 1

 
i

n+ 1

!
ti(1 � t)n�i+1

=
n � i+ 1

n+ 1
Bn+1

i
(t)

and

tBn

i
(t) =

n!

i!(n� i)!
ti+1(1� t)n�i

=
i+ 1

n+ 1

 
i+ 1

n+ 1

!
ti+1(1 � t)n�i

=
i+ 1

n+ 1
Bn+1

i+1 (t):

Therefore a B�ezier basis function of degree n may be represented as a convex

combination of two B�ezier basis functions of degree n+ 1:

Bn

i
(t) = (1 � t)Bn

i
(t) + tBn

i
(t)
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=
n � i+ 1

n+ 1
Bn+1

i
(t) +

i+ 1

n + 1
Bn+1

i+1 (t): (2.8)

Given a B�ezier curve of degree n, raising it to degree n + 1 involves:

C(t)

=
nX

i=0

PiB
n

i
(t)

=
nX

i=0

Pi

�
n+ 1� i

n+ 1
Bn+1

i
(t) +

i+ 1

n+ 1
Bn+1

i+1 (t)

�

= P0B
n+1
0 (t) +

nX
i=1

�
n+ 1 � i

n+ 1
Pi +

i

n+ 1
Pi�1

�
Bn+1

i
(t) + PnB

n+1
n+1(t): (2.9)

Once again, similar procedures can be followed for B�ezier surfaces.

It is desired to be able to subtract or add a constant to a freeform surface

or curve. Because
P

m

i=0B
m

i
� 1, a K constant curve may be represented as the

following B�ezier curve:

K = K
mX
i=0

Bm

i
(t) =

mX
i=0

KBm

i
(t) (2:10)

and hence, using equations (2.6) and (2.10) constant subtraction or addition is

equivalent to subtracting or adding this constant from all curve coe�cients. An

equivalent formulation holds for surfaces, and the NURBs representation.

A simple formulation can be de�ned for adding and subtracting rational curves

Ci(t) =
�
c
x

i
(t)

wi(t)
;
c
y

i
(t)

wi(t)
;
c
z

i
(t)

wi(t)

�
=

(cx
i
(t);c

y

i
(t);cz

i
(t))

wi(t)
:

C1(t)�C2(t) =
(cx1(t); c

y

1(t); c
z

1(t))

w1(t)
�

(cx2(t); c
y

2(t); c
z

2(t))

w2(t)

=
(cx1(t); c

y

1(t); c
z

1(t))w2(t)� (cx2(t); c
y

2(t); c
z

2(t))w1(t)

w1(t)w2(t)
: (2.11)

Addition of rational curves requires the capability to �nd products. Rational

surface addition and/or subtraction may be represented in a similarway. See [27, 30]

for additional details.
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2.1.3 Product Representation

Although �nding the symbolic derivative, sum and di�erence of B�ezier or NURBs

curves and surfaces is straightforward, �nding products of curves and surfaces is

more di�cult. We start by considering the product of two B�ezier curves and then

derive the analogous formulation for surfaces.

Given two B�ezier basis functions Bm

i
and Bn

j
, their product [30, 62] is equal to:

Bm

i
(t)Bn

j
(t) =

 
m

i

!
ti(1� t)m�i

 
n

j

!
tj(1� t)n�j

=

 
m

i

! 
n

j

!
ti+j(1 � t)m+n�i�j :

On the other hand:

Bm+n

i+j
=

 
m+ n

i+ j

!
ti+j(1� t)m+n�i�j ;

therefore:

Bm

i
(t)Bn

j
(t) =

�
m

i

��
n

j

�
�
m+n

i+j

� Bm+n

i+j
(t): (2:12)

Using equation (2.12), one can easily derive product formulas for curves and

surfaces:

C1(t)C2(t) =
mX
i=0

PiB
m

i
(t)

nX
j=0

QjB
n

j
(t)

=
mX
i=0

nX
j=0

PiQjB
m

i
(t)Bn

j
(t)

=
mX
i=0

nX
j=0

PiQj

�
m

i

��
n

j

�
�
m+n

i+j

� Bm+n

i+j
(t)

=
m+nX
k=0

RkB
m+n

k
(t) (2.13)

where:

Rk =
min(k;m)X

i=max(0;k�n)

PiQk�i

�
m

i

��
n

k�i

�
�
m+n

k

� :

The formulation for product surface follows much the same derivation:

S1(u; v)S2(u; v) =
mX
i=0

nX
j=0

PijB
m

i
(u)Bn

j
(v)

pX
k=0

qX
l=0

QklB
p

k
(u)Bq

l
(v)
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=
mX
i=0

nX
j=0

pX
k=0

qX
l=0

PijQklB
m

i
(u)B

p

k
(u)Bn

j
(v)B

q

l
(v)

=
mX
i=0

nX
j=0

pX
k=0

qX
l=0

PijQkl

�
m

i

��
p

k

�
�
m+p

i+k

� Bm+p

i+k
(u)

�
n

j

��
q

l

�
�
n+q

j+l

� Bn+q

j+l
(v)

=
m+pX
r=0

n+qX
s=0

RrsB
m+p

i+k
(u)Bn+q

j+l
(v) (2.14)

where:

Rrs =
min(r;m)X

i=max(0;r�p)

min(s;n)X
j=max(0;s�q)

Pi;jQr�i;s�j

�
m

i

��
p

r�i

�
�
m+p

r

�
�
n

j

��
q

s�j

�
�
n+q

s

� :

Finding the products of polynomial B-spline and NURBs is far more di�cult.

A direct approach has recently been developed in [49] which supports symbolic

computation of the coe�cients of the product after �nding the knot vector. How-

ever, because it is computationally expensive and complex to implement, one

might choose to exploit the uniqueness property of the process and compute the

coe�cients of the product by solving an interpolation problem. First, one would

form the knot vector of the product, which can be derived from the knot vectors and

orders of the factors. The order of the product curve, C(t) = C1(t)C2(t), is equal to

O = O1+O2 � 1, where O1 and O2 are the orders of C1(t) and C2(t), respectively.

The knot values and the continuity of the product curve at its knots are determined

by the factor curve with the lower degree of continuity at that knot. Let �i be a

vector holding all distinct values in � i, the knot vector of C i, arranged in ascending

order. At each knot value �j of �
i, let �i(�j) be multiplicity of �j in C

i. Then the

continuity of C i at this knot is equal to Ci
j
= Oi��i(�j)�1. � i can be decomposed

into two vectors: �i holding all distinct values and Ci holding their continuities,

i.e., � 1 , f�1; C1g and similarly � 2 , f�2; C2g. Let � be the merged ordered set

of the distinct values from both �1 and �2, and let C be de�ned so that the mth

knot Cm = min(C1
j
; C2

k
) if �1

j
= �2

k
. The resulting knot vector � will contain all the

distinct values in � with multiplicity � equal to �(�m) = O�Cm�1;8�m 2 �. The

resulting knot vector, � , is minimal in the sense that any curve C(t) representing
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the product C1(t)C2(t) will have a knot vector which contains � . One can �nd

the unique B-spline curve de�ned over � that interpolates C1(�i)C
2(�i) for all �i,

the node values of � . From uniqueness, such a curve interpolates C1(t)C2(t). This

process transforms the problem into an interpolation problem, producing a set of

linear equations that must be solved for the control polygon points of C(t). The

matrix formed is banded.

The resulting curve is unique in the sense that it minimizes the loss of continuity.

Each interval between two adjacent distinct knots of � may be represented as a

polynomial, and can be represented as a B�ezier segment. However, such an approach

guarantees only C0 continuity at the knots.

2.2 Numeric Computation

Knowing the zero set of a property surface and/or knowing all regions in which

the property surface values are larger than some threshold or even equal to some

speci�ed value is frequently useful in extracting shape information from given

curve(s) and surface(s). The ability to slice the given curve/surface with a plane is

called contouring and is equivalent to �nding the intersection of a curve and a line

or a surface and a plane.

Contouring is used extensively to extract data from property surfaces (see Chap-

ter 1). Once the contours are computed, their domain values in the parametric space

can serve as bounding trimming curves for the original surface, S(u; v), so that the

trimmed surface will hold all regions in S(u; v) known to have property values larger

(or smaller) than the contouring level, or will contain regions bounded between two

property values.

2.2.1 Contouring in E3

This contouring process is closely related to the surface-surface intersection and

ray-surface intersection [41] problems, with their inherent numerical complexities



14

and instabilities.

Let F (u; v) = ( x(u;v)
w(u;v)

;
y(u;v)

w(u;v)
;
z(u;v)

w(u;v)
) and P = Ax+By + Cz +D = 0 be a prop-

erty surface and a contouring plane, respectively. By substituting the coordinate

functions of F (u; v) into P one can solve for all the values of u and v in the domain

for which F (u; v)\ P 6= ;.

S(u; v) = A
x(u; v)

w(u; v)
+B

y(u; v)

w(u; v)
+ C

z(u; v)

w(u; v)
+D

=
Ax(u; v) +By(u; v) + Cz(u; v) +Dw(u; v)

w(u; v)
: (2.15)

A single NURBs surface representation for equation (2.15) can be found using the

operators de�ned in 2.1.2, 2.1.3, namely surface addition and surface multiplication.

The zero set of the surface S(u; v) is the set of parametric values for the required

intersection. Because both F (u; v) and S(u; v) share the same parametric domain,

mapping the parametric domain information to F (u; v) is trivial. S(u; v) is a scalar

surface, which leads to a simpler and faster computation. Assuming w(u; v) 6= 0,

the zero set of S(u; v) is computed using only the numerator of S(u; v). Thus, even

when F (u; v) is a rational surface, the contouring computation can be performed

on a scalar polynomial surface.

To �nd the contours, the scalar surface resulting from equation (2.15) is recur-

sively subdivided so subsurfaces intersecting the contouring plane are isolated. At

each stage, the scalar surface coe�cients are classi�ed into three categories:

1. all coe�cients are positive.

2. all coe�cients are negative.

3. coe�cients with di�erent signs exists.

Using the convex hull property of B�ezier and NURBs surfaces, it is clear the

�rst two cases have no intersection with the contouring plane. The third case
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Algorithm 2.1

Input:

S(u; v), input surface.

P, the contouring plane

�, tolerance of subdivision used in termination criteria.

Output:

Subsurfaces of S(u; v), intersecting the contouring plane.

Algorithm:

IntersectingSubSrf( S )

begin

M ( S control mesh.

If termination criteria hold with �

return f S g.

else if M control points are all positive or all negative

return �.

else

begin

Subdivide S into two subsurfaces S1 and S2.

return IntersectingSubSrf( S1 ) [ IntersectingSubSrf( S2 ).

end

end

suggests the surfaces may intersect and further investigation is in order, so only the

third type needs further subdivision. These steps are similar to the one presented

in [23, 59].

Figure 2.1 shows this �rst stage of isolating the subsurfaces crossing the con-

touring plane.

Termination criteria obviously relate to atness testing. However, it is also

required that the cross section of the patch with the contouring plane be simple,

where

De�nition 2.1 A simple patch during the contouring process is a patch

which intersects the contouring plane along one and only one connected



16

Figure 2.1. Subsurfaces intersecting the XY parallel contouring plane.

curve. Furthermore, this curve must start and end on two di�erent bound-

aries of the patch.

It is clear from Figure 2.2 that tracing the patches to form a piecewise linear

approximation of the contour may be ambiguous, because a single patch may have

more than two (one in and one out) neighbors.

Coercing the termination condition to allow only simple patches at the lowest

level simpli�es the task of disambiguating and connecting the patches into a piece-

wise linear approximation. This termination condition also simpli�es the problem

of correctly identifying the contours at degenerate points such as saddles. These

points can never satisfy the simplicity condition (de�nition 2.1), because at a saddle

point four contour curves meet. The atness criteria will terminate the subdivision,

and will mark such points so they can be treated in a special manner, depending

on the application.

Once traced into a a list of patches, one can pick the middle of each patch to

form the piecewise linear approximation of the contouring curve. However, by using

a higher order approximation on the intersection of the patch boundary and the
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Figure 2.2. Subsurfaces chaining into piecewise linear approx. may be ambiguous.

contouring plane one can obtain a much better result (Figures 2.1 and 2.2). Because

the patches are simple, a boundary crossing the contouring plane must have one

of its ends above the contouring plane and the other below it. The use of a �rst

order approximation ( a linear segment connecting the two end points ) to �nd

the intersection with the contouring plane was found to be inadequate because it

provided no information about the interior of the boundary curve. The subdivision

approach described in 2.2.2 can be used. Numeric methods may be used as well

considering that the single solution is bounded by the boundary curve end points.

In practice, as in Figure 2.1, the secant method was used, which is derived in any

introductory numerical analysis book, and which guarantees convergence because

the patch (and boundary) are simple.

One can, at this stage, attempt to numerically improve the curve by \marching"

along the surface as suggested in [23]. Furthermore, middle points may be in-

troduced and improved as well. We found that for most purposes, as used in later

Chapters, this stage was unnecessary and acceptable accuracy could be extracted in

reasonable time using only subdivision. The robustness of this \marching" process

has not been proven to be reliable enough.
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Algorithm 2.2

Input:

C(u), input curve.

�, tolerance of output.

Output:

Zero set of C(u).

Algorithm:

zeroSet( C )

begin

P ( C control polygon.

If length of P, kPk, is smaller than �

return f middle point of P g.

else if P control points are all positive or all negative

return �.

else

begin

Subdivide C into two subcurves C1 and C2.

return zeroSet( C1 ) [ zeroSet( C2 )

end

end

2.2.2 Contouring in E2

Computation of zero sets of curves is, in general, a much simpler task because

the result, for nondegenerate curves, is a �nite set of points. A simple subdivision

based algorithm exploiting the Convex Hull property of B�ezier and NURBs curves

can be easily formulated in a similar fashion [44]:

As pointed out in 2.2.1, numeric improvement is possible, but for our purposes

subdivision what found more robust and su�ciently fast.
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One can easily extend algorithm 2.2 to �nd the solution(s) of C(u) = K for some

constant K by de�ning a new curve Ĉ(u) as follows:

Ĉ(u) = C(u)�K

=
mX
i=0

PiB
k

i
(u)�

mX
i=0

KBk

i
(u)

=
mX
i=0

(Pi �K)Bk

i
(u) (2.16)

using equation (2.6) and equation (2.10).



CHAPTER 3

OFFSETS

When it is dark enough you can see the stars.

Ralph Waldo Emerson

O�set curves and surfaces are very important in manufacturing, Therefore,

computation and approximation of o�set curves and surfaces have undergone ex-

tensive research. For curves, the o�set is an intuitive operation and has been

mathematically known for more than a hundred years [6, 58, 65]. The o�set

operation is closed for arcs and lines, i.e., an o�set of an arc and a line are an

arc and a line, respectively. This is not so, in general, for B�ezier and NURBs

curves, so approximations are usually derived.

Two methods for �nding approximations to o�set curves are commonly used.

The �rst approximates the curve using piecewise lines and arcs and then �nds the

representation of the exact o�set to the arc and line approximation. That approach

was introduced [52] and used successfully in [12]. The second method attempts

to approximate the o�set by directly transforming the curve representation, in

particular the control points [13, 18, 28, 36, 37, 50]. To improve the accuracy of the

approximation in the second method, the original curve is subdivided [36, 37, 50]

or manually re�ned [13] when the error is above a prespeci�ed tolerance level. The

same o�set technique is then applied to each of the subdivided pieces. The original

curve is usually subdivided in the middle of its parametric domain [36, 37, 50],

although in general, that is not the optimal location. Curve inection points have

also been considered as splitting points for o�sets [37].
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Both approaches do not bound the o�set error globally. To bound the er-

ror introduced by the piecewise arcs and lines approximation, a curve-line and

a curve-arc maximum global distance computation is required. Such computation

is traditionally performed using a �nite set of samples. A bound on the maximum

error over the entire curve region cannot be guaranteed using such a technique.

