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ABSTRACT

Representing data after it has undergone a fundamental topological change,

such as cracking, ripping, or folding, or after the introduction of arbitrary feature

curves, as happens during the creation of darts, corners, or fractures, continues to

be a signi�cant challenge. Ideally, the representation is modi�ed without having

to reformulate the representation entirely. If the original model is composed of

faceted polyhedra, it is possible to do this. However, many models today are being

represented by smooth parametric tensor product surfaces such as B-splines, which

do not easily support arbitrary discontinuities. During the design process, when

discontinuities are introduced, such models are often tesselated into triangles, which

would henceforth be the model's representation. In this case, the resulting model

is often not useful for further design. This thesis introduces an extension of the

B-spline surface representation, called the torn B-spline surface. The torn B-spline

representation provides exibility not previously found in similar parametric sur-

faces by incorporating tear curves, crease curves, and other arbitrary C(�1) feature

curves into the representation itself. Simulation events or other design processes

which result in discontinuities in the representation do not necessitate a change in

representation, and it is possible to use B-spline design methods on the resulting

torn surface model. This makes design with discontinuities more viable. The

representation and associated algorithms used to support it are introduced, as well

as some higher-order design operators which take advantage of this representation

and some example applications.



To Julie, Karys, and Serena.
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CHAPTER 1

INTRODUCTION

In the �eld of computer-aided geometric design (CAGD), use of an appropriate

representation is the key to e�ectively conveying a structure's geometry. There

are many tradeo�s among the representations, based on factors such as whether or

not the data accurately represents the original model, which will be referred to as

�delity, and the number of common operations under which the set of representable

models is closed which measures the completeness of the representation. Other

factors to be weighed include ease of use, size, speed, and exibility. The exibility

of a representation is measured in terms of the number of its supporting operations

in the same way a mathematician may evaluate an algebra in terms of the number

of common operators that can be applied. Consider the tradeo�s between polygonal

representations, various parametric tensor product surface representations, and

constructive solid geometric (CSG) representations. In the ideal world, all shapes

would be represented exactly and the particular representation would not be an

issue. However, the real world usually has more complexity than we are able to

represent, so we approximate. As a rule, the more complexity a model has, the more

it is approximated. The triangle or otherwise faceted representation is exible and

closed under most operations at the expense of larger size and decreased �delity.

The tensor product B-spline representation is compact and easy to manage at the

expense of being slower and more incapable of representing the results of some

operations. A CSG representation is even more compact and easier to understand

and use while being even less exible. However, technological advances in computer

speed and memory have reduced the impact of the size and speed requirements of

a representation. The crucial factors have become �delity, completeness, exibility,
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and ease of use.

The driving force behind this research is the need to provide a representation for

which operations that introduce discontinuities into tensor parametric surfaces are

closed. Operations in which discontinuities are introduced as a result of a simulation

or other automatic process are particularly di�cult since the designer often has

little control over the outcome and the results are not easily representable by current

parametric tensor product surface representations. Consider the following examples

where parametric tensor product surfaces are likely to be used.

The �rst example is the much studied area of thin plate deformations[74]. Thin

plate deformations are used for modeling the behavior of everything from cloth[81]

to steel. Thin plate dynamics can be modeled with simple springs and dashpots

in a linear constraint/feedback system or in a complex nonlinear �nite element

optimization system. In either case the physical characteristics of the plate may

cause the plate to tear or fracture under stress, causing a change that is proba-

bly not supported by the model's representation. The simulation results may be

translated into a di�erent representation which may be capable of representing the

discontinuity but fails to retain the smoothness information within the rest of the

model. Sometimes the model is reconstructed with explicit constraints holding

together the new edges with the old smoothness information. All cases result in

additional work for the designer, particularly if the results will be used in the

context of further design operations or analysis. Ultimately, information about the

model is lost during this process.

Another related example is stamping[27, 3, 36]. In this process, a thin malleable

material is forced under pressure to assume a particular shape by compressing the

material between two forms. The simulation of this process is extremely di�cult

since there is high pressure and heat, both of which may alter the state and the

dynamics of the original material. Fractures, tears, and creases are common and

cause di�culty in both the simulation and the representation of the model itself.

In the �eld of geology we see another example of physical simulation resulting

in unrepresentable complex shapes. Here the discontinuities are three-dimensional
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as earthquakes and other natural forces cause rock layers to fracture and slide past

one another creating complex systems of slips and folds. An initial representation

may be parametric tensor product surfaces that form the boundaries of the rock

layers, stacked on each other to make a nonmanifold three-dimensionalmodel. Once

the rock layers separate, indication of the three-dimensional nature of the crack is

virtually impossible with current parametric tensor product representations.

In the medical �eld, physicians can simulate procedures such as plastic and re-

constructive surgery[62] allowing them to make better planning decisions. Current

representations in this area are polygonal although actual skin is rarely faceted.

The ability to support arbitrary continuity features in parametric boundary repre-

sentation models could be well used by this �eld.

Finally, a designer using a CAD system may want to include continuity features

within a surface, such as creases or tears. These features may drive a particular

functional aspect, such as aerodynamics, or an aesthetic aspect of the design.

Currently, triangles are the most common representation in these cases, because

they are exible and easy to use and they support the arbitrary topologies and

continuity features which may result. However, design with parametric surfaces,

and in particular, tensor product B-splines, is becoming more prevalent. Current

design techniques need to provide adequate support for these surfaces and the

by-products of their design processes. Ideally, a design operation that introduces

discontinuities should result in models that are members of the original represen-

tational set. Currently this is not the case.

In these cases, exibility and �delity appear to be the two most critical factors.

To produce an accurate model, the initial representation must be accurate and all

prior operations must retain that information as well as reliably incorporate new

information during the process. Of particular concern are the continuity features

contained in the representation. Flexibility is the key to obtaining an accurate

initial representation, whereas �delity is the key to retaining the accuracy through

modi�cations. The faceted representations usually consist of many small facets

that together approximate the continuity information present in the large model.
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Usually continuity information is maintained by an equation which measures the

energy present between adjacent facets and so determines a smoothness measure of

the model. Continuity features in the larger model are usually identi�ed along the

boundaries between facets and the energy equation is suitably modi�ed to reect the

change in continuity. Higher-order tensor product surfaces provide a more accurate

initial model but are unable to represent all the continuity features which may be

introduced. A feature curve cannot be introduced into a tensor product surface

without signi�cantly altering the representation. This, in many cases, prevents the

use of some available design techniques since this type of smoothness information

cannot be represented by a single tensor product surface.

The torn B-spline surface representation, initially presented in [29], is designed to

bridge the gap between the faceted representations and the higher-order parametric

representations. It provides the geometric exibility of the faceted representations

while providing the �delity and size of the parametric representations. The key

elements of the torn B-spline representation are the arbitrary C(�1) feature curves

known as tear curves. The basis for this representation, the representation itself,

and several of the more common evaluation routines applicable to this class of

surfaces will be introduced, as well as some higher-order design operators which

demonstrate the exibility of the representation within a design system. Finally

this representation will be applied to the problems in the examples introduced,

demonstrating the e�ectiveness of the representation.



CHAPTER 2

BACKGROUND

The foremost consideration when assessing a representational need is determin-

ing the best representation class for the job in terms of exibility and �delity.

2.1 Representation Classes

Within a representation class, a given representation has the power to represent

a particular set of models. The representation usually consists of a basic element,

such as a triangle or surface, and its set of representable models can be classi�ed by

whether or not collections of these basic elements are used. In addition, represen-

tations vary in how closely they can approximate a given object, providing further

classi�cation.

A given representation also supports design operations, calledmethods, which are

particular to that representation. For example, re�nement is usually identi�ed with

parametric surfaces, in particular, those which have basis functions, such as tensor

product B-splines. Other representations within this same class attempt to provide

similar operations. The resulting models of these representation-linked operations

generally stay within the same representation. Thus the set of representable models

is closed with respect to these operations.

In addition to being used with their methods, representations can be used in a

variety of design processes (often called operations as well) which can be modi�ed

to support a variety of representations, even those in other classes. For example, the

tensor product B-spline and triangular-faceted representations can both be used in

a physically based modeling process. The results of this set of operations may fall

outside of the original representation's set of representable models, sometimes even
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outside the set of representable models for the class. Therefore, the representation

or the representational class may not be closed with respect to these operations.

During the course of a design session, a designer constructs a model, modi�es

the model, possibly simulates some aspect of the model's function using the model

itself, or makes modi�cations to the model through some automatic process. Then

he may make changes to the model in response to feedback or examination of the

resulting model's structure; which starts the process over again. If, at some point,

the representation changes as a result of a particular operation, the feedback loop is

altered. Design operations, in particular, methods, previously used for construction

and modi�cation may no longer be available and the designer may be incapable of

making the necessary modi�cations without starting over. This is particularly true

when the resulting model contains characteristics necessary for the �nal model.

Changing the representation class of the model during the modeling process

can cause signi�cant problems and force designers into using more cumbersome

representations, dealing with less accuracy, choosing less intuitive design procedures

or ultimately settling for less than what is required by the design speci�cations.

2.2 To Facet or Not to Facet...?

Within a complex design system, the choice of an internal representation a�ects

both the interaction that the designer has with the system and the �nal outcome

of the design process. If the choice were simple, there would not be much di�erence

among design systems and the opinions that gave rise to them. As it is, design

systems range from very low order, such as points with adjacency information

(a.k.a. facets), to very high order, such as implicit surfaces[2]. Since many real-life

objects have smooth, sculptured shapes, the challenge with the low-order faceted

representation is to make the models look and behave like higher-order models

without the size of the model becoming prohibitive[71, 46, 47]. The challenge

with higher-order representations is to make them easy to use in a practical design

system.

One of the primary reasons faceted representations are used within a design
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system is that they are well understood and well supported. Higher-order represen-

tations can be di�cult to construct, manipulate, and simulate and are only recently

being found in the larger commercial design systems. In contrast, the �nite element

method, the most popular simulation technique, caters to faceted representations

(in two-dimensional simulations) since the meshes consist of interconnected data

points (although higher-order physical relationships between mesh points are often

used). Many design systems use tessellated models for this reason alone.

However low-order representations have disadvantages. Along with the size,

which causes these representations to be di�cult to manage and manipulate, an-

other disadvantage is appearance. Faceted models have angular silhouettes over

curved portions of their surfaces and can be subject to unwanted mach banding

at adjacent edges[6]. In addition, higher-order representations are being actively

investigated and are increasingly being used in commercial design systems. The

computation time often consumed with higher-order representations is being coun-

tered with faster computers, making these representations a viable alternative to

the traditional approach of using faceted models in a design system. Despite

these disadvantages, facets are still popular and are implemented in systems which

support a large range of design capabilities.

2.3 Tensor Product B-splines

Since tensor product B-splines have become commonplace in major design sys-

tems, it is important to understand the capabilities of the representation and have

a clear idea of the extensions that can and need to be made to support the desired

design operations. This thesis introduces the torn tensor product B-spline, a

tensor product B-spline surface representation for which the set of representable

models is closed under most design and simulation operations which may introduce

discontinuities. This closure problem is di�cult because the tensor product B-spline

surface representation does not support discontinuities of arbitrary geometry. Since

tensor product B-spline surfaces are being used more extensively in design processes,

alternate representations which satisfy this closure requirement are more urgently
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needed. The problem is further characterized by looking closer at the examples

mentioned earlier and the situations in which the need for representations closed

under these operations arises and causes di�culty.

2.4 Physically Based Modeling

Several of these examples fall in the category of physically based modeling.

Unfortunately, physically based modeling is a very general term which can be

applied to just about any design or simulation environment which uses physical

characteristics to help de�ne the model. Even the use of lighting models such

as radiant illumination (radiosity) could be considered physically based modeling

because the resulting image is a product of a (albeit simpli�ed) physical simu-

lation. More commonly, however, physically based modeling refers to the use of

physical characteristics to determine a model's shape, position and/or orientation

in space. Material characteristics like mass, density, moments of inertia, elasticity,

and plasticity combined with physical behaviors in context such as gravity, collision

detection, and connectivity are examples of the physical characteristics considered

in these design operations. A subclass of these problems deal with the physical

characteristics of a single model. Multiple models require additional linkage and

kinematic information. This thesis primarily addresses the single model case. The

model may be a solid model whose basic elements have volume, or a boundary

representation whose basic elements are surfaces and connected by constraints at

the edges. Models discussed in this thesis are composed of parametric surfaces.

Speci�cally, this thesis addresses manifold and nonmanifold boundary representa-

tions.

2.4.1 Thin Plate

The simplest and most well-understood dynamic simulation is that of the thin

plate under tension[74, 39]. The thin plate problem is kept simple by assuming

that the thickness of the plate does not contribute anything signi�cant to the

formulation of the problem. This allows a two-dimensional simulation of the plate

which substantially reduces the complexity and the solution time. For the most
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part, standard thin plate dynamics is uninteresting since most simulations use a

variation of the standard dynamics formulation. However, the use of continuous

surface representations for thin plates can be di�cult if the dynamics can support

discontinuities such as tears or fractures. Although they may seem avoidable, these

situations may occur in any instance in which plasticity is used. A case could be

made that a model of dynamics without the capacity for fracture is not an accurate

model, since it more accurately reects real life.

Plasticity in materials engineering is most often represented by a stress-strain

graph. The stress is the amount of force applied to a material, and the strain is the

amount of deformation caused by the force. Although simpli�ed greatly, the graph

in Figure 2.1 is useful for reference[81]. Normally, a material's stress-strain graph

is nonlinear and changes according to the history of the stress on the material. The

elastic limit point (E) is the point up to which removal of the forces will cause the

material to return to its original rest state. Stress beyond the elastic limit will cause

the material to permanently deform. The material breaks when stressed beyond

the breaking point (B).

Most parametric surface representations break down when the material reaches

the breaking point. Either the discontinuity is ignored or a secondary representation

is used, such as a triangular or other faceted tessellation or the visual representation

B - Breaking point

Y - Yield point
E - Elastic limit

U - Ultimate load

B
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E
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Figure 2.1. Stress-strain graph.
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of the physical elements (e.g., plastic springs between control points[81]). In either

case, the set of representable models is no longer closed under this simulation

operation and the resulting representation may not retain smoothness information

which is critical to the model.