In the second method, a �nite number of samples are examined to estimate the

error for the entire curve region (typically one, in the middle of the parametric

domain), which again cannot insure global error bound. Both methods usually

result in a piecewise representation of the approximation to the o�set, a more

di�cult representation to use in further applications if the o�set is to be used

as a modeling tool. Only the use of B-spline re�nement [13, 15] results in a single

curve. Approximations to o�sets of freeform surfaces are more di�cult to determine

because the subdivided components are subsurfaces. Piecewise bicubic patches have

been used to approximate a surface o�set of a given freeform surface [29]. This

method loses continuity across patches, unlike the re�nement technique [13], which

can be adapted for surfaces and which maintains the original continuity.

Because of the advantages of the curve/surface B-spline re�nement technique,

we have used this method as the basis of this implementation for bounding the

global error. However, the method presented here for bounding the error is not

limited to this type of representation.

Trimming the loops formed by the self-intersection curves of the o�set is consid-

ered a di�cult problem [12]. An attempt has been made to make the calculation

using numerical techniques and to perform a direct search for cusps as a mean of

detecting and identifying self-intersections [35]. However, an approximation to the

o�set may have no cusps simply because it is just an approximation. For surfaces,

unidimensional successive searches have been used to isolate self-intersection points

by minimizing the ratio of the Euclidean space distance (which goes to zero at
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a self-intersection point) over the parametric space distance (which should be

nonzero at such point) [2]. Because this method converges to a local minimum,

the initial guess location is crucial but is picked at random. Thus, robustness is

not guaranteed. Self-intersection curves have been traced using surface \walking"

techniques [2] that can also be combined with the detection methods developed

here.

Section 3.1 develops the method for bounding the error and then shows how to

use that information to isolate the regions with maximum error. Then, we show

how to apply local improvement steps iteratively, so convergence to a prespeci�ed

tolerance is assured. In section 3.2, we attempt to improve o�set approximations

by perturbing control points using an analysis of the error function. Section 3.3

extends this method to support a variable o�set operator that can be used as a

modeling tool. Section 3.4 shows how to use the tools developed in section 3.1 to

robustly detect and trim loops formed by self-intersections of the o�set.

3.1 A Global Bound for the O�set Operator

Let C(t) be a planar regular parameterized curve, which without loss of gener-

ality, is assumed to be in the x� y plane. An o�set curve for C(t) by an amount

d is de�ned mathematically as:

Ĉd(t) = C(t) +N(t)d (3:1)

where N(t) is the unit normal to the curve at t. Becuase N(t) ips its direction by

180o at inection points, a di�erent de�nition for N(t) should be used to de�ne a

manufacturing or design o�set:

De�nition 3.1 The o�set binormal, Bo(t), to a planar curve in the x�y

plane is a unit vector in +z direction. Then the o�set normal, No(t), is

de�ned as No(t) = Bo(t) � T (t), where T (t) is the unit tangent to the

curve.
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Throughout this Chapter, and unless otherwise speci�ed, only the o�set normal,

No(t), is used:

Cd(t) = C(t) +No(t)d (3:2)

Similarly for surfaces, an o�set surface for surface S(u; v) by an amount d is

mathematically de�ned as:

Sd(u; v) = S(u; v) + n(u; v)d (3:3)

where n(u; v) is the surface unit normal to the surface at parameter values (u; v).

In this Chapter, we will concentrate on characterizing methods for the NURBs

representation because the B�ezier representation is a subset of it. Given two

freeform NURBs curves C1(t), C2(t), their sum, di�erence (equation (2.6)), and

product (equation (2.13)) is also a NURBs curve as seen in Chapter 2. Derivatives

of NURBs curves are also NURBs curves (equation (2.4)), as are constant functions

(i.e., equation 2.10).

Therefore, if No(t) (n(u; v)) could be computed and represented as a NURBs,

so could Cd(t) (Sd(u; v)), respectively. Unfortunately, however, the general form

of a normal involves a square root which is usually not representable as either a

polynomial or a piecewise polynomial. Thus, o�sets of freeform curves and surfaces

will, in general, be approximations.

Let Cad (t) be an approximation to the o�set curve of C(t) by an amount d

(equation (3.2)), and let �(t) = Cad (t) � C(t) be the di�erence curve. Ideally, if

Cad (t) � Cd(t), then �(t) � No(t)d.

Two tests could be applied to �(t) to determine the accuracy of the o�set approx-

imation. First, the deviation of �(t) from the direction of No(t) could be measured,

by testing whether �(t) is orthogonal to the curve tangent. If T̂ (t) = C 0(t), then

T (t) = T̂ (t)

kT̂(t)k
is the unit tangent of C(t).

�
T̂ (t)

kT̂(t)k
;

�(t)

k�(t)k

�
measures the cosine of the

angle between T̂ (t) and �(t), and is equal to zero everywhere along the exact o�set
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curve. However, �nding T (t) and k�(t)k requires representing square roots, and

therefore is impractical when using a piecewise rational representation. However,

the square of this inner product,
D
T̂ (t); �(t)

E D
T̂ (t); �(t)

E

kT̂ (t)k2k�(t)k2
; (3:4)

can be represented.

Although equation (3.4) is representable as a piecewise rational, it is a complex

process. The equation requires at least six curve products (more if the curves are

rational), each of which doubles the degree.

Instead, a second test that measures the magnitude of �(t) can be applied to

determine the accuracy of Cad (t). Computationally, it is much more attractive. Cur-

rent o�set techniques usually test accuracy by evaluating this magnitude on a set

of sampled points. Direct representation of k�(t)k would require the representation

of a square root, so  (t) = k�(t)k2 is used instead and compared with d2:

 (t) = k�(t)k2 = �x(t)
2 + �y(t)

2 + �z(t)
2 (3:5)

where �x(t), �y(t) and �z(t) are the components of �(t).

Equation (3.5) can be directly represented using multiplication and addition

which are computable for rationals and piecewise rationals. Hereafter, assume  (t)

can be computed and represented as a scalar NURBs curve. For exact o�sets,  is

a constant value curve equal to d2. By subtracting d2 from  , the di�erence curve

is obtained.

�(t) =  (t)� d2: (3:6)

The extremal values of the coe�cients of � provide a global error measure. It

is important to examine the consequences for computing �(t) instead of "(t) =

k�(t)k�d, the Euclidean error between the exact o�set curve and its approximation:

�(t) =  (t)� d2 = k�(t)k2 � d2 = ("(t) + d)2 � d2 = "(t)2 + 2d"(t) � 2d"(t) (3:7)
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In other words, by computing the di�erences of the squared magnitude, the

resulting error bound is scaled by the magnitude of twice the o�set distance, 2d,

which is a constant and therefore easy to control. "(t)2 has been ignored because

it is much smaller than 2d"(t), when the error converges to zero.

The problem of �nding the global o�set error has been reduced to a problem

of �nding the extrema of a freeform explicit curve. Because the values of a scalar

B-spline curve over an interval lie between the maximum and minimum values of

the coe�cients of the nonzero B-spline functions, a simple and computationally

e�cient way of locally bounding the curve is immediately available.

The error between a C2 continuous function and its Schoenberg variation di-

minishing spline approximation over a knot vector ftig is O(jftigj2), where jftigj =

maxifti+1 � tig. By using a sequence of Schoenberg variation diminishing spline

approximations to No(t), each one based on a knot vector that is a re�nement of the

previous one, and a sequence, fCi(t)g, of re�ned representations to C, based on the

same sequence of knot vectors, we form a convergent sequence of approximations

to Cd. If the approximation is close over one interval, it is unnecessary to re�ne

over that interval just to make the mesh norm smaller, because the approximation

error is based on maximum error bounds over local regions. Hence, we need only

re�ne over intervals where the error is large, as determined by the extrema of �.

We derive an iterative algorithm in which each step uses the direct polygon

transformation method [13] to compute o�set approximations. The criterion for

proceeding to the next step uses the magnitude of the extrema of �(t). Then, the

locations of the extrema are used to re�ne C(t) (going from Ci(t) to Ci+1(t)) and

to create a new approximation to the o�set. The process terminates when the

magnitudes of the extrema of � are within the tolerance.

Algorithm 3.1 retains its curve re�nement history in the Ci(t) sequence. The last

curve in the sequence can be o�set to within a provided tolerance by an amount
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Algorithm 3.1

Input:

�, required offset curve tolerance.

C(t), input curve.

d, offset distance.

Output:

Ca
d (t), offset curve approximation within � accuracy.

Algorithm:

C0(t)( C(t).

i( 0.

Do

Compute offset approximation Ca
d (t) for Ci(t).

Compute offset error �(t) for Ci(t), Ca
d (t).

Ci+1(t) ( Ci(t) refined at �(t) highest error region(s).

i( i+ 1.

While (�(t) highest error > �).

d. Because the algorithm \knows" more about the curve, improvements can be

applied in a more optimal way than simply subdividing the curve at its midpoint

as has been done in the past. Even for polynomial representations such as B�ezier

curves, it is common to split the curve at the middle of the parametric domain if

the accuracy of the o�set is not good enough. Using the global error measure, one

can now split the curve near the parameter value with the highest error. This will

usually result in requiring fewer subdivisions to achieve a given tolerance.

One can compute and re�ne the curve at the maxima of �(t) only in each

iteration. However, simultaneous re�nement of all regions whose respective errors

were larger than allowable was found to be much faster. The computation of

�(t) is much more demanding than single knot insertion. By using simultaneous

re�nement, this computation is fully exploited.
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Figure 3.1 shows four stages of algorithm 3.1, using global re�nement, operating

on a chess pawn cross section. Single knots have been inserted in all parametric

regions whose error was above the tolerance level. The number of control points and

the respective error function �(t) for each iteration are also provided in Figure 3.1.

The error is improved by almost an order of magnitude on each iteration up to the

required tolerance of 0.0001.

Finding approximations to o�sets of surfaces are usually more di�cult, but the

above method can be applied to �nding errors of o�set surfaces as well. �(t),  (t)

and �(t) would be simply explicit surfaces instead of explicit curves, i.e., �(u; v),

 (u; v) and �(u; v). In Figure 3.2, this error bounding extension surface is used to

automatically iterate, re�ne, and improve an o�set B-spline surface to a speci�ed

tolerance. It is interesting to compare the two o�set surfaces in Figure 3.2. They

both have the same tolerance but the o�set distance is di�erent. The o�set error

increases as d becomes larger and therefore more re�nements are required to achieve

the same accuracy.

3.2 Better Approximation of O�sets

In section 3.1, a technique was developed to provide a global bound using a global

error function. This error function can be used to attempt to reduce the maximum

error by perturbing the control points instead of re�nement, as in section 3.1.

Ideally, for each control point, the gradient direction that maximizes the change in

the error function would be computed and the control point would be moved in that

direction. Such a computation is extremely expensive and slow and a compromise

must be made. By re�ning and o�setting in the normal direction, it is known the

o�set approximation converges to the exact o�set. Therefore, the normal direction

is a simple candidate for a preferred direction to use. We will also see that this
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Max. Err. = 0.017198

Max. Err. = 0.004370

Max. Err. = 0.000344

Max. Err. = 0.000095

Num. Pts. = 17

Num. Pts. = 72

Num. Pts. = 253

Num. Pts. = 319

Figure 3.1. Four stages in global error bounding �(t) and simultaneous re�nement.

direction allows an exact representation of o�set of quadratic circular curves with

no re�nement at all. The iterative process follows in algorithm 3.2.

In each iteration, the error function is computed and each control point is moved

in the normal direction by the error amount at the node parameter value associated

with this control point. This process repeats itself until no improvement is gained

in the maximum error (i.e., no convergence) or the required tolerance is being

achieved.

Figure 3.3 shows a unit circle composed of four 90 degree quadratic arcs. The

�rst o�set is obviously underestimated, but it converges quite quickly to the exact

o�set by moving only the corner points. These points have nonzero error, as can be

seen from Figure 3.4 which also shows the respective error function as the process
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Figure 3.2. Error bounded o�set surface, using simultaneous auto re�nement.

converges. The points in the error function in Figure 3.4 at which the error is

always zero correspond to the end points of the four 90 degrees B�ezier segments

forming the circle. Because the normals for the corner control point node values

are in the direction (vectors (�a;�a)) pointing to the corner control points of a

larger similarly represented circle, this process converges to an exact o�set circle,

with no re�nement.

In Figure 3.5, the quadratic curve consists of three arcs of 120 degrees and three

lines. The o�set error along the line is zero and no improvement is applied there.

The arcs can be improved to the exact representation. The required tolerance of

0.01 terminated this process at that accuracy as can be seen in Table 3.1.

Figure 3.6 is a case in which exact representation of the o�set as a NURBs does

not exist. Control points perturbation can improve the result, but re�nement is

still necessary to meet the required tolerance of 0.04 as can be seen from Table 3.2.

Figure 3.7 shows the same process applied to a unit sphere. This time the process

does not converge to the exact representation because the normals at the node

values of the corner points are not in the exact direction (vectors (�a;�a;�a)).
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Algorithm 3.2

Input:

�, required offset curve tolerance.

C(t), input curve.

Ca
d (t), offset approximation to input curve.

d, offset distance.

Output:

Ĉa
d (t), improved curve approximation.

Algorithm:

Ca
0 (t)( Ca

d (t).

i( 0.

MaxErr( Infinity.

Do

Compute offset error �(t) for C(t), Ca
i (t).

Ci+1(t) ( Ci(t) perturbed according to �(t) at node values.

LastMaxErr(MaxErr.

MaxErr (min(LastMaxErr; �(t) highest error).

i( i+ 1.

While (MaxErr > � and MaxErr < LastMaxErr).

Even so, the improvement gained is quite signi�cant. The right side of Figure 3.7

is the regular o�set while the left side shows the same surface (and same number

of control points) after perturbing it. Table 3.3 provides the convergence steps for

this case, up to the prespeci�ed tolerance of 0.01. Figure 3.7 right is stage 1 of

Table 3.3 while Figure 3.7 left is stage 6.

3.3 The O�set Operator as a Modeling Tool

The o�set operator can be used as a modeling tool. In fact, one can extend the

global error �nding method developed in section 3.1 and allow variable distance

o�sets as well. Given a parameter value, t, one needs to specify the o�set distance

required at that location. A scalar explicit distance function d(t) (or d(u; v) for
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Figure 3.3. Control points perturbation converges to exact o�set circle.

Figure 3.4. The error function convergence to zero, of the circle in Figure 3.3.

surfaces) having the same domain as C(t) (S(u; v)) can be used. The only change

that must be made to the method developed in section 3.1 is that equation (3.6)

should now read:

�(t) =  (t)� d2(t); (3:8)

where d, which used to be constant, is now a distance function. In equation (3.7),

it was shown that the global error bound depends on d, so now the extrema of d(t)

are used to bound the error. Algorithm 3.1 described in section 3.1 is identical to

the one that should be used here. Figures 3.8 and 3.9 show some simple examples

of the operator's power, for both curves and surfaces.
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Table 3.1. Convergence errors of Figure 3.5 o�set curve using perturbation.

Step Error Comments

1 0.49

2 0.387

3 0.291

4 0.211

5 0.149

6 0.104

7 0.071

8 0.048

9 0.033

10 0.022

11 0.015

12 < 0.01 Tolerance is met.

Table 3.2. Convergence errors of Figure 3.6 o�set curve using perturbation.

Step Error Comments

1 0.22

2 0.197

3 0.187

4 0.182

5 0.179
...

...

16 0.178 No improvement - re�nement stage

21 0.083

22 0.040

23 < 0.04 Tolerance is met.

3.4 Trimming Self-Intersection Loops

Two types of loops are sometimes created in Ca
d (t) when C(t) is a C

1 continuous

curve. If �(t), the curvature of C(t), is larger than 1

d
, where d is the o�set distance,

a loop will be formed (see Figure 3.10). Because this loop is local to a region in

which the curvature is too high, this type of loops will be referred to as a local loop.

However, not all loops resulting from o�set operations are of this kind. Some of the

loops formed, as can be seen in Figure 3.11, are the result of two separate regions
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Figure 3.5. Error function convergence to zero, for three 120 degrees arcs in curve.

in C(t) so close that the o�set curve in those regions intersects itself. This type of

loop is referred to as a global loop.

Detection of these loops is a di�cult problem. A search for cusps was sug-

gested as a method to detect local loops [35]. However, because Cad (t) is only an

approximation, it is possible that no cusps will be formed (see �rst (top) stage of

Figure 3.1). Moreover, the cusps, when detected, must be grouped in pairs, which

is not a natural process using this technique. We use a more robust method to

correctly detect all loops.