2.4.2 Stamping

A more complex situation is the dynamics of stamping. In this manufacturing

process, a thin sheet of material called a blank is cut to a speci�ed shape and

loaded into a press. The material is then deformed by forcing the material into

a die by means of a punch. Although thin-plate dynamics play a large roll in

the simulation of this process, a better simulation requires the use of material

thickness and viscosity. The four general categories of critical problems in sheet

metal forming are fracture, wrinkling or buckling, undesired sheet deformation,

and springback[43, 36]. In some cases, however, these \problems" are not really

problems but desired features. In the case of lance or emboss punching, (see

Figures 2.2 and 2.3), the resulting fracture and the accompanying buckle are part

of the design[27]. These simulation results need to be represented as accurately as

possible. Although simulation of stamping processes are traditionally done using

FEM, designing with higher-order parametric surfaces is more common, and the

need for a consistent representation throughout the design process is becoming more

evident.
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Lancing Punch

Figure 2.2. Lance forms.
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Embossing Punch

Figure 2.3. Embossing.

2.4.3 Geology

The study of fractures in rock layers is extremely complex and the represen-

tations used in the simulation of these interactions are inadequate at best. A

good example of the need for discontinuities within a representation comes from

the interaction of layers when a lower layer fractures and an upper layer deforms,

or folds over the fracture (see Figure 2.4). This is known as drape-folding[89].

The di�erent compositions of the layers may even cause the layers to separate

resulting in a pocket between the layers. Other fractures may extend through the

layers requiring that the representation track the fracture propagation through the

di�erent materials. The process of shearing also can create fractures and creases

in the layers of material which are deformed[66]. Currently most simulation of

geological phenomena is done with faceted representations using a constraint system

solved by the �nite element method. This is because of the frequent use of the �nite

element method in engineering disciplines and the current di�culty of representing

fractures and other discontinuities in higher-order representations.

2.4.4 Medicine

Recently, Peiper has created some interest in surgical simulation, speci�cally

plastic surgery[62, and references therein]. He primarily uses a triangular �nite

element mesh to represent the surface tissue during a �nite element simulation.

The ability to represent discontinuities in higher-order surfaces could have a serious



12

Draped Rock Layers

Cambiran Shale

Bed Rock

Paleozoic Carbonates

Figure 2.4. Drape folding.

impact on the planning and performance of various plastic surgery techniques. Cur-

rently most facial models are represented by polygons[84, 87]. However, parametric

surfaces, and tensor product B-splines in particular, would be ideal candidates for

representing skin, especially facial tissue, since smooth faces are more visually real-

istic for simulation. Although smoothness is generally not required for traditional

animation[84], the addition of discontinuities to these smooth representations would

provide a more realistic result for simulation of plastic and reconstructive surgery.

2.5 Design Techniques

The design processes in the above examples all employ similar techniques which

are reviewed in this section. The most common techniques are methods for opti-

mization of functions within the context of solving a system of constraints.

2.5.1 Constraints

There are a variety of ways to solve constraints depending on the characteristics

of the constraint functions. For example, systems of linear constraints can be solved

by singular value decomposition or QR factorization[72]. Most systems of constraint

equations used for interactive physically based modeling are linear approximations

to nonlinear systems[21, 35, 34] due to the speed and ease of solving these types of
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equations. If the process of solving the constraint is itself interesting, as it often is

in the case of animation, there are other methods which can be used to iteratively

obtain a solution in which the intermediate values are interesting. These constraint

solving methods fall into three categories: 1) optimization, 2) dynamic constraints,

and 3) reaction constraints[65].

2.5.2 Optimization

The most common of the optimization methods are penalty methods and La-

grangian constraints[64]. Other methods include �nite di�erencing, simulate an-

nealing, augmented Lagrangian constraints, and a host of other derivations of

these methods[67]. It is these methods paired with a �nite element mesh which

comprise the �nite element method (FEM)[10]. One di�culty of general optimiza-

tion techniques is that they may require the computation of the gradient of the

function being minimized or maximized and often these derivatives do not exist in

closed form. Another di�culty is that most iterative optimization techniques are

susceptible to getting caught in local minima or maxima, ultimately failing to �nd

the globally optimal solution. In addition, intermediate values may not have any

physical meaning, which may be a criteria if the optimization is being carried out

in the context of an animation.

2.5.3 Dynamic Constraints

Dynamic constraints[7, 49, 4, 25] are systems of constraints which are solved by

applying critically damped forces which are computed by inverse dynamics. The

forces are thought of as occurring though time and therefore result in interesting

intermediate solutions. Unfortunately, these techniques are often di�cult to use

because of their nonlinearity and large number of variables. Dynamic constraints

are most often used in systems involving elasticity where the equations can be

simpli�ed[81, 88, 32](see Section 2.5.5).
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2.5.4 Reaction Constraints

Another area of force-based constraint solving are reaction constraints. Addi-

tional forces are added to the system at the appropriate points in order to prevent

the constraints from being violated. Typical uses of reaction constraints include

path following and interpenetration prevention[5, 57]. The principal advantage to

reaction constraints are that they are simple to compute. However, they often do

not bear up well when applied to more complex problems[65].

2.5.5 Model Deformation

The animation industry has fueled interest in the theory of model deformation,

with most of the theory developed from a physical basis. Elasticity and plasticity

derived from the thin-plate model have been used in many instances to provide

realistic motion and deformation. The standard methods minimize a variational

derivation of an energy functional (similar to the thin-plate energy functional) over

the model as a whole. The majority of the earlier work uses triangles to represent

the �nal model[50, 77, 80, 76, 75, 78, 37, 38, 91, 20, 86, 15, 85]. It is only recently

that these methods have been applied to splines in the works of Bloor andWilson[13,

14], Welch and Witkin[90], Moreton and S�equin[58], Celniker and Welch[21] and

Terzopoulos and Qin[79, 68]. A unique method for deforming models based on

vibration modes was developed by Pentland[63]. This \modal" dynamics method

is only applicable to models described by closed-form functions.

2.6 Finite Elements

The �nite element method is easily the most widely used simulation technique

today[10, 48], and �nite elements are used so often in physical simulation this

technique is addressed separately.

The �nite element method is essentially the optimization of a system of linear

or nonlinear constraints which are approximations to systems of partial di�eren-

tial equations or integral equations. Boundary value problems provide additional

constraints on the boundaries which prevent degenerate solutions. The reasons for

the �nite element method's popularity stem from its exibility and its extensive
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resource and support base. The method is well studied and many ready-to-use

implementations are publicly available. However, there are some signi�cant draw-

backs to this popular technique. An FEM solution requires a well-placed mesh, and

although there has been much work in this area (e.g., [55]), it continues to be a

problem. In addition, because the systems of equations are generally nonlinear, the

method is slow. Only in very simple cases in which the systems are extremely well

behaved, sparse, or linear can solutions be obtained in interactive speeds[21, 38].

Finally, the �nite element mesh elements are usually represented by facets because

the di�erential equations are easier to form. Therefore the results of the simulation

are often not acceptable within the framework of higher-order parametric surface

design systems. There have been proposed integrations of higher-order parametric

surfaces into the �nite element world (e.g., [94]), but none of these solutions can

support the fracture and other discontinuities which can easily result from the �nite

element method and are more easily represented by facets.