Let T (t) be the tangent vector to Cd(t) and let �(t) be the curvature of C(t).

Luckily, local loops have a distinct characteristic that when �(t0) =
1

d
, kT (t0)k = 0,

and Cd(t) has a cusp at t0 (see [28] and appendix 1). So, if C(t) is curvature

continuous, each time �(t) = 1

d
and N(t) = No(t), kT (t)k = 0. If �(t) > 1

d
and

the normals coincide, T (t) ips its direction 180o. When �(t) continuously changes

from < 1

d
to > 1

d
and then back to < 1

d
and the normals coincide, two cusps will be

formed in Cd(t) at the places where �(t) =
1

d
.

Using this characteristic, the cusp pairs can be identi�ed by �nding the zero set
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Figure 3.6. The error function does not convergence to zero, for general curves.

of � (t) = hT (t); T (t)i. The regions where � (t) is negative are the regions where T (t)

ips its direction (i.e., normals coincide and �(t) > 1

d
). Figure 3.12 demonstrates

this process on the pawn cross section in Figure 3.1. The tangent curves T (t) ((a)

in Figure 3.12) and T (t) ((b) in Figure 3.12) have been derived. Their dot product

((c) in Figure 3.12), � (t) = hT (t);T (t)i, is computed and used to identify the two

local loops in the resulting o�set approximation in its two negative regions ((d) in

Figure 3.12). Once the two loops have been identi�ed, they can be trimmed away

((e) in Figure 3.12).

The usage of � (t) to identify local loops make this process more robust, even if

no cusps are formed in the o�set approximation. The tangent vector, T (t), still

ips its direction and still makes � (t) negative (Figure 3.12 (c)). Furthermore, by

detecting the negative regions of � (t) the cusps are virtually paired because each

cusp pair is the negative � (t) region boundary.
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Table 3.3. Convergence errors of Figure 3.7 o�set sphere using perturbation.

Step Error Comments

1 2.574

2 1.43

3 0.964

4 0.804

5 0.733

6 0.691
...

...

20 0.616 No improvement - re�nement stage

21 0.296

22 0.238

23 0.186

24 0.146

25 0.115

26 < 0.01 Tolerance is met.

Once a local loop has been identi�ed using � (t), the algorithm splits the curve

into three parts, the region before the �rst cusp, the region after the second cusp,

and the region between the two cusps. The third part, between the cusps, must be

deleted. The �rst two should then be intersected against each other to �nd the self

intersection point using standard curve-curve intersection algorithms [15, 43, 60],

trimmed properly to the intersection point, and then merged back. See Figures 3.10

and 3.11 for some examples.

Global loops have no such characteristic and are therefore more di�cult to

isolate. It is necessary to �nd all the self-intersections of a curve. However, a curve

which is monotone in one dimension can never intersect itself. Therefore, one way

to approach this problem is to split the curve into monotone subcurves, intersect

all the subcurves against each other using curve-curve intersection algorithms, and

isolate all the self-intersection points if any. Loops can now be formed by tracing

the self-intersection points along the parameter space. Given an intersection point

Pi, when C(t1i ) = C(t2i ), the sign of the dot product hT (t1i ); No(t
2
i )i can be used
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Figure 3.7. Control points perturbation can also improve o�set surface accuracy.

to determine if a loop is to be purged or not. Given Pi, the normal No(t
2
i ) de�nes

the relative position of the original and o�set curve. If the dot product is negative,

it means the intersecting curve (with tangent T (t1i )) in Pi is closer locally (P4 in

Figure 3.13) to the original curve than the o�set amount. Because curves are

continuous, it implies the whole loop is closer than the o�set amount and therefore

should be removed (loop 4 in Figure 3.13). Similarly, the dot product is found to

be positive in P5 in Figure 3.13 so in the neighborhood of P5, loop 5 distance to the

o�set curve in the N5 direction is larger than the o�set amount and therefore loop

5 is locally (and globally) valid. The loops are tested while following the parameter

values of the curve from its beginning to its end. For each intersection of an untested

loop i, the tangent Ti of the current curve parameter is computed along with the

o�set normal Ni of the other curve at the intersection point i. Using the example

in Figure 3.11, loop 1 is tested �rst. hT1; N1i is found to be negative and therefore

loop 1 is purged. Because hT2; N2i is positive loop 2 should not be purged, etc.
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(a) (b)

Figure 3.8. Variable distance o�set (a) using a scalar distance function (b).

This approach has been used to trim out the global loops of Figure 3.11.

The curve o�set local loop detection method may be extended to surfaces as

well. If the surface radius is smaller than the o�set distance, the normal of the

o�set surface may ips its direction. If both principal curvatures are the same and

equal to � (i.e., an oblique point which is locally a sphere of radius 1

�
), then an o�set

by more than 1
�
will cause both tangents in the isoparametric directions to be ipped

or the normal of the o�set will point to the same direction. If, however, the two

principal curvatures are di�erent (say �1 > �2), the normal to the surface will be

ipped when the o�set distances passes 1

�1
, and ipped back when later the distance

grows beyond 1

�2
. Because exact spherical shapes are fairly rare and simple to deal

with, the normal ipping may be a useful tool in detection of self-intersections. Let

N(u; v) be the normal surface to the original surface S(u; v) and N (u; v) be the

normal surface to the o�set surface S(u; v), and de�ne

�(u; v) = hN(u; v);N (u; v)i : (3:9)

Equation (3.9) can be used to detect self-intersections. If �(u; v) < 0, there must

be a self-intersection. In Figure 3.14 the apex of S(u; v) is an oblique point and near
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Figure 3.9. Variable distance surface o�set (u direction linear, v constant).

Figure 3.10. O�set operation local loops are trimmed using a distinct characteristic.

it both N(u; v) and N (u; v) point to the same direction because both 1
�1
< d and

1

�2
< d or both tangents to the S(u; v) in the isoparametric directions are ipped.

However, in the intermediate region of S(u; v) the u direction (surface of revolution

circular direction) curvature has reached the o�set distance and so the tangents in

the u isoparametric direction are ipped, while the tangents in the v isoparametric

direction are not. In that region, obviously 1

�1
> d > 1

�2
and � is negative, which
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Figure 3.11. Global loop are being trimmed using numerical techniques.

(a) x

y

(b) x

y

(c)

t

m

(d) (e)

Figure 3.12. Product of a curve and its o�set tangents used to identify local loops.

together signal the self-intersection.

Trimming surface loops are much more di�cult because, in general, they are

not isoparametric. Because an analytic approach was not feasible, an approach

which subdivided the surface into polygons and detected self-intersections on this

approximation was used. To simplify the process, it was assumed the the original

surface was completely visible from the z direction (envisioning a 3 axis pocket for

NC applications). The z was used as the sweeping axis, in algorithm 3.3, to mini-

mize the number of polygon-polygon intersection tests, in the detecting of possible

self-intersections in the o�set. minimumZ and maximumZ, in algorithm 3.3,
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T1 T2

T3

T4

T5

N1
N2

N3N4N5

1

2
3

4

5

P4P5

Start

Figure 3.13. Global loop classi�cation is based on hNi(t
1
i ); Ti(t

2
i )i sign.

Figure 3.14. O�set surface self-inter. may be detected using hN(u; v);N (u; v)i sign.

return the z extrema of given object, IntersectPolyPoly �nds the linear segment

of two intersecting polygons, and �nally isSurface and isFlat are two predicates.

As if these di�culties are not enough, the topology of the self-intersection can

be extremely complex. Figure 3.15 left shows an o�set surface of a simple surface.

The centered region of the surface has large enough curvature to cause the o�set

surface to intersect itself. Extremely complex self-intersection loops are generated

as can be seen on the right of Figure 3.15 which shows the self-intersection curves
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Algorithm 3.3

Input:

�, tolerance for subdivision control.

S(u; v), an offset surface, possibly self-intersecting.

Output:

L, a piecewise linear representation of the self

intersection curves.

Algorithm:

Q ( S(u; v), a priority queue holding sorted data in z

according to minimum z of elements.

P ( ;, a set of all active polygons.

L ( ;.
While ( Q 6= ; )

begin

Obj ( first(Q).
z (minimumZ(Obj).
if ( isSurface( Obj ) )

if ( isFlat( Obj, � ) )

Convert to polygons, and for each polygon Pi Do

L ( L [ InterActiveList(Pi; z;P;Q).
else

Subdivide into two subsurfaces and insert both to Q.
else /* Its a polygon */

L ( L [ InterActiveList(Obj; z;P;Q).
end

in the parameter space of the surface.

Removal of self-intersections in surface o�sets, is not totally solved and should

be further investigated. A complete study of the complex topology of the self-

intersection curves may provide some leads.
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Algorithm 3.3 continued

InterActiveList(P; z;P;Q)
begin

M( ;, holding all self-intersections with polygon P.

if ( minimumZ( P ) > z )

Insert P to Q.
else

begin

For each polygon Pi in P do

begin

if ( maximumZ( Pi ) < z )

remove( Pi, P ).

else

M(M[ IntersectPolyPoly(P;Pi).
end

Insert P to P.
end

return M.

end

Figure 3.15. O�set surface self-intersection can be topologically complex.



CHAPTER 4

SECOND ORDER SURFACE

ANALYSIS

It is our purpose to give a presentation of geometry, as it stands today,
in its visual, intuitive aspects. With the aid of visual imagination we
can illuminate the manifold facts and problems of geometry, and beyond
that, it is possible in many cases to depict the geometric outline of the
methods of investigation and proof, without necessarily entering into the
details connected with the strict de�nions of concepts and with the actual
calculations.

D. Hilbert, in \Geometry and the Imagination," 1932.

A critical characteristic for many applications in computer graphics and in CAD

is the shape of the model's bounding surfaces. Second order surface analysis can

be used to understand curvature characteristics, and thus shape, and to improve

the implementation, e�ciency and e�ectiveness of manufacturing and analysis pro-

cesses. Fundamental operations, such as adaptive subdivision and re�nement, use

shape information to decide where and how many knots to add. Algorithms for the

creation of tool paths for NC (Numerically Controlled) code generation for freeform

surfaces are usually based on ball end cutters with their spherical centers following

an (approximate) o�set surface of the original surface. Flat end cutters can remove

material faster and have a better �nish; however, at end cutters can be used only

with 5 axis milling in convex regions (see Figure 4.1).

De�nition 4.1 A surface trichotomy is a partition of a surface into three

types of regions: convex, concave and saddle shapes (Figure 4.1).
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(a) (b) (c)

Figure 4.1. Mainly concave (a), convex (b), and saddle (c) regions.

The ability to trichotomize sculptured surfaces into convex, concave or saddle

regions (Figure 4.1) is thus essential to the use of at end cutters in milling freeform

surfaces. Also, regions with small curvature can be accurately milled faster with

larger ball end cutters. Tool changes should be minimized because the are time

consuming operations. Such minimization can be achieved by subdividing the

surface into regions with di�erent curvature bounds, each of which can be milled

using tools appropriate to that region.

Methods in use do not support the separation of original surfaces into trimmed

surfaces each of which with only one of the three characteristics throughout. That

is, each trimmed surface is either convex everywhere, concave everywhere, or saddle

everywhere. Second order surface properties are usually estimated locally by nu-

merically evaluating them at a grid of points or, in manufacturing, at a �nite set of

sampled points along a planned milling tool path. Research into the computation

of curvature has been done in the context of o�set operator approximations with

cubic B-spline curves [66] and bicubic patches [29].

There have been attempts [3, 4, 20, 33] to understand and compute second

order surface properties as well as twist by evaluation on a prede�ned grid. The

methods use the Gaussian curvatureK(u; v) = �1n(u; v)�
2
n(u; v) and mean curvature

H(u; v) = �1
n
(u;v)+�2

n
(u;v)

2
, where �1n(u; v) and �2n(u; v) are the principal curvatures

at the parameter value (u; v), in an attempt to provide a bound on the surface

angularity. However, if the surface is a saddle at (u; v), then �1n and �2n have
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di�erent signs so the magnitude of H is not a useful measure of such a bound. In the

extreme condition when the surface is minimal [21], H � 0 regardless of the surface

angularity. The magnitude of K can also be ine�ective. Even if �1n is large, K may

be small because �2n is small. Therefore, neither K nor H by itself can provide

su�cient shape information for subdivision and/or e�cient NC applications. This

problem has been recognized by some of the authors cited above. These curvature

estimation techniques are local, because they make use of local surface information

only. More surface information might improve an algorithm or change a decision.

Local information is inferior to global information in complex settings. Symbolic

techniques can be used to help make decisions based upon the entire aspect of a

surface rather than a limited number of local samples.

In this Chapter, a hybrid approach using both symbolic and numeric operations

for computing curvature properties is developed. We use property surfaces (see

de�nition 1.1) whose de�nitions are derived from di�erent attributes of the original

surface, as auxiliary surfaces to help analyze the original surface.

Section 4.1 briey develops the di�erential geometry used in the analysis. In

section 4.2, we compute second order properties, and use visualization to better

understand the shape of a given surface.

4.1 Di�erential Geometry

Surface curvature is well understood mathematically and the theory behind it

is developed in most introductory di�erential geometry books [21, 48, 63]. The

set of analysis equations that are based on the second fundamental form are used

extensively in locally evaluating surface curvature. Because these equations are

crucial to our discussion, they are briey stated here.

Let F (u; v) be a C(2) regular parametric surface. Let the unnormalized normal

to a surface F (u; v), n̂(u; v), be de�ned as



46

n̂(u; v) =
@F

@u
�
@F

@v
; (4:1)

and de�ne the surface unit normal, n(u; v), to be

n(u; v) =
@F

@u
� @F

@v

k@F
@u
� @F

@v
k
: (4:2)

Because F (u; v) is regular, kn̂(u; v)k 6= 0 and n(u; v) is well de�ned.

Let C(t) = F (u(t); v(t)) be a regular curve on F , that is
dC(t)

dt

 6= 0. The rate

of change of the arc length of C with respect to its parameter, t, is ds

dt
=
dC(t)

dt


where s is arc length. Because dC(t)

dt
=
�
@F

@u

du

dt
+ @F

@v

dv

dt

�
, one can show [32, 48, 63]

that  
ds

dt

!2

=

"
du

dt

dv

dt

#
G

"
du

dt

dv

dt

#T
= I

 
du

dt
;
dv

dt

!
:

I is known as the �rst fundamental form, with matrix G equal to:

G = (gij) =

2
6664
D
@F

@u
; @F
@u

E D
@F

@u
; @F
@v

E
D
@F

@v
; @F
@u

E D
@F

@v
; @F
@v

E
3
7775 : (4:3)

By considering all such curves, C(t), through a point (u; v) and di�erentiating

twice, one can extract second order properties of the surface F at (u; v). The

second order derivatives of C(t) contain terms with @F

@u
and @F

@v
as factors. However,

the inner product of these terms with n is always zero because the partials are in

the tangent plane of F (u; v). Therefore,
D
n(u; v); d

2C(t)

dt2

E
, the component of d2C(t)

dt2

pointing in the direction perpendicular to the surface is composed of second order

derivatives only.

*
n(u; v);

d2C(t)

dt2

+

=

*
n(u; v);

@2F

@u2

+ 
du

dt

!2

+ 2

*
n(u; v);

@2F

@u@v

+
du

dt

dv

dt
+

*
n(u; v);

@2F

@v2

+ 
dv

dt
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=

"
du

dt

dv

dt

#
L

"
du

dt

dv
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= II

 
du

dt
;
dv

dt

!
: (4.4)

II is known as the second fundamental form, with matrix L equal to:

L = (lij) =

2
6664
D
n; @

2F

@u2

E D
n; @2F

@u@v

E
D
n; @2F

@u@v

E D
n; @

2F

@v2

E
3
7775 : (4:5)

Let l̂ij denote the inner product with the unnormalized normal n̂(u; v). For

example, l̂11 =
D
n̂; @

2F

@u2

E
.

The normal curvature on the surface F (u; v) in some tangent direction �, where

� =
D
�;
�
dF

du
; dF

dv

�E
, and � =

�
du

dt
; dv

dt

�
, is de�ned [21, 32, 48, 63] as:

�n =
II(du

dt
; dv
dt
)

I(du
dt
; dv
dt
)
=
�L�T

�G�T
: (4:6)

The normal curvature depends on the surface tangent direction �, and is equal

to the curvature of the osculating circle to the intersection curve between F (u; v)

and the plane through n(u; v) and � at (u; v) (Figure 4.2). The extremal values of

the normal curvature serve as bounds on the components of curvature not in the

tangent plane.

The normal curvature is an intrinsic property [48, 63] of the surface. By dif-

ferentiating (4.6) with respect to �, the problem of �nding extrema of �n is trans-

formed [21, 32, 48, 63] into the problem of solving for the roots of

jGj �2n + (g11l22 + l11g22 � 2g12l12)�n + jLj = a�2n + b�n + c = 0; (4:7)

where jGj and jLj denotes the determinants of G and L, respectively.

The Gaussian curvature is a scalar value and is de�ned as the product of the

two roots of (4.7), �1n and �2n,

K = �1n�
2
n =

jLj

jGj
: (4:8)

The mean curvature is de�ned as their arithmetic average,

H =
�1n + �2n

2
= �

(g11l22 + l11g22 � 2g12l12)

2 jGj
: (4:9)
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∆

n

Figure 4.2. Normal curvature �n (circle) of F (u; v) at (u; v) in direction �.

4.2 The approach

The tools de�ned in Chapter 2 are used symbolically to compute the second

order properties of a given surface as described in Section 4.1. NURBs property

surfaces are derived whenever possible so that the method can take advantage of

the computational characteristics of NURBs.

4.2.1 Surface Trichotomy

Use of the curvature trichotomy of a surface can result in a more optimal freeform

surface milling process. Only convex regions (see Figure 4.1) are millable using at

end cutters and 5 axis milling. Flat end cutters, as opposed to ball end cutters,

can mill faster and remove more material per time unit. Furthermore, the surface

�nish of at end cutters is usually better. Using the trichotomy operator, convex
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regions within surfaces can be detected and milled in more e�cient way and with

a better �nish.

The determinant of L, jLj, in (4.7) is the key to this second order surface analysis.

If jLj = 0, one of the normal curvature extrema �in must be zero. Assuming the

surface is curvature continuous, adjacent regions for which �in has a di�erent sign

must be separated by a curve, Cs, for which jLj = 0, that is, one of the �in = 0.

Furthermore, if jLj > 0 at some point p on the surface F , the surface is either

convex or concave at p, while if jLj < 0 the surface locally is a saddle. In order

to compute a property surface representing jLj using (4.5), it is necessary to �nd

a square root to compute n(u; v), which cannot be represented, in general, as a

polynomial or as a piecewise rational. However, by reordering the operations to

use the unnormalized surface normal n̂(u; v) and noting n(u; v) appears twice as a

factor in each term of jLj, jLj can be represented exactly as a rational function and

with no square roots,

jLj =
l̂11l̂22 � l̂21l̂12

kn̂k2
: (4:10)

This equation is representable as a NURBs using only operations from Chapter 2.

n̂ is a cross product of two surface partials @F

@u
and @F

@v
. The components of L, l̂ij,

are inner products of n̂ with second order partials of F . Because only the zero set

is of interest, and F is assumed to be a regular surface, it is necessary to examine

only the numerator of (4.10). Once the zero set of jLj has been computed, trimmed

surfaces are created, each of which is completely convex, concave or saddle. The

sign of jLj at a single point on each trimmed surface is then used to classify the

saddle regions while convex and concave regions are distinguished from each other

by simply evaluating the sign of l̂11, for example, at that single point. Whereas the

saddle region is an intrinsic surface characteristic, the convex/concave classi�cation

is parameterization dependent. Flipping the u or v (but not both) surface param-
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eterization direction will ip the normal direction n(u; v) and therefore the sign of

l̂11.

Figures 4.3 through 4.7 show some examples. Figure 4.3 is a biquadratic B-

spline surface with three internal knots in each direction (patches of a B-spline

surface are counted as how many B�ezier patches would result from subdividing the

NURBs surface at each interior knot, so this surface yields 16 polynomial patches),

while Figure 4.4 is a single biquadratic patch. The bicubic surfaces in Figures 4.5

and 4.6 have two internal knots in each direction, yielding 9 polynomial patches.

Figure 4.7 top is a bicubic NURBs surface with a single internal knot in each

direction, yielding four B�ezier patches. All �gures have been colored consistently,

with yellow marking the saddle regions, red representing a convex region and green

representing a concave region.

The biquadratic surface of Figure 4.3 is not C2 along each internal knot, and

the surface trichotomy is isoparametric along the internal knots lines.

However, in general, this behavior should not be expected, or even anticipated,

for biquadratic surfaces, because even a single biquadratic patch may contain both

convex and saddle regions simultaneously as shown in Figure 4.4.

The surface in Figure 4.5 uses the same control mesh as the one in Figure 4.3

but is bicubic. Both surfaces in Figure 4.3 and Figure 4.5 use appropriate uniform

open end condition knot vectors. A comparison of these two Figures graphically

demonstrates the inuence of the order of the tensor product spline surface on

the shape, as shown by comparing the shapes and locations of the convex and

concave regions. This phenomenon is somewhat counterintuitive to the common

belief that two NURBs surfaces with the same mesh but di�erent order are very

similar, except that the one with higher order is a smoother version. The curvature

characteristics have actually been changed. Figure 4.3 has one concave region, one

convex region and two at regions, all of which have isoparametric boundaries.
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Figure 4.3. Biquadratic surface trichotomy with 16 polynomial patches.

Figure 4.4. Biquadratic polynomial trichotomy.

Figure 4.5, however, has only one concave region and one convex region. The union

of the two regions has a �gure eight boundary, where convex and concave change

at a single point. The curved boundaries of those regions are di�erent from the

straight line boundaries in Figure 4.3.

Figure 4.6 shows that the combination of symbolic computation (of jLj as a

property surface) with numeric analysis (contouring the property surface) can

detect widely separated and isolated regions. In addition, it demonstrates the

robustness of this methodology by accurately detecting two very shallow concave
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Figure 4.5. Bicubic surface trichotomy: same control mesh as Figure 4.3.

Figure 4.6. Bicubic with isolated convex and concave regions in a saddle region.

regions in the middle of the surface. In Figures 4.5 and 4.7, another ill conditioned

case is shown in which several convex and concave regions meet at a single point.

Because trimmed surfaces are formed, it was necessary that the boundaries be

completely and correctly de�ned. The points where the three regions meet are

correctly detected and determined and the topology of the regions is correctly

maintained, which also demonstrates another type of robustness.

To provide a better sense of the process, the bottom of Figure 4.7 also shows

the scalar property surface of the determinant of the second fundamental form, jLj,



53

Figure 4.7. Bicubic surface with convex and concave regions meet at a single point
(top). The surface second fundamental form property surface and its zero set
(bottom).

with its zero set, as a function of u and v.

Figure 4.8 demonstrates this method on a more realistic object. The Utah teapot

trichotomy degenerated into a dichotomy because no concave regions exist in the

teapot model.

It is interesting to note that a su�cient condition for a surface to be devel-

opable [32] is that its Gaussian curvature is always zero: K(u; v) � 0. Because

K(u; v) = jLj
jGj
, this condition is equivalent to the condition that jLj � 0 for regular

surfaces were jGj 6= 0. Hereafter, a simple practical test that can answer whether
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Figure 4.8. Teapot trichotomy degenerates into a ditochomy (no concave regions).

a surface is developable or not can be derived by symbolically computing jLj and

comparing all its coe�cients to zero. Figure 4.9 show two developable NURBs

surfaces. The top one is ruled surface along an isoparametric direction while the

bottom one was bent along nonisoparametric direction.

4.2.2 Bounding the Curvature

The extrema of the surface curvature are important for analyzing the curva-

ture of a given surface. Normal curvature extrema occur in the principal direc-

tions [32, 48, 63], but the direct application of quadratic equation solution for

equation (4.7) would require �nding a square root. However, because the surface

has been subdivided into convex, concave, and saddle regions, each region carries

the following property:

� If the region has a saddle shape, then one of the principal curvatures, �1n, is

positive while the other, �2n, is negative.

� If the region is convex both principal curvatures are negative.

� If the region is concave both principal curvatures are positive.
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Figure 4.9. Two ruled surface examples.

Using quadratic equation properties for equation (4.7), it can easily be shown that:

 = (2H)2

=
�
�1n + �2n

�2

=

 
�
b

a

!2

=

 
�
g11l22 + l11g22 � 2g12l12

jGj

!2

=

�
g11l̂22 + l̂11g22 � 2g12l̂12

�2
jGj2 kn̂k2

(4.11)

and
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� = (�1n � �2n)
2 =

b2 � 4ac

a2

=
(g11l22 + l11g22 � 2g12l12)2 � 4 jGj jLj

jGj2

=
(g11l̂22 + l̂11g22 � 2g12l̂12)

2 � 4 jGj
���L̂���

jGj2 kn̂k2
: (4.12)

Both (4.11) and (4.12) can be represented without square roots and are therefore

representable as NURBs using the model and tools de�ned in Chapter 2.

By using the property surface  (u; v) = (�1n(u; v) + �2n(u; v))
2 as a curvature

estimate for the convex and concave regions, the computed curvature will be at

most twice as large as the real normal curvature in the case where both �1n(u; v)

and �2n(u; v) are equal. Similarly by using � = (�1n(u; v)��
2
n(u; v))

2 as the curvature

estimate for saddle regions one can obtain similar bounds.

 (u; v) and �(u; v) can be used as curvature estimates for the appropriate

trimmed regions and can be contoured to isolate regions with curvature larger

than some allowable threshold. Furthermore, one can use  (u; v) and �(u; v) as

pseudo color values to render the input surface F (u; v) according to its curvature

and provide visual feedback on which regions are highly curved. In other words,

make the color of F (u; v) at the parameter value (u; v) depend on the value of

 (u; v) in convex and concave regions, and on the value of �(u; v) in saddle regions.

Using this technique, one can enhance the display of regions with high curvature,

low curvature, or within certain bands of curvatures. Figures 4.10 through 4.12

demonstrate this. In Figure 4.10, the surface has been �rst subdivided into a

saddle region (yellow) and a convex region (red).  (u; v) has been used as the

pseudo color in the convex region of the surface whereas �(u; v) has been used

for the same purpose in the saddle region, to render the image in Figure 4.12.

Figure 4.11 shows  (u; v) and �(u; v). Not surprisingly,  (u; v) is wider in the

highly curved convex region because the two principal curvatures cancel each other

in �(u; v).
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Figure 4.10. Surface dichotomy - saddle and convex regions.

(a) (b)

Figure 4.11.  (u; v) (a), �(u; v) (b), for the surface in Figure 4.10.

A di�erent approach can be used to achieve a better bound. By expanding �,

� = (�1n � �2n)
2

= (�1n)
2
� 2�1n�

2
n + (�2n)

2
: (4.13)

Or

� = (�1n)
2 + (�2n)

2

= �+ 2�1n�
2
n

= �+ 2K

= �+ 2
jLj

jGj
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Figure 4.12. Curvature estimate using surface dichotomy, for surface in Figure 4.10.

=
(g11l̂22 + l̂11g22 � 2g12l̂12)2 � 4 jGj

���L̂���
jGj2 kn̂k2

+ 2
jLj

jGj

=
(g11l̂22 + l̂11g22 � 2g12l̂12)2 � 4 jGj

���L̂���
jGj2 kn̂k2

+ 2

���L̂���
jGj kn̂k2

=
(g11l̂22 + l̂11g22 � 2g12l̂12)2 � 2 jGj

���L̂���
jGj2 kn̂k2

: (4.14)

+
p
� is bounded to be at most

p
2 greater than the larger magnitude of the principal

curvatures. This worst case occurs when the two principal directions have the

same magnitudes. Furthermore, � can be represented using the tools described in

Chapter 2. Figure 4.13 demonstrates this approach applied to the Utah teapot

model. The use of � may help to isolate regions with low curvature, which can

be milled using larger ball end tools in a more optimal way. Figure 4.14 shows

such a surface subdivided in such regions. The curvature bound surface, �(u; v),

(Figure 4.15) of the surface in Figure 4.14 is being contoured and regions with

di�erent curvature bounds are formed. It is clear from Figure 4.14 that the blue

regions can be milled using a very large ball end cutter, the green regions with a

medium size cutter and only the yellow and red regions, which are less than 5% of

the whole surface area, should be milled with a small size tool.
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Figure 4.13. Utah teapot curvature estimation.

Figure 4.14. The surface is subdivided into regions with di�erent curvature bounds.

4.3 Some Remarks

A method to partition a surface into three disjoint trimmed surfaces (convex,

concave, and saddle) and to determine global bounds on surface curvatures, has

been presented here which combines symbolic and numeric methods. The hybrid

method was found to be robust and fast. The computation involved in the creation

of a property surface that is exact to machine accuracy usually takes less than a

second for a bicubic B�ezier surface on an SGI 240/GTX (25MHz R3000). This

symbolic computation has closed forms with complexity directly bounded by the
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Figure 4.15. Curvature surface bound, �, of the surface in Figure 4.14.

surface orders and continuity (knot vectors). Contouring usually takes an order

of magnitude longer than that. This numeric process involves high order property

surfaces which make subdivision more expensive.

The orders of the resulting property surfaces are high. A second fundamental

form determinant property surface for a bicubic B-spline surface has degree 14. The

degree of the property surfaces  (u; v), �(u; v) and �(u; v) is even higher, degree 30.

However, because the evaluation of B�ezier and B-spline representations is robust,

the high order does not introduce any numerical problems [31] in evaluation.

Because milling is several magnitudes slower than even the contouring process,

and the same toolpath may be used thousands of times, computation time is not

a major factor in optimizing the milling process. The ability to isolate regions in

a surface with speci�c curvature bounds makes it possible to mill the surface more

optimally by using the largest tool possible for each region.



CHAPTER 5

MACHINING APPLICATIONS

Computing and numerical control (NC) has made great progress at

that time, and it was certain that only numbers, transmitted from drawing
o�ce to tool drawing o�ce, manufacture, patternshop, and inspection,

could provide an answer; of course, drawings would remain necessary,
but they would only be explanatory, their accuracy having no importance.

Numbers would be the only and �nal de�nition.

P. B�ezier (on NC capabilities in the 1960s)

5.1 Introduction

Generating optimal NC code to drive milling machines for models de�ned by

freeform trimmed surfaces is a di�cult problem. In practice, two main approaches

are used to generate toolpaths for surfaces, neither of which is optimal, in general.

The �rst exploits the parametric representation and generates isocurves that are

uniformly distributed across the parametric domain. This approach is not optimal

if the surface mapping into Euclidean space is not isometric. The second approach

contours the models by intersecting the surfaces with planes equally spaced in

Euclidean space, resulting in a piecewise linear toolpath approximation which is

nonadaptive to the local surface geometry. Furthermore, the toolpath generated by

contouring is suitable for 3 axis milling but is inappropriate for 5 axis milling. This

Chapter addresses some of the relevant issues in this �eld of realizing computer

models.

In section 5.2, an algorithm developed to adaptively extract isocurves for render-

ing [26] is adapted and enhanced to generate milling toolpaths for models consisting

of trimmed surfaces, and can be used in both 3 and 5 axis milling. Section 5.2.1
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develops and de�nes this new algorithm. Sections 5.2.2 and section 5.2.3 deal with

some practical problems while section 5.2.4 provides some examples and results.

Finally, in section 5.3, a whole new approach to realizing computer models is derived

using piecewise ruled and developable surface approximations.

5.2 Adaptive Isocurves Toolpath

In order to evaluate the quality of toolpaths, two criteria are introduced. One

deals with the validity of a set of toolpaths and the other with its optimality.

De�nition 5.1 A set of curves C in a given surface S is called a valid

coverage for S with respect to some constant � if for any point p on S

there is a point q on one of the curves in C, such that kp� qk2 < �, where

k � k2 denotes the Euclidean distance.

De�nition 5.1 provides a validation criterion on a given toolpath and a tolerance

� such that any point on the surface is at most � from the nearest toolpath curve.

De�nition 5.1 takes into consideration only the distance between an arbitrary point

p on the surface and the closest point on the toolpath. Other criteria, such as

bounding the curvature, could be added to the de�nition of validity of a toolpath

to provide a tighter bound on the resulting scallop height without a�ecting any of

the rest of the algorithm.