To summarize, the applications which would bene�t by incorporating discontinu-

ities within the representation are varied despite the fact that the design techniques

for generating these situations are standard. However, the problems associated

with representing discontinuities are not easily solvable by the prevailing methods.

Tradeo�s are required to obtain adequate results depending on the application. In

Chapter 3, capabilities of existing representations and previous attempts to address

these issues are discussed.
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PREVIOUS WORK

Discontinuities introduced during the design process pose di�culties when us-

ing higher-order representations. Although the representation can be changed to

accommodate the new structure, the design process is disrupted and the resulting

representation may not support design operations similar to those available for the

original representation. The approaches to solving this representational closure

problem include the following:

1. Use as an original representation a lower-order, generally faceted, representa-

tion which is known to be closed under operations which introduce disconti-

nuities.

2. Use as an original representation a higher-order, usually parametric, represen-

tation with enough degrees of freedom to represent simple cases. Degeneracies

may be introduced to support various continuity features. Representation

reverts to faceted representation once a certain complexity is reached.

3. Use as an original representation a modi�cation or extension of a higher-order

representation which is closed under a number of operations which introduce

discontinuities.

The following section reviews the representation classes and how they attempt

or could attempt to address the representation closure problem.

3.1 Faceted Representations

Faceted representations have the advantage that they are easy to understand

and to implement. The primary disadvantage of the faceted representation is that
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the collection of facets only approximates smoothness to within some tolerance.

If the tolerance is dramatically reduced, the size of the data structure may ex-

pand prohibitively. Manipulation of models represented by facets requires some

knowledge of the characteristic smoothness of the surface at a higher level than

individual facets. Ultimately, this is no di�erent than the problem of representing

discontinuities in a higher-order model. On the other hand, the topological exibil-

ity for faceted representations is limited only by the size of the model. If a faceted

representation is used for a physically based simulation, the representation will not

need to dramatically change even if discontinuities are introduced[73]. Despite these

advantages, higher-order surfaces are being used consistently in design systems and

useful representations which are closed under these design processes are needed.

3.2 Parametric Surfaces

Parametric surfaces come in many avors, the most popular of which are mul-

tivariate splines. The tensor product B-spline representation is a special case of

multivariate splines and one of the more widely used parametric surface represen-

tations

3.2.1 Multivariate Tensor Product Splines

Each tensor product B-spline surface blend function is actually just the product

of two univarite B-spline blend functions which govern the blending of control points

to describe the surface. One of advantages of the tensor product B-spline repre-

sentation is the fact that it is simple and that algorithms such as re�nement and

order manipulation are well known. Unfortunately, the support of tensor product

surfaces is parametrically rectangular; therefore, any degenerate knot con�guration

which may contribute to a discontinuity is present along the entire parametric

isoline. Most other multivariate splines fall into the category of alternate higher-

order representations[22]. Unusual multivariate splines (such as Box splines[59]) do

not necessarily have rectangular parametric domains, and so any degenerate knot

sequence which creates a discontinuity although isoparametric in nature does not

necessarily lie in a particular direction across the surface.
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However, these other representations have yet to make a signi�cant impact in

design for several possible reasons. First, they are more di�cult to understand

so are less attractive for use in commercial products. Second, standard com-

ponents present in other parametric surfaces such as simple basis functions and

order relationships are not generally present for multivariate splines. This makes

analysis for simulation and interactive design processes very di�cult. In addition,

the complexity and irregularity of the blending functions make this general class of

representations slow. Finally, arbitrary discontinuity within the surface is generally

not supported.

The tensor product torn B-spline surface representation presented in this thesis

may also be applicable to general multivariate splines. This type of extension is

left for future work.

3.2.2 Subdivision Surfaces

Subdivision surfaces are another class of surfaces which demonstrates potential

for being able to represent surfaces of arbitrary topological type and embedded

discontinuities. These surfaces are constructive surfaces based on a parameter

and a control net corresponding to the connectivity of the base-level surfaces.

The most common subdivision type are triangles[51, 46, 47, 45] although both

quadrilaterals[28] and biquadratic and bicubic tensor product B-splines[19] have

been used for the base-level surface type. The topological exibility of these surfaces

is striking, yet several things stand in their way to becoming the surface of choice

in a design system. First, simulation and interactive manipulation of these surfaces

are di�cult because the surface is constructive. Speci�cally, it is not clear how

discontinuities can be added to the model after the model is constructed simply

because there may be no clear way to translate the information back to the control

mesh. Current implementations deal only with surface reconstruction[46, 47, 45],

not interactive manipulation. In addition, di�erential properties of these surfaces

can be di�cult to obtain since the mathematical formulation is constructive.
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3.3 Alternate Parametric Surface

Representations

Most of the development in alternate representations of parametric surfaces

has used the general class of splines as the base. The development is spurred

by implementations of B�eziers, B-splines or NURBS in in popular commercial

design systems (e.g., AutoCAD, SoftImage, EZFeatureMill, SurfCAM, 3DStudio).

Changing the spline representation has been a popular technique, among the re-

sults are -splines or G(2)-splines, �-splines[30], �-splines or tension splines[61],

G-splines[44], Box splines (a type of multivariate spline)[59], Hayes splines[41], and

X-splines[11]. Only the last two have speci�cally addressed the representation of

discontinuities within individual surfaces, but each at the expense of making it

di�cult to support the more common spline methods of re�nement and subdivi-

sion. The most interesting, yet least useful, representation is Hayes splines[41].

Hayes splines provide a functional de�nition of the knot vector with respect to the

opposing parametric value. Hayes splines can represent partial discontinuities in a

parametric direction, although they need not be isoparametric. One of the obvious

di�culties with this representation is the complexity imposed by this additional

level of indirection. Hayes splines are hard to describe and substantially harder

to use. Recently, X-splines[11] were introduced as a combination of B-splines and

Catmull-Rom splines[30]. They appear to be easier to use than Hayes splines,

although still providing partial discontinuity across a single spline surface, but

the discontinuities are still isoparametric. In addition, the surface is not a true

tensor product because of a normalizing factor, so common spline methods such as

re�nement and subdivision have di�erent meanings.

The alternate representations are generally very complex and too di�cult to

control for widespread application. In addition, the number of operations for which

the set of representable models are closed is quite small.
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3.4 Trimmed B-spline Surfaces

Another modi�cation often used with parametric tensor product surfaces like

B-splines is a trimmed representation. A trimmed surface is a surface whose original

domain has been restricted to a set of closed subregions of the original domain.

Early techniques developed by Thomas[82] and Carlson[16, 17] approximated the

trimmed surface within the restricted domain with a set of polygons. Sarraga[70]

suggested using a collection of rational tensor product surfaces to approximate

the trimmed surface. However, in each of these techniques the original surface

representation is di�erent from the trimmed surface representation, making modi�-

cations within the same framework di�cult. Representing the trimmed region by an

unevaluated two dimensional CSG tree was suggested by Casale[18] but evaluation

of this surface can be slow and tedious. Representing the boundaries of the trimmed

region by algebraic curves was suggested by Farouki[31], but this technique does

not scale well to general tensor product B-spline surfaces. Another technique was

developed at the University of Utah by McCollough[56]and uses a parametric curve

evaluated in the domain of the surface to represent the boundary of the trimmed

region (see Figure 3.1). Trimmed B-spline surfaces are often used in solid model

boundary representations in which the boundary surfaces are nonrectangular. The

computation of intersections of higher-order parametric surfaces such as B-splines

is generally not tractable, and the resulting intersection curves are usually not

representable by simple parametric curves embedded in the surfaces (see Figure 3.2).