We also would like to consider the optimality of a valid toolpath.

De�nition 5.2 A toolpath for a given surface is considered optimal if it

is valid and if its path length is minimal.

De�nition 5.2 considers optimality based only on the cutting motion part of the

toolpath. Tool retraction and traversals are not considered as optimality conditions

in this Chapter. One might decide to traverse the iso-curves in incremental cross
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iso-direction so that the portion of the surface of the machining tool that performs

the actual milling is approximately the same throughout the milled surface. Any

other type of traversal might, in some stage of the milling, require the tool to

cut using its entire milling surface perimeter, an undesired tool machining motion.

Unfortunately, the time to �nd an optimal traversal of the piecewise cutting motion

toolpath is exponential in nature; more on this problem can be found in [12].

There are two main approaches used to generate tool paths for freeform surfaces.

In one, isoparametric curves are extracted from the surface, usually in equally

spaced parametric steps [10, 12, 32, 46]. These isocurves usually span the entire

parametric domain of the surface (see Figures 5.1a and 5.2a) and will be referred to

as complete-isocurves. Isocurves that span only a portion of the surface parametric

domain (see Figures 5.1b and 5.2b) will be referred to as subisocurves. Although

simple to determine, toolpaths created using complete isocurves equally spaced

in parametric space, are clearly not optimal according to de�nition 5.2 and are

redundant, as can be seen in the example of Figure 5.1a, where the toolpath is

redundant in the middle region of the surface. In order to guarantee the validity

of the toolpath, a certain parametric stepsize is selected for the complete isocurves

(for example, derived by the top and bottom regions of the surface in Figure 5.1a)

and which undoubtly leads to a much smaller distances between adjacent complete

isocurves in other surface regions than required causing redundancy (in the middle

of the surface in Figure 5.1a). Further, it might be di�cult for the user to determine

the parameter stepping tolerance that will create valid toolpaths to within a given

�, even if the top and bottom regions of the surface in Figure 5.1a are treated

separately. The user is interested mainly in the shape of the represented geometry

and the associated milling, so the parametric representation of the surface should

not require his attention, but be internal.
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(a) (b) (c)

Figure 5.1. Isocurves are obviously not an optimal solution as a toolpath for

this surface (a). Adaptive isocurves are, in general, more optimal, exact, and
compact (b). Contouring with equally spaced parallel planes might be optimal but
is piecewise linear (c).

An alternative method for generating toolpaths is based on contouring planes, in

which the surface is intersected by (usually geometrically equally spaced) parallel

planes. The intersection curves are used to drive the milling tools [8, 10]. The

resulting toolpath is, in general, only a piecewise linear approximation to the real

intersection, and the size of the piecewise linear approximations of the intersection

curves is usually several magnitudes larger than isocurve data. For relatively at

surfaces the contouring algorithm seems to yield acceptable results (see Figure 5.1c).

However, as is the case for the complete isocurves algorithm, some frequently

occurring surfaces can be pathological to this contouring algorithm. If the surface

has regions almost coplanar to the contouring plane, adjacent contours would be

distant from each other, as can be seen from Figure 5.2c, invalidating the toolpath.

How to set the parallel plane spacing and the parallel plane direction to create a

valid toolpath is not obvious. Even if an algorithm could be created to adaptively
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(a) (b) (c)

Figure 5.2. Toolpath using isocurves will be not optimal in this complex surface
(a). Adaptive isocurves are more optimal, exact, and still correctly spans the entire
surface (b). Contouring with equally spaced parallel planes is too sparse in coplanar

regions (c).

space the contours based on the coplanarity of one surface region, this spacing

would be �xed for the entire contoured model. Local coplanarity in one region of

the surface would set the spacing for the entire model.

Attempts to improve those techniques have been geared mainly toward local

adaptation of the algorithm to speci�c regions which require a di�erent number of

samples to gain the required tolerances [40, 46]. Others used adaptation of scanline

fashion rendering [64, 67] to get a piecewise linear approximation for the toolpath.

An adaptive subisocurve extraction approach is introduced for rendering in [26].

That scheme provides a more optimal and valid coverage of the surface by adap-

tively introducing partial subisocurves in regions yet uncovered by already created

subisocurves (de�nition 5.1). Furthermore, the algorithm frees the user from the

need to determine both the surface parameter spacing or contouring plane spacing,
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and the direction to use to insure adjacent isocurve distances to produce a valid

coverage. Instead, a bound on the required distance between adjacent subisocurves

can be directly speci�ed, and guaranteed automatically.

It is clear that a valid coverage generated using complete isocurves can be very

ine�cient (see Figure 5.1a), which can increase machining time and a�ect part

�nish. If the redundant portion of each complete isocurve could be a priori detected

and not be generated as part of the valid coverage, one would be able to generate

a more optimal toolpath with the appeal of the isocurves. The adaptive isocurve

extraction algorithm does exactly that for rendering (see Figures 5.1b and 5.2b).

because the adaptive isocurve extraction algorithm is developed for rendering in [26]

it will be briey discussed here. The interested reader can also refer to [26].

It is appealing to use isocurves because their representations are compact, ex-

act, and they are straightforward to use as milling toolpath. Isocurves can be

approximated more compactly and accurately using piecewise arcs (and lines), if

circular motion is supported by the milling machines than by using piecewise linear

approximation alone. Furthermore, isocurves could be sent directly to a milling ma-

chine that supports NURBs or B�ezier curve toolpaths. Isocurves are also invariant

under a�ne transformations and therefore are view direction independent, unlike

the results of the contouring technique. Scallops resulting from isocurve based

toolpaths are usually more attractive than those resulting from contoured based

toolpaths because they follow the model's basic streamlines. Finally, when comput-

ing toolpaths for models having trimmed surfaces, it is easier to trim isocurves to the

appropriate domains than to trim contours whose parametric domain representation

can be arbitrary.

Recent literature [8, 10, 40] has suggested that the contact point numerical

improvement approach, such as used by APT [32], is unstable and slow. Computa-

tions of a toolpath for a single surface are usually measured in minutes [10, 40]. A
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di�erent known approach [40] was selected in this work. The model was o�set by

the tool ball end radius and toolpaths for the tool center were generated using the

o�set surface.

Section 5.2.1 briey discusses the adaptive subisocurve algorithm. Section 5.2.2

describes the o�set computation required for ball end tool milling, and section 5.2.3

deals with the method used for the rough cutting process. Finally, section 5.2.4

presents some results obtained from an implementation of the new algorithm for

NURBs based models using the Alpha 1 solid modeler.

5.2.1 Adaptive Isocurves Algorithm

Using isocurves as the coverage for a surface, we de�ne adjacency and iso-distance

between isocurves.

De�nition 5.3 Two (sub)isocurves of surface S(u; v), C1(u) = S(u; v1),

u 2 [us
1
; ue

1
] and C2(u) = S(u; v2), u 2 [us

2
; ue

2
], v1 � v2, from a given

set C of isocurves forming a valid coverage for S are considered adjacent

if, along their common domain U = [us
1
; ue

1
] \ [us

2
; ue

2
], there is no other

isocurve from C between them. That is, there does not exist C3(u) =

S(u; v3) 2 C, u 2 [us
3
; ue

3
] such that v1 � v3 � v2 and [us

3
; ue

3
] \ U 6= ;.

De�nition 5.4 The iso-distance function �12(u) between two adjacent

(sub) isocurves along their common domain U is equal to

�12(u) = kC1(u)� C2(u)k2

=
q
(cx1(u)� cx2(u))

2 + (cy1(u)� c
y
2(u))

2 + (cz1(u)� cz2(u))
2:

(5.1)
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Given two isocurves, C1(u) and C2(u), on a surface S(u; v), one can compute

and represent the square of the iso-distance, �2

12
(u), between them symbolically as

a NURBs or as a B�ezier curve. Computing the coe�cients for the representation

of �2

12
(u) requires the di�erence, sum, and product of curves, all computable and

representable in the polynomial and piecewise polynomial domains. Furthermore,

given some tolerance �, it is possible to compute the parameter values where

the iso-distance between C1(u) and C2(u) is exactly � by computing the zero set

of (�2

12
(u) � �2) [44]. By subdividing the two curves at these parameters, new

subisocurve pairs, fC i
1
(u); C i

2
(u)g, are formed with the characteristic that each

pair is always iso-distance smaller or always larger than �, in their open interval

domains. If the two curves in the pair fC i
1
(u); C i

2
(u)g are closer than � in the

iso-distance metric then the Euclidean distance tolerance condition is met for that

pair. If, however, the two curves' iso-distance is larger than �, a new subisocurve,

C i
12
(u), is introduced between C i

1
(t) and C i

12
(t) along their common domain U and

the same iso-distance computation is recursively invoked for the two new pairs

fC i
1
(u); C i

12
(u)g and fC i

12
(u); C i

2
(u)g.

Starting with the two U boundaries or two V boundaries of the surface, the

algorithm can invoke this iso-distance computation recursively and ensure two

adjacent isocurves will always be closer than some speci�ed distance � by verifying

that their iso-distance is not larger than �. Because a middle isocurve is introduced

i� the iso-distance is larger than � and � is small, resulting iso-distances between

adjacent isocurves, as computed, are rarely less than �

2
. Furthermore, because the

resulting set of isocurves covers the entire surface S, it can serve as a valid toolpath

for S with distance �.

Algorithm 5.1, the adaptive isocurve extraction algorithm, generates a valid

and more optimal coverage by minimizing the cutting speed motion required by

minimizing redundancies while providing a bound on the scallop height via the
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Algorithm 5.1

Input:

Surface S(u; v).

Iso-distance tolerance �.

Output:

Adaptive isocurve toolpath for S(u; v).

Algorithm:

AdapIsoCurve( S(u; v), � ).

begin

C1(u), C2(u) ( S(u; v) two u boundary curves.

return AdapIsoCurveAux( S(u; v), �, fC1(u); C2(u)g ).

end

bound on the distance between two adjacent isocurves.

It is important to realize that bounding the distance between adjacent isocurves

is a necessary condition to bound the scallop height. The surface curvature bound

(See [24]) could be added to the de�nition of validity to decide whether to introduce

a middle isocurve in algorithm 5.1 and obtain a tighter bound on the scallop height.

5.2.2 The O�set Computation

Because the toolpath generated by the adaptive isocurve algorithm provides a

valid coverage of the surface, it can serve as a toolpath for both 3 axis and 5 axis

milling. In this discussion, we will concentrate on 3 axis milling using ball end

tools. Such a method requires the computation of an o�set surface to the model

at a distance equal to the radius of the ball end tool. This simpli�es the toolpath

generation because keeping the center of the ball end tool on the o�set surface,

keeps the tool tangent to the original surface so it can not gauge.

Unfortunately, the exact o�set of a freeform piecewise polynomial or rational

surface is not representable, in general, as a piecewise polynomial or rational
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Algorithm 5.1 continued

AdapIsoCurveAux( S(u; v), �, fC1(u); C2(u)g )

begin

�2

12
(u)( kC1(u)� C2(u)k2, iso-distance between C1(u) and C2(u).

if (�2

12
(u) < �2, 8u) then

return ;.
else if (�2

12
(u) > �2, 8u) then

begin

C12(u) ( Middle isocurve between C1(u) and C2(u).

return
AdapIsoCurveAux( S(u; v), �, fC1(u); C12(u)g )

S
AdapIsoCurveAux( S(u; v), �, fC12(u); C2(u)g ).

end

else

begin

fC i
1
(u); C i

2
(u)g ( subdivided fC1(u), C2(u)g at all u

such that �2

12
(u) = �2.

return
S
i AdapIsoCurveAux( S(u; v), �, fC i

1
(u); C i

2
(u)g ).

end

end

surface [25]. Quite a few methods have been developed in recent years to provide

approximations to surface o�sets [2, 13, 25, 29]. In [25], a technique to approximate

o�sets of freeform B�ezier and NURBs surfaces by B�ezier and NURBs surfaces was

developed with the property that error in the approximation surface is globally

bounded. That global bound can be used directly to determine a global bound on

the accuracy of the milling and the amount of gouging that may occur.

Extending the generation of surface toolpaths to models de�ned using construc-

tive solid geometry [34] and consisting of several, possibly trimmed, surfaces is not

obvious. Let O(A) denote the exact o�set of A. It is unfortunate but O(A \ B)

is not always the same as O(A) \ O(B). For example, A \ B and hence O(A \ B)
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could be empty but O(A) \ O(B) might be a nonempty.

Several types of manufacturing o�sets can be de�ned for piecewiseC1 models [54,

57] that are constructed by constructive solid geometry. In general, one should

attempt to prevent gouging even at the expense of not being able to mill the entire

model. A C1 discontinuous concave corner created by a union of two surfaces cannot

be milled using a ball end tool of any size. One could de�ne the o�set operator for

a piecewise C1 model so that at no time would the center of the ball end tool be

closer than its radius to any of the surfaces of the model. Using such de�nition it

can be guaranteed that during the entire milling process,

kTc � Si(u
i; vi)k2 � Tr; 8i; (5:2)

where Tc and Tr are the center and the radius of the ball end tool, respectively,

where Si(u; v) is the ith surface in the model, and (ui; vi) is a parametric location

in the untrimmed domain of surface Si.

If O(Si) designates the exact o�set surface to surface Si at distance Tr, it is

clear that the ball end tool could not gouge Si if Tc were kept on O(Si). We de�ne

the manufacturing o�set of a Boolean union operation of two surfaces, Si
S
Sj,

to be the union of the o�set surfaces, that is bO(Si SSj) � O(Si)
S
O(Sj), even

though the model might not be completely milled along the intersection curve of

Si and Sj in concave regions. Such a de�nition guarantees that the tool will gouge

neither Si nor Sj . Similarly, the manufacturing o�set of a Boolean intersection

operation of two surfaces, Si
T
Sj is de�ned as the intersection of the o�set surfaces,

that is bO(SiTSj) � O(Si)
T
O(Sj). Because the Boolean intersection operation

only \removes material," it is not possible for it to form concave corners from an

intersection of two C1 continuous surfaces, so the bO de�nition of an o�set of a

Boolean intersection operation supports the milling of the entire region along the

intersection curves.
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Because an o�set of a single surface is another single surface [25], Boolean

operations can be performed on the o�set surfaces in much the same way they

were computed for the original models. Consider surfaces Si and Sj that intersect.

If the intersection occurs near the boundary of either surface, it can happen that

O(Si) does not intersect O(Sj). For open surfaces, one solution that forms correct

intersection curves is to extend them in the cross boundary tangent directions.

5.2.3 Rough Cutting Stage

The toolpath derived in section 5.2.1 cannot, in general, be directly applied to

the stock from which the model is to be machined. In some cases, the depth of

milling required is simply too large. A rough cutting stage is usually applied in

which the excessive material is removed crudely. Then, in the �nal stage, when the

toolpath derived in section 5.2.1 is applied, it is necessary to remove only a limited

amount of material.

One way to discard the excessive material, in 3 axis milling, is to slice the

o�set approximation of the model with several parallel planes and remove the

material external to the part at each contour level. Two-dimensional pocketing

operations [12] can be used to remove the excessivematerial at each contoured layer.

Figure 5.3 shows those contours of a \house on the hill" model. The rough cutting

stage can be automated, similarly to the adaptive isocurve extraction algorithm.

5.2.4 Results

Several results are presented in this section, as are some timing considerations.

The adaptive isocurve toolpaths for the knight in Figure 5.2b have been used to

mill the complete knight. Two �xtures, one for the right side and one for the left

side of the knight have been used. Figure 5.4 shows a raytraced version of the

model while Figure 5.5 shows the milled piece. A ball end tool was driven along an
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Figure 5.3. Parallel plane contouring is used to generate pockets for rough cutting.

o�set [25] of the knight surface in 3 axis milling mode. The knight model consists

of a single highly complex NURBs surface.

This algorithm produces only isoparametric curves that are simple to clip against

the surface trimming curves de�ning a trimmed surface. A \house on a hill" model,

consisting of several trimmed surfaces was used for this example. This model was

milled using a ball end tool in 3 axis mode. Figure 5.6 shows a raytraced version

of the model, while Figure 5.7 shows the adaptive isocurve toolpath used in the

�nish stage of the model in Figure 5.8. The o�set of the model was automatically

computed using the the bO o�set method described in section 5.2.2. Furthermore,

it was unnecessary to introduce any auxiliary check or driver surfaces [32] as part

of this automated toolpath generation process.

To gain some insight regarding this algorithm, Table 5.1 provides some timing

results for computing the adaptive isocurve toolpaths for the tests displayed. Tests

were running on a SGI4D 240 GTX (R3000 25MHz Risc machine). The surface in

Figure 5.1 is a B-spline ruled surface with 3 B�ezier patches (patches of a NURBs
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Figure 5.4. Raytraced image of the knight model.

Table 5.1. CPU times for adaptive iso-curves extraction.

model cpu time # isocurves.

Figure 5.1b - surface 5.6 sec. 61

Figure 5.5 - knight 54.3 sec. 122
Figure 5.7 - \house on a hill" 132.0 sec. 1013

surface are enumerated as the number of B�ezier patches that would result from

subdividing the NURBs surface at each original interior knot). The knight is a far

more complex NURBs surface. Its 56 B�ezier patches accounts for its long processing

time. Although the \house on the hill" model has 7 NURBs surfaces in it, none of

them is as complex as the single surface de�ning a knight.

5.3 Fabrication Using Layout Projection

It is common to �nd freeform surfaces manually approximated and assembled

as sets of piecewise developable surfaces. \Developable surfaces are of considerable

importance to sheet-metal- or plate-metal-based industries and to a less extent

to fabric-based industries" [56]. Parts of aircrafts and ships are assembled from
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Figure 5.5. Aluminum milled version of the knight model.

piecewise planar sheets unidirectionally bent into their model positions. Certain

fabric and leather objects are made using patterns made from planar sheets.

Because developable surfaces can be unrolled onto a plane without distortion,

they can be cut from planar sheets, bent back into their �nal position, and stitched

together.

In [5], a attening approximation is computed for freeform surfaces to eliminate

the distortion in texture mapping. Surfaces are split into patches along feature

(geodesic) lines and approximated as ats. However, we are mainly interested in

isometric projections that preserves intrinsic distances and angles [21]. Physically,

such maps only bend the surface with no stretching, tearing, or distortion. One

of the most interesting properties of developable surfaces is their ability to be laid

at on a plane without distortion by simply unrolling them [21, 32]. Therefore,

we would like to generate a surface approximation using piecewise developable

surfaces [21, 32], for which an isometric map to a plane exists.

Currently, the process that determines how and where to decompose the model

requires human ingenuity and does not provide a bound on the accuracy of the
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Figure 5.6. Raytraced image of the \house on the hill" model.

approximation. We explores a technique for automatically decomposing the sculp-

tured model, using a C0 approximation with error bound control, into sets of

developable surfaces.

The Gaussian curvature of a developable surface S(u; v), K, is zero every-

where [21, 32], i.e., K(u; v) � 0. The class of developable surfaces is di�cult

to deal with, so we will �rst concentrate on a superset of it, namely the class of

ruled surfaces. In order to be able to use ruled surfaces instead, we need to derive

the conditions in which a ruled surface is also developable. Let jGj and jLj be the

determinants of the �rst and second fundamental form [21], respectively.

Lemma 5.1 Let R be a regular ruled surface, R(u; v) = C1(u)�v+C2(u)�

(1� v), v 2 (0; 1). R is developable if and only if
D
nr;

@2R

@u@v

E
� 0,

Proof: Given a regular surface S, its Gaussian curvature, K, is zero everywhere

(therefore, it is developable) if jLj � 0 because K = jLj
jGj
, and jGj 6= 0 for regular

surfaces.

jLj =

*
n;
@2S

@u2

+*
n;
@2S

@v2

+
�

*
n;

@2S

@u@v

+
2

: (5:3)
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Figure 5.7. Adaptive isocurves toolpath for Ô o�set of \house on the hill" model.

By di�erentiating R twice in v, it is clear that @2R
@v2

� 0. We can immediately

rewrite jLj as

jLRj = �

*
nr;

@2R

@u@v

+
2

; (5:4)

and the result follows.

Therefore, to determine if a ruled surface is developable, one can symbolically

compute �(u; v) =
D
nr;

@2R

@u@v

E
(That is, represent the scalar surface �(u; v) as a

B�ezier or NURBs scalar surface) and make sure it is zero everywhere within a

prescribed tolerance. In other words, using the convex hull property of the B�ezier

and NURBs representations, all the coe�cients of the scalar surface �(u; v) must

be zero within a prescribed tolerance.

The mixed partials, also called the twist of the surface [3], are a measure of

the \crosstalk" in the parameterization. Equation 5.4 measures this \crosstalk"

projected in the direction of the surface normal.
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Figure 5.8. Aluminum milled version of the \house on the hill" model.

Assuming one can approximate a given surface by a set of disjoint (except along

boundaries) piecewise ruled surfaces within a prescribed tolerance, lemma 5.1 can

be used to test that each member of the set of ruled surfaces is also developable.

Each developable surface can then be unfolded, laid at and cut from a planar

sheet such as paper or metal. By folding each back to its Euclidean orientation

and stitching them all together, a C0 approximation of the computer model is

constructed.

Section 5.3.1 develops the background required for this method, and presents the

basic algorithm. In section 5.3.2 we investigate several possible extensions including

optimization, stub generation, and handling of trimmed surfaces. Section 5.3.3 lays

out several examples including some models assembled from paper.

We will concentrate in our discussion on the NURBs representation although

the developed technique may very well �t into any other piecewise polynomial or

rational representation.
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5.3.1 Algorithm

Let S(u; v) be a nonuniform polynomial B-spline surface. Let the curves C1(u) =

S(u; V min) and C2(u) = S(u; V max) be the V min and V max boundary curves of

S(u; v) respectively, C1(u) 6= C2(u). Let R(u; v) be the ruled surface constructed

between C1(u) and C2(u). Let R̂(u; v) be the representation for R(u; v) in the

same B-spline basis as that of S(u; v). R̂(u; v) can be obtained from R(u; v) via

appropriate degree raising [16, 17] and re�nement [15] in the linear (ruled) direction,

v. Then

kS(u; v)� R̂(u; v)k = k
mX
i=0

nX
j=0

PijB
m
i;�(u)B

n
j;�(v)�

mX
i=0

nX
j=0

QijB
m
i;�(u)B

n
j;�(v)k

= k
mX
i=0

nX
j=0

(Pij �Qij)B
m
i;�(u)B

n
j;�(v)k

� max(kPij �Qijk; 8i; j); (5.5)

because the B-spline basis functions are nonnegative and sum to one.

The di�erence of two rational surfaces can be computed in a similar way although

it is more complex and must deal with products of scalar surfaces when the two are

brought to a common denominator.

From the way R̂ is constructed it is clear that the �rst row of S control mesh

is the same as the �rst row of R̂ control mesh, that is P0j = Q0j 8j. Similarly,

the last row of S control mesh is the same as the last row of R̂ control mesh,

that is Pmj = Qmj 8j. The jth column of S control mesh will be referred to as

P�j. Equation (5.5) provides a simple mechanism to bound the maximum distance

between S and the ruled surface R.

Isocurves of R (and R̂) in the ruled parametric direction have constant speed

because R is linear in this parameter. The bound in equation 5.5 provides a good

bound of the distance when the v isocurves of S also have constant speed, that is

when k@S(u0;v)
@v

k = c, for all u0.
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Unfortunately, when @S
@v

is not constant, the number of ruled surfaces in the

resulting approximation can be unnecessarily large in order to meet the required

tolerance. A method to correct for this problem uses the fact that control points

can be associated with spline node values to obtain a surface-mesh parametric

relation [55]. By degree raising R into R̂, equally spaced in Euclidean space rows are

introduced into the mesh that preserves the constant speed in the ruled direction, v.

Because S does not have, in general, constant speed v isocurves, one can consider

unequal spacing of the introduced mesh rows. Such strategy can project a single

column in the v direction of the control mesh of S, P�j, onto the linear segment

connecting P0j and Pmj which are also control points of C1(u) and C2(u) respectively

(see Figure 5.9). The spacing of these projected points can then be used to place

the interior control points of R̂. Figure 5.9 demonstrates this process. Figure 5.9a

has the original surface S. The control mesh of S is used in Figure 5.9b to de�ne

the mesh of R̂, by projecting a single column of the mesh of S, P�j , onto the line

connecting P0j and Pmj. The new ruled surface, R̂, constructed with this new

spacing is shown in Figure 5.9c.

The added degree of freedom of a nonuniform v speed ruled surface approxi-

mation includes the uniform v speed ruled surface as a special case and so can

always be as good approximation as the uniform speed approximation. Let C1(v)

and C2(v) be two isocurves of S in the v direction. Because we consider only one

column of S mesh, this strategy will be able to emulate S v speed well only if���dC1(v)

dv

��� .���dC2(v)

dv

��� is almost constant for all v. This condition holds fairly well for

large classes of surfaces, but will not necessarily hold for surfaces constructed via

highly nonisometric operations such as warp [13]. However, it does eliminate the

need for degree raising or re�nement in the construction of R̂, because the continuity

(knot vector) of S in the v direction is inherited.

A distance bounded algorithm approximating an arbitrary tensor product sur-
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(a)
(b) (c)

Figure 5.9. The speed of S's isocurve in the ruled direction is emulated by the ruled

surface R̂ approximating it. In (a), the jth column of S mesh, P
�j, is projected in

(b) onto the line connecting P
0j and Pmj . The spacing of the projected points is

used to construct the mesh of R̂'s in (c).

face as a set of ruled surfaces is derived in algorithm 5.2 based on this process.

Algorithm 5.2 returns a set of ruled surfaces that approximates the original

surface S to within the required tolerance � . Figure 5.10 shows an example of three

consecutive stages of algorithm 5.2.

Assuming S satis�es a Lipschitz condition, which automatically holds for B-

spline surfaces, let (�X
�v

, �Y

�v
, �Z

�v
) be an upper bound on the �rst partial derivatives

of S in the v direction. Given a �nite range in the v parametric direction, V, a

bound on the Euclidean size is readily available as (V�X

�v
, V�Y

�v
, V �Z

�v
). Because

algorithm 5.2 halves the parametric domain in each iteration, it halves the Euclidean

bound in each iteration as well, so convergence in algorithm 5.2 is guaranteed. Note

that we are concerned only with the v (ruled) direction because the representation

is exact in the u direction.

Therefore, the less complex parametric direction, by some norm, may be a better

candidate to select for the ruling direction approximation. Another measure for the

selection of the subdivision direction may be the feasibility of the surface assembly.
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Algorithm 5.2

Input:

S(u; v), surface to be divided in the v parametric direction.

�, tolerance of approximation to be used.

Output:

S, Set of ruled surfaces, approximating S(u; v) to within �.

Algorithm:

RuledSrfApproximation( S, � )

begin

C
1
(t); C

2
(t) ( V min and V max boundary of S.

R ( ruled surface between C
1
(t) and C

2
(t).

R̂ ( R refined and degree raised in v.

If ( maxDistance( S, R̂ ) < � )

return f R g.
else

begin

Subdivide S into two subsrfs S1, S2 along v.

return

RuledSrfApproximation( S1, � ) [
RuledSrfApproximation( S2, � ).

end

end

If S is an elongated tube, it may be easier to select and assemble the surfaces as

sequence of rings than as a sequence of elongated strips. A third consideration may

be whether the surface is closed in one direction or not. Such closed surfaces are

very common, and it is very natural to approximate such surfaces as a set of rings

(see Figures 5.10 and 5.11).

Once the set of ruled surfaces is determined, the surfaces must be laid at on

a plane, so they can be cut out. Lemma 5.1 can be used to verify whether the

piecewise ruled surfaces are also developable. Because the isometry mapping is

nonlinear, in general, an approximation must be used. We start the process by
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(a) (b) (c)

Figure 5.10. Three stages in approximating a surface with piecewise ruled surfaces.

approximating the two boundary curves of R that originated on S, C
1
(u) and

C
2
(u), as piecewise linear curves Ĉ

1
(u) and Ĉ

2
(u), using re�nement. An identical

re�nement should be computed and applied to both curves to insure they have

the same number of linear segments, n. A one-to-one correspondence between the

piecewise linear approximation of each curve is therefore established. Then, from

each pair of corresponding linear segments, one from Ĉ
1
(u) and one from Ĉ

2
(u), a

bilinear surface is created. Each bilinear is further approximated as two triangles

along one of the bilinear diagonals. Finally, the 2n triangles are incrementally laid

out and linearly transformed onto a plane (see Figure 5.12).

As stated above, the laying down of the surface is a nonlinear mapping and

is only approximated. During the piecewise ruled surface approximation stage, it

would be required to increase the number of ruled surfaces if a better approximation

is necessary, complicating the assembly process. However, the penalty for a better

layout approximation is reduced to only an enlargement of the data set.
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(a)

(b) (c)

Figure 5.11. Piecewise ruled surface approximation layout of a sphere (a), its

piecewise ruled surface cross sections (b), and assembled (c).

5.3.2 Extensions

It is a logical next step to improve the e�ciency of algorithm 5.2 by subdividing S

at v values that will minimize the number of ruled surfaces required to approximate

S to within a given tolerance � . Automatically determining candidate locations is

di�cult. However, a greedy approach can be adopted to determine a local minimum

even though it does not guarantee global minimum in the number of ruled surfaces.

The normal curvature in the v direction (the direction in which the approximating

surfaces are ruled), �v
n
(u; v) can be computed symbolically. The maximum values

of �v
n
(u; v) can then be used as subdivision locations. See Figure 5.13 for one such

example. The normal curvature of the surface in tangent direction @S

@u

@u

@t
+ @S

@v

@v

@t
is

�n =
II(a; b)

I(a; b)
=

II(�)

I(�)
=

�L�T

�G�T
; (5:6)

where � = (@u
@t
; @v
@t
) = (a; b) and G and L are the matrices of the �rst and second

fundamental forms [21, 32], respectively.

From equation (5.6), when � = (0; d), that is, the tangent vector direction is

d@S
@v
,
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Figure 5.12. A ruled surface is approximated by triangles and unrolled onto a plane.

�v
n

=
(0; d)L(0; d)T

(0; d)G(0; d)T

=
d2
D
n; @

2
F

@v2

E
d2
�
@F

@v

�
2

=

D
n; @

2
F

@v2

E
�
@F

@v

�
2
: (5.7)

Equation (5.7) is the normal curvature of the surface in the v direction. Equa-

tion (5.7) is also geometrically the curvature vector of the v iso-curve projected in

the surface normal direction. For a nonarclength parameterized regular curve C(t)

(see [48]),

�N = �B � T =
(dC
dt
� d

2
C

dt2
)� dC

dt�
ds

dt

�
4

;

where s is the arc length parameterization of C. Because hu; (v � w)i = h(u� v); wi

� hN;ni =

D�
dC

dt
� d

2
C

dt2

�
� dC

dt
; n
E

�
ds

dt

�
4
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=

D�
dC

dt
� d

2
C

dt
2

�
;
�
dC

dt
� n

�E
�
ds

dt

�
4

=

D�
dC

dt
� n

�
;
�
dC

dt
� d

2
C

dt2

�E
�
ds

dt

�
4

=

D�
dC

dt
� n

�
� dC

dt
; d

2
C

dt2

E
�
ds

dt

�
4

=

D
n; d

2
C

dt2

E
�
ds

dt

�
2

;

= �v
n

(5.8)

because kdC
dt
k = ds

dt
and n is orthogonal to dC

dt
.

�v
n
can be symbolically represented as a scalar NURBs surface. Its isolated

local maxima are the suggested preferred locations for the piecewise ruled surface

approximation subdivision. For obvious reasons, a maximum occurring on the

boundary is of no interest, but C1 discontinuities in the v parametric direction

are likely candidates for subdivision locations. Therefore, a surface should �rst be

preprocessed and subdivided at all locations where it is not C1 continuous. �v
n
(u; v)

should then be computed for the resulting C1 continuous subsurfaces. If the original

surface is not C2, �v
n
will not even be C0. Special care should be taken in evaluating

�v
n
along those discontinuous edges, because limits from both sides along the C0

discontinuities would converge to di�erent values.