In McCollough's representation, the actual intersection is approximated by a piece-

wise linear intersection curve along with the corresponding parametric locations

of the individual points within each of the surfaces (see Figure 3.3). One major

disadvantage to this representation is that a large amount of data is needed to

represent the boundaries of the trimmed region when an adjacency is involved.

At �rst it may seem that the trimmed B-spline representation would support

general discontinuities, but there are serious drawbacks to using this representa-

tion. First, even though complex topologies can be represented, regions which

appear independent by visual cues may not really be independent in the underlying



21

u

v

1,00,0

0,1 1,1

Figure 3.1. Example trimmed surface with parametric curve.

Figure 3.2. Piecewise linear intersection between two surfaces.
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Figure 3.3. Three-way data structure for a trimming curve. A) Parametric curve
in surface 1. B) Euclidean intersection curve. C) Parametric curve in surface 2.

representation.

Consider a U-shaped region cut from a uniform bicubic B-spline. Then the

underlying surface,

S(u; v) =
4;6X

i;j=0

Pi;jB
k
i;�u(u)B

k
j;�v(v) (3.1)

where the order, k, is 4 (cubic in each parametric direction), the knot vector �u =

f0; 0; 0; 0; 1; 1; 1; 1g and the knot vector �v = f0; 0; 0; 0; 1; 2; 3; 3; 3; 3g. The knot

vectors indicate that in the u direction, there is only one interval, [0; 1], but in

the v direction, there are three intervals, [0; 1], [1; 2] and [2; 3]. These intervals

correspond to the piecewise polynomial patches (see Figure 3.4). A single patch

of a bicubic B-spline has nonzero basis functions, (i.e., Bk
i;�u(u) and Bk

j;�v(v)) for

16 control points. Unfortunately, a single patch represents the base of locality of a

B-spline surface; every point within the patch is dependent on all 16 control points

(patch boundaries excepted). Modifying any of the 16 control points corresponding

to a particular patch will modify the shape of the entire patch.

Suppose the surface is trimmed so that only a U-shaped region remains (see

Figure 3.5). If such a region were cut from a piece of paper, the two ends would

be independently exible. Intuitively, the same would be expected of the region

cut from the B-spline surface. Notice that both ends of the U contain sections
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Figure 3.5. Ends of \U" are in the same patch.
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from the same patch. Because of this, they are totally dependent on the same

control points. If su�cient exibility were added to the surface by introducing more

knots and control points so that the individual patches in the two ends are totally

independent of each other (i.e., the spans of the patches do not intersect), then this

interdependence could be avoided. Unfortunately, reducing the distance between

the two ends (see Figure 3.6(A)) results in a situation in which only subdividing

the surface into two surfaces is su�cient to maintain the independence of the ends

but subdivision reduces the continuity in the section of the U that crosses the

subdivision boundary (Figure 3.6(B)) and is therefore not an acceptable solution.

This interdependence causes another di�culty. Regions are independent only if a

su�cient amount of the surface is removed between the two regions. During a design

process which introduces discontinuities, the parametric domain often represents a

section of a physical model. Removing or trimming away a section of the domain

represents removal of material which is often not acceptable.

v
u

B

A

Figure 3.6. Dependence problems in trimmed surfaces.
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3.5 Constraints

Regardless of the approach used to represent discontinuities, constraint ful�ll-

ment is often used to keep the model together[50, 8, 65, 92, 93, 25, 79]. In a typical

design environment, the designer supplies adjacency or tangent requirements and

then must convert these requirements into a set of constraint equations that can be

numerically or analytically satis�ed within the design environment.

The primary di�culties with this approach are the complexity of the constraint

functions, the lack of a single coherent parametric space (if the discontinuities

were introduced after the model was originally built)[33, 90], and the possibility

of not being able to �nd a solution to the user-provided system of constraints

due to the nonlinearity of the equations, over-constraining the system, or getting

stuck in local minima. The advantages of this approach include its exibility,

its enormous popularity in current simulation methods (such as FEM[9]), and its

large supporting base of research. The torn B-spline representation supports C(�1)

continuity but creases require C(0) continuity. Unfortunately, exact solutions to this

C(0) continuity requirement are often intractable or nonexistent. Therefore linear

constraints are used to obtain an approximate solution in a reasonable amount of

time. The particular approach used to construct the linear constraint equations is

derived from the approach described by Fowler[35, 34].

3.6 Patching

Combining multisided smooth patches and triangular patches [19, 42, 53, 69,

52, 40, and others] into interesting models has been a long standing approach.

The topological exibility o�ered by this approach is enormous, but most of these

techniques produce only uniformly smooth models. Recently, interest in models

which have creases, tears, and other continuity features has increased and new

techniques have been developed with support such features[74, 45, 83]. It can safely

be said that each of these new techniques also uses a multipatch scheme, in which a

signi�cantly large set of basic building blocks are combined with constraints or some

other smoothing method to produce a smaller number or smoother set of patches
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to produce the desired continuity features in the larger model. A recent example

[45] begins with a set of triangles and through optimization and feature recognition

produces a piecewise smooth representation with the continuity features intact. An

earlier example, in computer vision reconstructs surfaces with discontinuities[74].

In contrast to the multipatch approach, the torn B-spline introduces continuity

features within a smooth surface.

3.6.1 Topology

The torn tensor product B-spline surface dramatically expands the represen-

tational capabilities of a single tensor product B-spline surface. Several common

topological terms will be used in this thesis and are de�ned below[60].

De�nition 3.1 If U is an open set containing x, then U is said to be a neighbor-

hood of x.

De�nition 3.2 A separation of a space X is a pair U ,V of disjoint nonempty open

subsets of X whose union is X.

In particular, its opposite, connectivity, is critical in determining the necessary

continuity requirements in the surfaces surrounding tears.

De�nition 3.3 An m-manifold is a space X, such that each point x of X has a

neighborhood that can be mapped 1-to-1 and onto an open subset of IRm.

Most boundary representations of solid models are 2-manifold. Tears in a smooth

boundary representation make the boundary representation nonmanifold.

Although most data representations theoretically permit nonmanifold topology

when combining more than one basic building block, it is rarely used since most

real objects have manifold boundary representations. With the increased use of

visualization and simulation in the physical sciences and mathematics, the use

of nonmanifold topologies has also increased. Bloomenthal and Ferguson[12] use

triangles to represent their topology in a recent treatment of nonmanifold topology

for implicit surfaces.



27

The torn B-spline surface described in this thesis allows discontinuities to be

introduced into the surface, causing a model to become nonmanifold. Treatment

of this situation is given in Section 7.3.