An example is provided in Figure 5.13, which shows a surface with two very

highly curved regions in the v direction (Figure 5.13a). Those regions are very

noticeable in the �v
n
(u; v) (Figure 5.13b) computed for this surface. Therefore,

�v
n
(u; v) can be used to automate the scheme to make more optimal ruled surface

approximation.

In some cases, the laid out ruled surfaces can be insu�cient to assemble the

model, depending upon the assemblymethod. Some extra material might need to be
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(a)

(b)

Figure 5.13. �v
n
(u; v) (b) is used to determine where to subdivide the surface (a).

included as stubs so the pieces may be stitched or welded together. Such stubs can

be constructed by o�setting [25] the boundary curves of the planar representation of

the approximating ruled surfaces. Figure 5.14 shows an examples of stubs generated

using this approach that can be used for the layout of Figure 5.10 (c). However,

such stubs can cause a C0 seam between two folded developed surfaces resulting in

a little stair with height equal to the material thickness. An alternative approach

would be to connect two adjacent ruled surfaces using a separate stub made to span

the two surfaces, from underneath, eliminating the stair.

When Boolean operators are applied to freeform models, trimmed surfaces re-

sult [47], and only part of each tensor product surface is used in the �nal model.

In order to approximate freeform trimmed surfaces with piecewise ruled surfaces,

it is necessary to position the trimming curves in the plane with the ruled surfaces.

The problem is equivalent to �nding the corresponding location of a speci�c surface

Euclidean point in the planar representation of a ruled surface, given the (trimming

curve) point in the surface parametric space. With the added constraint that the

surface speed in the v direction must be constant to within a prespeci�ed tolerance,

locating the given (u; v) point in the planar ruled surface becomes a simpli�ed
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Figure 5.14. Stubs can be created by o�setting the planar boundary curves.

problem. Because the u direction is approximated as piecewise linear in the laying

out stage, a binary search in u can e�ciently reveal the bilinear segment containing

the point. Within the bilinear surface the u direction is also assumed to be of

constant speed and the exact location is then interpolated from the at bilinear

four corner points. Finally, because the ruled surface representation is only an

approximation, it may be desired to re-execute the Boolean operations on the ruled

surface approximations and create the appropriate trimming curves for the fabrica-

tion surfaces instead of the original surfaces because the intersections curves are not

identical. Figure 5.15 shows a simple layout with trimming curves. Section 5.3.3

provides several examples of more complex models composed of trimmed surfaces

as well.

5.3.3 Examples

The algorithm developed was used to generate layouts for several computer

models, automatically. Figure 5.11 shows the sphere layout on a plane with its 3
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Figure 5.15. Trimming curves should be laid out with the ruled surfaces.

dimensional piecewise ruled surface approximation. Figure 5.14 shows the layout of

the model in Figure 5.10 with an example of stubs. Figure 5.15 shows the layout of a

cone and a cylinder intersecting each other with their trimming curves. Figure 5.16

shows a helicopter model [14], its layout projection with the ruled surface cross

sections, and the assembled piece.

Figure 5.17 shows several models layed out using these techniques and then

assembled from heavy paper. Each developable surface was cut from paper and

folded into its 3-space shape. Paper connecting stubs were used to hold and keep

the pieces together.

More complex models can be created using Boolean operations when the model

is a union or intersection of several freeform surfaces. The layouts of the trimming

curves of these surfaces are also computed, in a way similar to the ruled surface

layouts. Figures 5.18 and 5.19 show more complex models having several trimmed

surfaces.

Table 5.2 provides some timing results for the model decomposition and layout

computation. Tests were run on a SGI4D 240 GTX (R3000 25MHz Risc machine).

All tests are measured in seconds.
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(a)

(b)

(c)

Figure 5.16. A helicopter model (a) laid out (b) and assembled (c).

(a) (b)

Figure 5.17. Computer models (a) and assembled out of heavy paper (b).
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(a) (b)

Figure 5.18. Teapot computer model (a) and assembled out of heavy paper (b).

(a) (b)

Figure 5.19. Computer model of an f16 (a) and assembled out of heavy paper (b).

Table 5.2. Di�erent models layout construction times.

Model Time (Sec.)

Tube (Figure 5.14) 1.4

Helicopter (Figure 5.16) 7

Pawn (Figure 5.17) 3

Teapot (Figure 5.18) 5

f16 (Figure 5.19) 150



CHAPTER 6

OTHER APPLICATIONS

Nothing is particularly hard if you divide it into small jobs.

Henry Ford

This Chapter will present several other applications that can bene�t from com-

bined symbolic and numeric computation. Some of these problems have undergone

extensive research and are provided here to reect on the power of this combina-

tion. In section 6.1 we develop an adaptive technique to approximate higher order

B�ezier curves using cubic B�ezier curves. In section 6.2 we develop the tools so the

composition operation may be added to the set of operation de�ned in Chapter 2.

The composition tool will open the way for solving a whole set of problems. In

section 6.3, we develop techniques for visualizing surface slopes and steepnesses.

The steepness of a model may be of interest when only a limited set of slopes is

allowed. This is important for road design or even for slides. Section 6.4 discusses

more surface properties. The speed of the surface has a direct a�ect on the way the

surface is milled. It also provides a bound on the amount of Euclidean movement

while moving a �xed distance in parametric space. The twist is another measure

for a surface shape and is not as intuitive as one would like, as will be shown. Like

curvature estimation methods, analysis techniques of twist have been previously

based on a presampled grid from the surface parametric space [3]. As in Chapter 4,

we will demonstrate in section 6.5 the use of property surfaces to globally bound

the twist properties.
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6.1 B�ezier Curve Approximation

Cubic polynomial curves are frequently used in graphics and CAGD. The fact

that piecewise cubic polynomial curves are the curves with the lowest order that can

provide C2 continuous interpolation or approximation is one of the main reasons.

Because any polynomial basis may be used, we select the Bernstein polynomial

which is numerically stable [31].

One can �nd a growing number of hardware implementations for evaluating

cubic polynomials in modern workstations and devices, for mainly display purposes.

Taking advantage of these implementations speeds up algorithms. Converting

other types of curves into this simple form is not always obvious. Higher order

curves cannot, in general, be represented as cubic polynomials. This is also the

case for rational curves. Even rational quadratic curves are not representable

as cubic polynomials. In other words, approximation techniques must be used.

The Postscript [53] language is an example in which only cubic polynomial are

supported. Therefore NURBs curves or even rational B�ezier curves must be ap-

proximated to display them on Postscript devices.

Currently, the most common technique is to re�ne the curves and approximate

them as piecewise linear curves which are then displayed. Because linear segments

are displayable by almost every device, portability is gained. However, this method

su�ers from two major drawbacks. First, the size of the data is huge - several

magnitudes larger than the original curves. Furthermore, the data are not exact

any more and are not even C1 continuous. Approximating higher order or rational

curves as cubic polynomials is probably a better approach. In [38, 39], a subdivision

based approach is used to create such an approximation. A cubic polynomial

is compared to the curve being approximated. If the cubic polynomial is not

accurate enough, the curve is subdivided and the two new cubic approximations

are compared to the two parts of the original curve.
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In this section, we enhance this technique so that the approximating cubic

piecewise polynomials join with C1 continuity are everywhere within a prescribed

tolerance to the original curve everywhere.

Because we choose to derive this approximation only for with higher order or

rational B�ezier curves, NURBs curves will be preprocessed and converted to an

ordered set of rational B�ezier curves of the same order.

In Chapter 3, we introduced a global method to compute the distance between

a curve and its o�set approximation. The same technique may be used here to

compute the distance between a curve and its approximation (superscript denotes

order, subscript a denotes approximation):

Algorithm 6.1 provides a piecewise cubic approximation to a given curve in line

(1). A cubic polynomial curve has twelve degrees of freedom (four E3 points). Six

of them are used to interpolate the original curve end points. Because we preserve

end points tangents (to easily preserve C1 continuity), two degrees of freedoms are

left - the speeds of the tangents. One can use the original curve speed to provide

the information to determine the last two degrees of freedom, a necessary condition

from the way �(t) is computed (see below). This approach was used in Figures 6.1

and 6.2.

Raising the order of B�ezier curves as done in line (2) in algorithm 6.1 is a fairly

simple task (see Chapter 2, equation (2.9)).

The subdivision (line (3), algorithm 6.1) exploits the distance function, �(t),

and instead of subdividing in the middle of the parametric domain, a common

technique, the curve is subdivided at the location of the maximum distance (error).

Because the end points of the piecewise cubics interpolate the original curve, this

error is automatically reduced to zero.

A di�erent approach is to adjust the tangent speeds to minimize the distance

between the original curve and it approximation, in a similar way to that of o�sets

in 3.2. This approach needs further investigation.
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Algorithm 6.1

Input:

�, required approximation curve tolerance.

Cn(t), input curve of order n.

Output:

C, set of piecewise cubic Bezier curves, C3

a
(t) approx. Cn(t).

Algorithm:

CubicBezierApprox(Cn(t); � )

begin

(1) C3

a
(t)( cubic Bezier approximation to Cn(t).

(2) Raise C3

a
(t) order to order n: Cn

a
(t).

Compute distance �(t) between Cn

a
(t) and Cn(t).

if ( �(t) maximum distance > � ) Do

begin

(3) Subdivide Cn(t) at �(t) maximum into Cn

1
(t), Cn

2
(t).

return CubicBezierApprox(Cn

1
(t); � ) [

CubicBezierApprox(Cn

2
(t); � ).

end

else

return C3

a
(t).

end

In some cases, when approximating shape of a higher order curve using a lower

one, the speeds of the curve is irrelevant. One such case is display on Postscript

devices, in which the only requirement is to preserve the curve shape. For each

cubic B�ezier and its corresponding higher order subcurve that it approximates,

algorithm 6.1 guarantees

1. End points interpolate the original higher order subcurve,

2. End point tangents are in the same direction as the original higher order

subcurve tangents (G1), and possibly with the same length (C1),

3. The distance between the two curves is within the speci�ed tolerance, and
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Figure 6.1. Cubic B�ezier approximation to higher order curves (two tolerance).

Figure 6.2. Cubic B�ezier approximation to higher order curves (two tolerance).

4. The speed of both curves is the same to within the speci�ed tolerance.

The �rst three properties are required in order to mimic the curve shape. How-

ever, property 4 is only a result of the way the distance, �(t), between the two curves

is computed. If one could e�ciently answer whether the two curves are within the

desired tolerance, this constraint could be omitted. Unfortunately, no such global

and e�cient algorithm exists and, as a result, the distances are computed with

the respective parameter values and curve speed is preserved as well. Modifying

the tangent lengths directly a�ects the speed of the curve so a di�erent distance

measure is needed.

6.2 Composition

Composition, f � g, is a powerful operation that has not found much use in

graphics and CAGD yet. Some work can be found on the implicit use of composition
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in deformations [19, 61]. The bivariate surface g is warped in a �eld de�ned as

a trivariate volume f , resulting in a bivariate composed and deformed surface.

This deformation, implicitly using composition, can serve as a modeling tool as

well and can provide exact and well behaved results. In [11], a parametric curve

g = (u(t); v(t)) is composed with the surface f(u; v) to �nd the exact Euclidean

representation of the curve f(u(t); v(t)), to be used as a �llet boundary curve in

�llet construction. f(u(t); v(t)) can be used anywhere the exact representation of

the Euclidean curve is needed, given the parametric curves. Mapping trimming

curves from parametric space to the Euclidean space is another example.

In this section we will explore the composition f(u(t); v(t)). Extending this to

a trivariate deformation volume f(u(r; s); v(r; s); w(r; s)) is simple.

Let C(t) = (u(t); v(t)) be a B�ezier curve such that u(t) 2 (0; . . . ; 1);8t and

v(t) 2 (0; . . . ; 1);8t. Let S be a B�ezier surface.

S(u(t); v(t)) =
nX
i=0

mX
j=0

PijB
m

j
(v(t))Bn

i
(u(t))

=
nX
i=0

0
@ mX
j=0

PijB
m

j
(v(t))

1
ABn

i
(u(t)): (6.1)

The curve-surface composition is now narrowed to the problem of computing

the composition of Bn

i
(c(t)), where c(t) is a scalar curve. Assuming one can

compute and represent the compositionBn

i
(c(t)), c(t) 2 [umin; umax], as a curve, the

curve S(u(t); v(t)) is also representable because it involves in scaling, addition and

multiplication of Bn

i
(c(t)) terms only. These operations were explored in Chapter 2.

Bn

i
(c(t)) =

 
n

i

!
(1:0 � c(t))n�i(c(t))i: (6:2)

Interestingly enough, equation (6.2) contains only tools developed in Chapter 2

namely, curve addition and curve multiplication (power).
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What if either the curve or the surface is rational? For a rational surface, nothing

changes. The Pij in equation (6.1) should simply be treated as in projective space.

If the curve is rational, equation (6.2) now becomes

Bn

i
(c(t)) =

 
n

i

! 
1:0 �

c(t)

w(t)

!
n�i

 
c(t)

w(t)

!
i

=

 
n

i

!
(w(t)� c(t))n�i(c(t))i

(w(t))n
: (6.3)

Equation (6.3) should then be substituted into equation (6.1) in a similar way

to equation (6.2). If surface S(u; v) is rational as well the denominator term in

equation (6.3), (w(t))n, is canceled because it appears in both the surface numerator

and denominator. If however, the surface was a polynomial, the resulting composed

curve becomes rational.

Figures 6.3 and 6.4 show some examples for B�ezier curves and surfaces. Fig-

ure 6.3 has a polynomial surface and several parametric curves mapped onto the

surface. Figure 6.4 has a surface which is an extrusion of an arc and, as such, is

rational. Both Figures have the parametric space on the left and the Euclidean

mapping on the right.

Unfortunately, the order of the resulting composed curves is quite high. Let d

be the curve degree while the surface degrees are m and n as can be seen from

equation (6.1). It immediately follows from equations (6.1) and (6.2) that the

degree of the composed curves is equal to dn+ dm. Table 6.1 provides these orders

for common cases. Note that even when either the surface or the curve is rational

(or both), the order of the resulting curve does not change.

In some cases, it can be important to reparametrize a curve. The composition

tool allows exactly that. By substituting s in C(s) by s = c(t), we reparametrize a

curve to:

C(c(t)) =
nX
i=0

PiB
n

i
(c(t)): (6:4)
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Figure 6.3. B�ezier curve (polynomial) surface composition.

Figure 6.4. B�ezier curve (rational) surface composition.

Computing equation (6.4) involves scaling (with Pi) and addition of curves

resulting from the composition of Bn

i
(c(t), which we dealt with in equations (6.2)

and (6.3).

Figure 6.5 demonstrates the speed of three arcs after reparametrizing with c(t) =

t2 in the middle and reparametrizing with c(t) = t4 on the right. The original arc

is on the left.
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Table 6.1. Curve on surface composition - orders.

Surface orders Curve order Composed curve order

3 � 3 2 5

3 � 3 3 9

3 � 3 4 13

4 � 4 2 7

4 � 4 3 13

4 � 4 4 19

3 � 4 2 6

3 � 4 3 11

3 � 4 4 16

Figure 6.5. Rational B�ezier curve reparametrizing using composition.

6.3 Surface Steepness

The slope of a planar curve at a given point is equal to the angle between

the tangent to the curve and a reference line, usually the horizontal axis. In

an analogous way we de�ne the surface slope at a given point, p, as the angle

between the plane tangent to the surface at p and a reference plane. Without loss

of generality, in the discussion below we assume that the reference plane is the xy

plane.

Because the angle between two planes is equal to the angle between their two

normals, to compute surface slope, one need only compute the angle between the

surface normal and the z axis. Let n be the surface unit normal and let nz be its
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z component. Then, the tangent of the slope angle S is equal to:

tan(S) =

q
1 � n2z

nz
: (6:5)

When nz = +1 the surface orientation is horizontal. If nz = 0 the surface is

vertical, and �nally if nz = �1 that surface is horizontal again, but this time facing

down.