The representations and modeling techniques described in this chapter are the

state-of-the-art for representing discontinuities in models. Yet despite their ca-

pabilities, these representations and techniques are di�cult to describe and use

and often fail to meet the exibility requirements of real-world situations which are

becoming increasingly more common. Clearly a exible representation is capable of

representing arbitrarily complex discontinuities without information loss in other

areas of the model and is easy to understand without adding undo complexity

to the representation. In the following chapter, the torn tensor product B-spline

surface representation is presented. The torn B-spline surface provides the exibility

without information loss that is necessary for embedding discontinuities in the

inherently smooth surface representation.



CHAPTER 4

TORN B-SPLINES

The torn B-spline representation is built upon the well-known B-spline repre-

sentation. It uses some key techniques from the trimmed B-spline representation

to provide some of the most useful functionality of the B-spline class, such as

evaluation and display. In addition, modeling techniques such as designing with

feature curves and constraints are integral parts of this representation. The previous

research on incorporating discontinuities within models was reviewed in Section 3.3.

Section 4.2 contains the technical foundation for torn B-splines, including de�nitions

for the B-spline representation and other core de�nitions. Section 4.3 introduces

the torn tensor product B-spline. In the following section, several types of discon-

tinuities are presented to lay the foundation for the rest of the chapter. It is these

types of discontinuities that the torn B-spline surface is able to represent.

4.1 Continuity Features

The examples in the previous sections present several situations in which dis-

continuities arise within the context of the modeling process. These discontinuities

characterize the model or di�erentiate the model from other models. Therefore

they are called continuity features.

What is a continuity feature? By word analysis, a feature, according to Webster,

is \a prominent or conspicuous part or characteristic"[26, p. 487, de�nition 1].

Continuity in this sense, refers to the smoothness of the model. The de�nition a

continuity feature is as follows.

De�nition 4.1 A continuity feature is a characteristic change in the continuity of

a model.
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Continuity features are often the main focus of an outline drawing of a model

since they characterize the shape of the model. The vertices and edges of polygons,

curved boundaries of a sculpted surface, and folds in material are all continuity fea-

tures. In a design system, the continuity features are represented by vertices, edges,

or curves, all de�ned within the context of the higher-order modeling constructs

such as surfaces or solids. In most situations, these features are \well behaved" in

that they form boundaries of the higher-order elements used to construct the model.

Occasionally, these features are not a natural part of the boundary (i.e., they are

not part of a closed loop which would form a boundary in a surface model) and so

are not easy to compute or use. The designer must then switch representations or

perform some additional work in order to adequately represent this type of feature.

The continuity features introduced or discussed in this thesis are de�ned below.

De�nition 4.2 A tear is a smooth parametric curve in the parametric domain of a

surface along which the surface is geometrically discontinuous (see Figure 4.1(A)).

De�nition 4.3 A crease[45] is a smooth parametric curve in the parametric do-

main of a surface along which that surface has G(0) continuity but not G(1) conti-

nuity (see Figure 4.1(B)).

Although these features are de�ned in terms of geometric continuity, it is as-

sumed that the parametric surface is standard and has no other constraints unless

noted so that these features can be discussed in terms of parametric continuity.

De�nition 4.4 A critical point is the endpoint of a tear in the interior of a surface,

whether or not it is part of a crease. An endpoint on a surface boundary is not

critical unless the boundary is constrained to be adjacent to a boundary of another

surface in the neighborhood of that point (see Figure 4.1(C)).

De�nition 4.5 A dart[45] is a crease whose endpoint lies in the interior of a

continuous surface (see Figure 4.1(D)).

If the interior endpoint of the dart is also the endpoint of a tear, then that
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endpoint is a critical point. In particular, the continuity characteristics change at

the end of a dart.

The same smoothness characteristics are required for all points on the surface

except for the points on the tear and the critical points. A critical point is the

only point on a tear whose connected neighborhood contains both sides of the tear.

These critical points play an important role in the torn B-spline data structure.

De�nition 4.6 A corner[45] is the point at which two or more creases join. Usually

a corner describes a C(1) discontinuity between the parametric representations of the

creases within the surface (see Figure 4.1(E)).

This term can also be used for the intersection of two or more tears, although

the resulting geometry is quite di�erent. A more general de�nition of a corner could

allow a corner to exist in the middle of a single crease, but given the assumption

that a single curve is C(1) with respect to parametric space of the surface, corners

require two or more curves.

De�nition 4.7 A fracture is a pair of parametric surfaces embedded in a solid

which represents a discontinuity within the solid (see Figure 4.1(F)).

Practically speaking, any parametric surface slice which intersects the fracture

will have a tear in the surface along the intersection. In the engineering world, a

fracture is one of the most complex continuity features used. This thesis introduces

a method for representing the parametric slices of the solid, and issues involved in

representing the solid itself will be discussed.

4.2 Technical Background

First the basic de�nition of a tensor product B-spline surface and some additional

terms which are frequently used will be given.
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Figure 4.1. Continuity features.
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4.2.1 Tensor Product B-spline

De�nition 4.8 A nonuniform tensor product B-spline surface,

Q(u; v) =
m;nX
i;j=0

PijBi;�u;ku(u)Bj;�v;kv(v); (4.1)

is de�ned by the set of coe�cients, fPijg, the knot vectors, �u = f�ui g; �
v =

f� vi g, and the B-spline basis functions, fBi;�u;ku(u), Bj;�v;kv(v) where fBi;�u;ku(u)

(Bj;�v;kv(v)) is the ith(jth) B-spline basis function of order ku(kv) over the knot

vector �u(�v), respectively.

To simplify notation where there is no confusion, the knot vector and the order

will be inferred from the parametric variable that is used, so Bi;�u;ku(u) = Bi(u)

and Bj;�v;kv(v) = Bj(v). In addition, the product of the basis functions will be

abbreviated as Bij(u; v) = Bi(u)Bj(v). To distinguish the torn B-spline de�nition

from the above de�nition, a surface from De�nition 4.8 will be referred to as the

standard tensor product B-spline surface.

4.2.2 Span

De�nition 4.9 The span, S(u; v), is the set of (ordered pairs of) subscripts whose

corresponding basis functions are nonzero at (u; v), i.e.,

S(u; v) = f(i; j)jBij(u; v) 6= 0g: (4.2)

De�nition 4.10 Let q(t) = (u(t); v(t)) be a parametric curve, t 2 [tmin; tmax], in

the parameter space of a surface Q. The span of a curve, R(q), is de�ned as the

union of the set of (ordered pairs of) subscripts whose corresponding basis functions

are nonzero for some (u(t); v(t)) on the curve, q, i.e.,

R(q) =
[

t2[tmin;tmax]

S(q(t)): (4.3)

The span will be used to determine which control points are crucial for deter-

mining the set of parametric values along a continuity feature.
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4.2.3 Patch

De�nition 4.11 The patch of a span, G(S), is the closure of the set of (u; v) all

of which have the same span.

In general, if S1 and S2 are two spans of either points or curves, and S1 � S2, then

G(S1) � G(S2).

The knot lines (or interior knot values) of the B-spline de�nition delineate

the patches of the surface. For the torn B-spline representation, the continuity

characteristics may not change within a patch.

4.3 Torn B-splines

Consider the process of introducing discontinuities into a model given the tools

that are currently available. There are two natural ways to think of this process.

First, basic modeling elements can be put together in such a manner that the

discontinuity lies along the boundary between elements. Where the model needs to

be smooth, constraints can be used to enforce some degree of smoothness. This is

a \bottom-up" approach. The second way is to arrange the parameters of the basic

modeling element so that a discontinuity is formed within the modeling element

itself. For example, a tensor product B-spline can have multiple knots, each knot

lowering the degree of the surface by 1. This is the \top-down" approach.

The \bottom-up" approach is easy to understand. However, since the surfaces

may be parameterized di�erently, this may become a highly nonlinear constraint

problem, one that may not be solvable. In addition, individual surfaces behave

independently, requiring highly specialized code to make modi�cations to the region

as a whole. Finally, if discontinuities were added to a smooth surface, the original

surface's structure provides a wealth of smoothness information away from the

discontinuity that is thrown away when multiple surfaces are constructed. The

\top-down" approach is more desirable for these reasons. Unfortunately, cur-

rent representations are limited in their exibility for representing discontinuities;

therefore the \top-down" approach is limited to certain representations in certain

situations, the merits of each were discussed earlier.
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The bottom-up approach to accommodating discontinuities within a single ten-

sor product B-spline representation results in a set of trimmed B-spline surfaces,

each with its own set of coe�cients (control mesh) and a set of constraints which tie

the trimmed regions back together along the smooth parts, but the constraints along

the smooth parts are just composed of matching coe�cients since both trimmed

regions came from the same surface. The torn B-spline representation is based

on this concept as applied to the \top-down" approach. An exact solution for

smoothness away from the discontinuities is guaranteed implicitly and the param-

eterization matches across the discontinuities by default by focusing on supporting

the discontinuity within the structure instead of continuity between two di�erent

structures. In addition, the surface is one complete unit with full knowledge of all

its domain and is capable of supporting operations on the surface as a whole.

The development of the torn B-spline representation from the \top-down" ap-

proach is best understood by �rst considering the two-dimensional (or 2D) case

of a torn B-spline curve. Figure 4.2 shows a torn B-spline curve. To tear a

B-spline curve, q, we introduce a tear point at parametric location, t̂. Note that

R([tmin; t̂])
T
R([t̂; tmax]) = S(t̂). Let � be a classi�cation function which separates

the curve into two distinct regions, [tmin; t̂] and [t̂; tmax]. (Although t̂ does not

actually exist in both regions, we assume the limiting case.) S(t̂) then occurs in the

spans of both regions. If q is torn at t̂, then there must be two distinct locations

for q(t̂). In order to make these two locations independent of each other, their

spans must be independent; hence, the torn representation for each region must

have distinct control points for each i in S(t̂). These additional points are called

the overlap polygon. In Figure 4.2, row a contains the original control polygon of a

curve. Row b contains the set of control points, Q3-Q6 and P7, for R([t̂; tmax]), and

row c contains the set of control points, P0-P6, for R([tmin; t̂]). The function, �,

then determines which curve region a parametric location is contained in. A point

on the curve, q(t), is evaluated by using the appropriate control points from the

original control polygon and the overlap polygon as appropriate for the region of

the curve which contains q(t) as determined by �.
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Figure 4.2. Torn B-spline curve.
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In the curve case, the two curve regions can be made independent by subdividing

the curve at the tear point. Since subdivision is a well-established technique, the

torn B-spline curve is mostly academic. The torn B-spline surface is much more

interesting. Informally, a torn B-spline surface is comprised of an underlying tensor

product B-spline surface and one or more curves of discontinuity or tear curves.

Consider �rst, the case where a single tear curve, q(t), separates a surface into

two distinct regions. Again the requirement is that the surface regions on either

side of the tear curve be independent of each other. The two regions are again

classi�ed by the function, �. In order for the regions to be independent of each

other, the span of the tear in one region must be independent of the span of the

tear in the other region, which is analogous to the torn B-spline curve case. That is,

a point on the tear in one region must use a completely di�erent set of coe�cients

for the span of that point. This implies that R(q) in one region is independent of

R(q) in the other region. The additional coe�cients required to make the spans

independent are stored in the overlap mesh. Figure 4.3(A) shows an isoline drawing

of the torn B-spline surface. Figure 4.3(B) shows the patches which contain the

tear curve. Figure 4.3(C) shows the points in the span of the tear curve, R(q),

which are included in the overlap mesh. Once again, each region, separated by

�, is associated with a particular set of control points selected from the original

mesh and the overlap mesh. Although the maximal number of degrees of freedom

(DOFs) associated with the discontinuity is �xed by the con�guration of tear curves

in the surface and the separation of regions (see Section 4.7), the methods used

to determine the distribution of these points are implementation dependent (see

Section 4.10.7).

Unfortunately, tear curves which fully separate the domain are not the most

common case, since full separation is often representable by other methods (i.e.,

subdivision or trimmed surfaces). More typically, one or more of the endpoints of

the tear curve is in the middle of the surface; often in the middle of a patch as well.

These partial tears are related to Thomas' cut curves[82]. When the tears separate

the surface, it is clear how to determine the classi�cation function, �. When the
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B CA

Figure 4.3. Torn B-spline surface with complete tear.

tears do not separate the surface, the distinction is no longer clear. Fortunately, the

original smoothness of the surface is required away from the discontinuities; thus

only one surface location is associated with a given parametric location. Regardless

of how the regions are classi�ed, the evaluation of a given point must be well de�ned

in the context of the torn surface. A method for making this classi�cation well

de�ned is presented in Sections 4.7 and following.

If a tear curve has an endpoint in the middle of the surface, the neighborhood

of this critical point has an assumed continuity requirement; the surface must have

the same continuity as the underlying B-spline surface except possibly at the tear.

If the tear has an endpoint in the middle of a patch, the entire patch must remain

connected. Recall that all points in the interior of the patch have the same span;

therefore they are all dependent on the same coe�cients. This dependence because

the cross-patch continuity is being maintained on all patch boundaries and the

span is essentially the smallest piece of the surface which is able to support the

cross-patch continuity described by the order and knot vector of the underlying

tensor product B-spline surface. This characteristic of the patch means that if two

points are connected in the same patch, then there is only one con�guration of

coe�cients given the boundary continuity requirements for that patch. Conversely,

if the spans of two parametric locations are di�erent in at least one coe�cient, then

the two points are not connected within the patch. Therefore, either the patch is
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separated from one patch boundary to another, or any two points on the patch

are connected and the patch retains its original continuity. If the endpoint of the

tear lies on a patch boundary, then this connectivity of the patch is not a problem,

since the discontinuity crosses the entire patch. However, if the endpoint lies in the

middle of a patch, there are several options available, the choice of which ultimately

determines the degree to which the patch is kept smooth without modifying the

tear itself.

1. Require that the entire patch containing the endpoint remains connected

(continuous).

2. Allow the patch to become separated beyond the original tear curve descrip-

tion.

3. Introduce additional exibility which creates a patch boundary at that point.

If maintaining smoothness where there is no discontinuity is more important than

having full discontinuity along the entire length of the tear curve, then the �rst

option is preferable to the second. This choice also prevents artifacts of the classi�-

cation scheme from being present in the surface since the additional portion of the

patch that is discontinuous from the second option is dependent on the classi�cation

of the regions. The third option was investigated, and initial experimentation

indicated that it was a viable option also. Full integration and analysis of the

e�ects of such a change are left for future work. An example of partial tear is given

in Figure 4.4. Figure 4.4(A) is an isoline drawing of the surface. Figure 4.4(B) shows

the patches of the surface that the tear extends through the hatched patch is the

patch whose span is removed to satisfy the �rst option given above. Figure 4.4(C)

shows the resulting control points that are in the overlap mesh.