Inspection of the surface unit normal equation shows that n(u; v) cannot be

computed directly using the symbolic tools of Chapter 2 because of the need to

determine the square root. However, the z component of the unnormalized normal

surface, n̂, is equal to:

n̂z(u; v) =
@x(u; v)

@u

@y(u; v)

@v
�

@y(u; v)

@u

@x(u; v)

@v
; (6:6)

where x(u; v) and y(u; v) are the x and y components of surface S(u; v), and

nz(u; v) = n̂z(u; v)=kn̂(u; v)k, where kn̂(u; v)k is the magnitude of n̂(u; v).

Even though nz(u; v) contains a square root factor, it can be squared and

nz(u; v)
2 can be represented as a rational function.

Given a slope S in degrees (or radians), binding n2z(u; v) is straightforward using

equation (6.5). Therefore, given a certain slope S, one can compute nz and n
2
z using

equation (6.5). Because n2z is representable using (piecewise) rationals, one can

contour this surface to �nd the speci�ed n2z levels. Figures 6.6 and 6.7 demonstrate

this exact process.

Alternatively, one can use the symbolically computed property n2z(u; v) as a

scalar map designating the color of the surface at each location, much like a

texture map. Figure 6.8 is an example for this approach, for the same surface

as in Figure 6.7.

The technique presented here has also been used to compute silhouette curves

of surfaces [22], and is equivalent to the zero set of equation (6.6). n̂z(u; v) is sym-

bolically computed and its intersection (contouring) with the plane z = 0 provides
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Figure 6.6. Di�erent Steepness regions example

Figure 6.7. Di�erent Slope or Steepness regions of the surface

the silhouette curves in parametric space for the speci�ed speeds. Figure 6.9 shows

one such example.

Unlike curvature, slope is not an intrinsic surface property. In fact, because it is

orientation dependent, it provides the designer with a measure on the planarity of

the surface in a speci�c orientation.

6.4 Surface Speed

The speed of a curve is de�ned as the distance moved in Euclidean space per

unit of movement in parameter space. For a curve,
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Figure 6.8. Continuous steepness of the surface in Figure 6.7

Figure 6.9. Silhouettes are equivalent to the zero set of equation (6.6) (rotated).

S(t) =

�����
�����dC(t)dt

�����
�����

=

vuut dx
dt

!2

+

 
dy

dt

!2

+

 
dz

dt

!2

: (6.7)

We de�ne the speed bound of surface S(u; v) as the supremum of the speeds of

all curves on the unit circle of the tangent plane using the �rst partials as a basis.

Let �(t) be a curve in the parametric domain of S(u; v), i.e., �(t) = (u(t); v(t)).

By providing this speed bound of the surface parametrization, one can compute
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certain properties on �(t) and use the speed bound to extrapolate and provide

bounds on the properties on the composed curve S � � = S(u(t); v(t)).

Let (t) be an auxiliary arc length parametrized curve with its image in the

parametric space of S(u; v), i.e., (t) = (u(t); v(t)), with

r�
du

dt

�2
+
�
dv

dt

�2
= 1, for

all t. Then

�����
�����dS(u(t); v(t))dt

�����
�����
2

=

�����
�����@S@u

du

dt
+

@S

@v

dv

dt

�����
�����
2

=

 
@x

@u

du

dt
+

@x

@v

dv

dt

!2

+

 
@y

@u

du

dt
+

@y

@v

dv

dt

!2

+

 
@z

@u

du

dt
+

@z

@v

dv

dt

!2

�

 
@x

@u

!2

+

 
@x

@v

!2

+

 
@y

@u

!2

+

 
@y

@v
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(see Figure 6.10 with collinear partials along the surface boundary,

which implies the surface is not regular there) and �du
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Figure 6.10. Degenerated boundary provides the two extremes on speed bound.
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and the upper bound established in equation (6.8) is reached. Therefore this bound

is minimal.

Because it is not possible to represent the square root of equation (6.8) as a

(piecewise) rational surface, in general, we compute instead

Ŝ(u; v) =

0
@ @x

@u

!2

+

 
@y

@u

!2

+

 
@z

@u

!2

+

 
@x

@v

!2

+

 
@y

@v

!2

+

 
@z

@v

!2
1
A :(6.11)

Figures 6.11 and 6.12 are two examples of using Ŝ(u; v) to compute a speed

bound on the surface.

The speed surface can be used to provide a measure on the quality of the

parametrization. This can becomes especially important if the surface is to be

evaluated (for any purpose, including rendering) at a prede�ned set of parameter

values.

6.5 Variations on Surface Twist

Also interesting is the ability to visualize surface twist. Basically the twist is

de�ned as the cross derivative component:
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Figure 6.11. Parametrization speed estimate (same surface as Figure 6.7).

Figure 6.12. Parametrization speed estimate for the teapot model.

T (u; v) =
@2S(u; v)

@u@v
: (6:12)

This equation is representable and can always be computed symbolically for

(piecewise) rationals. Figures 6.13, 6.14, and 6.15 shows this property as a texture

mapped on the surfaces.

Using equation (6.12) as a twist measure has a major drawback as can be seen

in Figure 6.14. Even though the surface is at, the twist component is not zero

because the speed of the parametrization is changing. In other words, the mapping
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Figure 6.13. Twist component of a surface (same surface as Figure 6.7).

Figure 6.14. Twist component of a at surface.

from the parametric space to the Euclidean space is not isometric. It would be more

helpful to use the twist component in only the surface normal direction (see [3]) to

eliminate the twist as a result of a nonisometric mapping.

l12 = l21 =

 
n;

@2F

@u@v

!
(6:13)

where l12, and = l21 are two of the components of second fundamental form, L (see

Chapter 2).
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Figure 6.15. Twist component of the teapot model.

Obviously, this time the l12 component in the at surface in Figure 6.14 is zero

showing no twist in the normal direction. Furthermore, the use of this property

showed that the teapot has virtually no twist in the normal direction as well. All

the twist in Figure 6.15 was a result of the nonisometric mapping. Figure 6.16

shows a nonplanar surface, similar to the one in Figure 6.14 using l12 as property

surface mapping colors onto the surface, as texture.

Because now one can compute both the total twist (equation (6.12)), and the

twist in the normal direction (equation (6.13)), one can consider computing the

twist in the tangent plane to the surface as the di�erence of the two quantities.

This di�erence would provide another measure as to the quality of the surface

parametrization.
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Figure 6.16. Twist component of a nonplanar twisted surface.



CHAPTER 7

CONCLUSIONS

Computers are useless; they can only give answers.

Picasso

It is our hope that symbolic computation will �nd its way as a useful tool in

computer aided geometric design and in computer graphics. We hope that the

symbolic approach developed throughout this work has demonstrated the capability

and usefulness of this representation.

Several questions were left unanswered in this research. Detecting and isolating

self-intersection in o�sets of curves and surfaces is a di�cult unsolved problem [51].

This thesis introduced a new robust method to isolate self intersections occurring in

curve o�sets. Extending the self-intersection isolation to surface o�sets is di�cult

and is still a future research topic.

The work presented in Chapter 4 makes it practical to use second order surface

analysis as a tool to support the development of robust, accurate, optimal algo-

rithms for design and NC toolpath generation and to support alternative criteria

for surface subdivision based on the second order properties of the shape. Con-

sideration of Figures 4.3 and 4.5 shows another area of use. Users of NURBs are

frequently unaware of the implications on the shape of the surface from using dif-

ferent orders. Manipulating the same control mesh can give di�erent, unexpected,

shapes depending on the order. The ability to accurately visualize second order

properties in a reasonable time will enable better inspection and understanding of

the e�ect of order, and potentially knot vector, changes. Furthermore, while NC
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veri�cations frequently simulate the tool path moving over the surface geometry,

they do not check that a tool path for a convex region is actually cutting a convex

region. The work presented here can be used in implementing that larger visual

process validation. The viewer can use the understanding gained from exhibiting

second order properties to take e�ective action.

The adaptive isocurve generation algorithm developed in Chapter 5 was exten-

sively and successfully used for 3 axis machining. Adopting it to 4 or 5 axis toolpath

generation is straightforward. However, this multi axis toolpath generation raises

di�cult questions regarding accessibility that must be addressed �rst. In 3 axis

milling the accessibility problem is equivalent to an orthographic projection the

hidden surface problem. \What you see is what you can mill". Although not

simple, the hidden surface problem is well understood by the computer graphics

community. Unfortunately, this does not work in 5 axis any more. The tool axis

(\view direction") is not constant and in fact may vary as the tool moves. This

area is under current research.

During the presentation of the new layout fabrication method in Chapter 5, it

was implicitly assumed that the material thickness is negligible. Unfortunately, this

is not always the case and compensating for the distortion that can result should be

further investigated. In addition, extending this methodology to support stretching

and tearing, should be investigated as well. Not only will that enable dealing

with arbitrary surfaces (which cannot be decomposed into piecewise developable

surfaces) but this algorithm may then support the ability to handle fabric and

other anisotropic materials.

Chapter 6 introduces several small applications that can bene�t from symbolic

computation. The high order curve approximation using lower order B�ezier curves

method should be qualitatively and quantitatively compared to currently known

approaches. Furthermore, it should be investigated whether a combined approach
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can yield an even better result.

The composition tool was also introduced in Chapter 6. In [42] the composition

tools developed in this work were used to derive new and exact methods for �llet

construction. The full potential of the composition operator combined with the

symbolic tools derived in Chapter 2 should be further investigated.

Several shape measures, namely surface steepness, surface speed, and surface

twist, where de�ned and shown to be computable and representable symbolically,

in Chapter 6. The advantages these shape measures can provide the designer or

the manufacturing engineer should be explored.

Undoubtedly, other applications in computer aided geometric design and in

computer graphics can bene�t from these tools. These �elds matured enough to

a level in which robustness is becoming an increasingly important issue. Symbolic

computation is one such tool that can help alleviating the numerical problems we

are facing today.



APPENDIX

CUSP EXISTENCE PROOF

This appendix shows that a cusp is formed in the o�set curve Cd(t) any time the

curve, C(t), has curvature �(t) equal to 1

d
where d is the o�set distance and the

mathematical curve normal N(t), coincides with o�set normal No(t). Conditions

for detecting curvature higher than 1

d
are also derived.

Let C(t) be a regular planar parametric curve that may not be arc length

parameterized. Without loss of generality assume C(t) is in the x � y plane. Let

Cd(t) be the o�set curve of C(t) by amount d. Let T , N and T , N be their unit

tangents and normals respectively. A nonunit length vector will be tagged with a

hat, i.e., T̂ .

The tangent, T , of the planar curve, C, is equal to

T (t) =
T̂ (t)

kT̂ (t)k

=
(x0(t); y0(t))q
x0(t)2 + y0(t)2

: (7.1)

From di�erential geometry theory [48, 63]:

�(t)B(t) =
C 0(t)� C 00(t)

kC 0(t)k3

=
(x0(t); y0(t); 0)� (x00(t); y00(t); 0)q

x0(t)2 + y0(t)2
3

=
(0; 0; x0(t)y00(t)� y0(t)x00(t))

kT̂k3
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=
(0; 0;	)

kT̂k3
: (7.2)

Because Bo(t) has been selected in +z direction (see equations (3.1) and (3.2)),

No(t) is equal to

No(t) = Bo(t)� T (t)

=
(�y0(t); x0(t))q
x0(t)2 + y0(t)2

=
(�y0(t); x0(t))

kT̂k
: (7.3)

The o�set curve Cd(t) of the planar curve C(t) by amount d is de�ned as

(equation (3.2)):

Cd(t) = C(t) +No(t)d

= (x(t); y(t)) +
(�y0(t); x0(t))

kT̂k
d

=
(x(t)kT̂k � y0(t)d; y(t)kT̂k+ x0(t)d)

kT̂k
: (7.4)

The �rst derivative T̂ (t) of the o�set curve Cd(t) is:

T̂ (t)

= C0

d(t)

=

 
(x0(t)kT̂k+ x(t)kT̂k0 � y00(t)d)kT̂k � (x(t)kT̂k � y0(t)d)kT̂k0

kT̂k2
;

(y0(t)kT̂k+ y(t)kT̂k0 + x00(t)d)kT̂k � (y(t)kT̂k+ x0(t)d)kT̂k0

kT̂k2

!

=

 
x0(t)kT̂k2 � y00(t)kT̂kd+ y0(t)kT̂k0d; y0(t)kT̂k2 + x00(t)kT̂kd � x0(t)kT̂k0d

kT̂k2

!
:

(7.5)

We are now ready to inspect the value of T̂ (t) in a case where d is equal to 1

�(t)
.

Using equation (7.2):

d =
1

�(t)
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=
kT̂k3

j 	 j
: (7.6)

Substituting d in the x component of T̂ (t) we have:

T̂x(t) =
x0(t)kT̂k2 � y00(t)kT̂kd+ y0(t)kT̂k0d

kT̂k2

= x0(t) +
�y00(t)kT̂k2 + y0(t)kT̂kkT̂k0

j 	 j

= x0(t) +
�y00(t)x0(t)2 � y00(t)y0(t)2 + y0(t)x0(t)x00(t) + y0(t)2y00(t)

j 	 j

= x0(t) +
�y00(t)x0(t)2 + y0(t)x0(t)x00(t)

j 	 j

= x0(t) +
x0(t)(�y00(t)x0(t) + y0(t)x00(t))

j 	 j

= x0(t)�
x0(t)	

j 	 j

=

(
� 0; 	 > 0

= 2x0(t) 	 < 0
(7.7)

because

kT̂kkT̂k0 =
q
x0(t)2 + y0(t)2

1

2
q
x0(t)2 + y0(t)2

(2x0(t)x00(t) + 2y0(t)y00(t))

= x0(t)x00(t) + y0(t)y00(t)

and

kT̂k2 = x0(t)2 + y0(t)2:

From equation 7.6, d may be substituted into the y component of T̂ (t), T̂y(t),

in a similar way for the same result. Therefore, T̂ (t) � 0 in this situation or C(t)

has a cusp if 	 = x0(t)y00(t) � x00(t)y0(t) > 0 or the binormal B(t) is positive and

coincides with the de�nition of Bo(t).

Moreover, if d > 1

�(t)
, then the tangent vector T̂ ips direction as can be shown

by its dot product with T̂ . Rewriting equation (7.5) as:
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T̂ (t) = (x0(t); y0(t)) +
(�y00(t); x00(t))d

kT̂k
+
(y0(t);�x0(t))kT̂k0d

kT̂k2

and substituting it into

D
T̂ (t); T̂ (t)

E

=

* 
(x0(t); y0(t)) +

(�y00(t); x00(t))d

kT̂k
+
(y0(t);�x0(t))kT̂k0d

kT̂k2

!
; (x0(t); y0(t))

+

= (x0(t)2 + y0(t)2) +
(�y00(t)x0(t) + x00(t)y0(t))d

kT̂k

= (x0(t)2 + y0(t)2)�
	d

kT̂k
;

because the last term of T̂ (t) is perpendicular to T̂ (t). Using equation (7.2):

D
T̂ (t); T̂ (t)

E

= (x0(t)2 + y0(t)2)�
	d

kT̂k

=

8>><
>>:

(x0(t)2 + y0(t)2)� �(t)(x0(t)2+y0(t)2)
3

2 dp
x0(t)2+y0(t)2

= (x0(t)2 + y0(t)2)(1� �(t)d); 	 > 0

(x0(t)2 + y0(t)2) + �(t)(x0(t)2+y0(t)2)
3

2 dp
x0(t)2+y0(t)2

= (x0(t)2 + y0(t)2)(1 + �(t)d); 	 < 0:

Because C(t) is a regular curve, T (t) is never zero and (x0(t)2+y0(t)2) is positive

everywhere. Therefore, for cases where the mathematical normal, N(t), coincides

with the o�set normal, No(t), or 	 > 0, we get:

sign(
D
T̂ (t); T̂ (t))

E
= sign((x0(t)2 + y0(t)2)(1� �(t)d))

= sign(1� �(t)d): (7.8)

Now for small �(t) or a relatively straight curve, (1 � �(t)d) is positive. When

�(t) reaches 1

d
, the expression becomes zero, or T̂ (t) = 0 because T̂ (t) is never

zero. If �(t) is larger than 1

d
, the expression is negative, that is T̂ (t) has ipped its

direction.

If 	 < 0 the expression is never zero because both d and �(t) are positive.

This is not a surprising result because such o�set only increases the radius of the

osculating circle and hence can never make it vanish.
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