Since the initial overlap mesh computation is derived directly from the span of

the tear curve, the span of the tear's mid-surface endpoint is included in the overlap

mesh. However, regardless if the tear ends on the boundary of a patch or in the in-

terior of a patch, if any coe�cient in the span of the endpoint is in the overlap mesh,
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B CA

Figure 4.4. Torn B-spline surface with partial tear. A. Isolines from the surface.
B. Parametric domain with the tear's span highlighted. C. Control points of the
surface, highlighting the control points used in the overlap mesh of the tear.

the discontinuity extends across the patch. So the span of the endpoint is removed

from the overlap mesh to maintain the continuity of the surface at the endpoint. In

Figure 4.5(a), shaded regions of patches correspond to spans that have been added;

the outlined regions (circled) correspond to spans which are subsequently removed.

In Figure 4.5(b), the shaded points of the corresponding control mesh are added,

and, likewise, the outlined points are removed. The remaining points in the darkly

shaded regions make up the overlap mesh. Additional considerations for adding

and removing points from the overlap mesh are discussed in Section 4.7.

B

a. b.

A

Figure 4.5. Subpatch diagram with tear.
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4.4 Torn B-spline De�nition

De�nition 4.12 The torn B-spline surface representation has several parts:

1. an underlying tensor product B-spline surface de�nition, with the requisite

order, knot vectors, and control mesh;

2. a set of tear curves, f�gT�=1, de�ned within the parameter space of the under-

lying B-spline surface, along which the surface is discontinuous;

3. a set of control meshes, fO(�)
ij g

T
�=1, called overlap meshes, which contain the

additional coe�cients,

4. a masking function, �, which identi�es for each region, c, the composition of

control points from the original control mesh, Pij, and the overlap meshes,

O
(�)
ij ,

5. a piecewise mapping, �c, whose value is 1 if a given parametric point, (u; v),

is contained in the parametric region, c, and 0 otherwise. This function may

be ambiguous if the point lies on a tear curve or its extension.

Then we de�ne the torn B-spline surface as

T (u; v) =
TX
c=0

�c(u; v)
m;nX
i;j=0

P
(c)
ij Bi;j(u; v) (4.4)

where

P
(c)
ij =

8<
:

Pij if �c(i; j) = 0

O
(�)
ij if �c(i; j) = � otherwise.

(4.5)

For utility, let �̂(u; v) = c () �c(u; v) = 1.

Let us examine each of these parts in turn.

4.5 Underlying B-spline Surface

The underlying tensor product B-spline surface is the basis for the torn B-spline

surface. The order and knot vector of the torn B-spline surface are inherited from

it, and its control mesh serves as the base control mesh of the torn B-spline surface.
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4.6 Tear Curves, �

As discussed in earlier sections, the tear curves which are part of the torn B-spline

representation can have arbitrary parametric geometry and extend completely or

partially across the surface. They may abut, but not cross, each other or themselves.

The type of curve is limited only by the implementation. There is no limit on the

number of tear curves in a torn B-spline surface.

4.7 Overlap Mesh, O

The additional DOFs allowed by the introduction of tears can be computed by

examining the span of the tear.

De�nition 4.13 The overlap mesh, O
(�)
ij , is the mesh of additional coe�cients

associated with the tear, �. By de�nition, O(0) � P .

There are several requirements which make the classi�cation of points a well-

de�ned process. The �rst requirement is that the surface must retain its original de-

gree of smoothness except along tear curves. Before the discontinuity is introduced,

the knot vector describes the parametric continuity of the surface. In particular, for

a tensor product B-spline surface of order 4 in the u direction, the surface will be

C(3) in regions between knots and C(3�m) at knots of multiplicitym with respect to

the u parameter. After the introduction of the tear discontinuity, the same degree

of parametric continuity is maintained everywhere on the surface, except at the

discontinuity. The second requirement is that the surface is discontinuous along

the tear curve except where, to be so, would violate the �rst requirement. Finally,

all additional degrees of freedom contained in the overlap mesh of each tear must

be present in the new representation and must be independent. In a quick jump

ahead to Section 4.10.6, when more than one tear is in a surface, the classi�cation

of the regions and the automatic distribution of the new control points may make

two independent regions dependent, dropping conicting degrees of freedom from

the picture. This case eliminates certain choices for region classi�cation and control

point distribution.
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4.7.1 Maximal Independence

When a tear curve is added to a B-spline surface, the tear curve makes the two

regions on either side of the tear independent of each other. Depending on the

separation of the domain into parametric regions, the number of additional degrees

of freedommay be di�erent. It can be proven that the additional coe�cients present

in the overlap mesh are both necessary and su�cient to make two points on opposite

sides of the tear independent. However, in some cases, this independence is not the

only independence required. In particular, if two points on the same side of the

tear are to be independent of each other, the proof given below does not apply.

In this case, the implementation of the torn B-spline data structure determines

whether or not this independence is made available. In any case, for any given

implementation and con�guration of tear curves, there is a maximal number of

degrees of freedom which can be utilized. This number is obtained by summing up

the degrees of freedom in the original surface plus all the degrees of freedom in the

overlap meshes. This concept, although it is implementation dependent, will be

used throughout the remainder of this thesis.

However, it is possible to determine the globally maximal number of degrees of

freedom for a given tear con�guration regardless of implementation. A very simple

heuristic can be used to determine the maximal number of degrees of freedom for

a given tear. The algorithm essentially counts the number of times per coe�cient

that the curve doubles back on itself. In short, the curve is divided into sections

where all of the points in the same section have the same span. We proceed along

the curve, piece by piece, using the span of the piece as a \window" of sorts,

marking the coe�cients with a tag. After all coe�cients have been marked for a

given section of the curve, the tags of the coe�cients in the window are all nonzero

and negative; the tags for the coe�cients outside of the window are zero if they

have not been seen and greater than zero if they have been seen. The ordinal value

of the tag indicates the number of times the window has \revisited" the coe�cient.

The detailed algorithm is presented below.

1. Identify sections of the tear curve according to spans, where all the points in a
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section have the same span. (Only connected points can be in a given section,

and points on patch boundaries make their own sections).

2. Initialize an array of integers to 0, one for each coe�cient in the control mesh.

Call this array the tag array and each item the tag of the coe�cient.

3. Begin at one end of the tear and proceed through all of the sections consecu-

tively, doing one of the following for each coe�cient in the span of the section.

(a) If the coe�cient's tag is 0, set it to -1.

(b) If the coe�cient's tag is less than 0, do nothing.

(c) If the coe�cient's tag is greater than 0, increment it and negate it (i.e. 2

becomes -3).

For each coe�cient not in the span of the section, if the coe�cient's tag is less

than 0, negate it. Proceed to the next section.

4. After all sections have been processed, for each coe�cient, if the coe�cient's

tag is greater than 0, negate it.

5. For each coe�cient in the span of each endpoint (unless the endpoint lies on

a boundary such as another tear, a trimming curve, or the boundary of the

parametric domain), if the coe�cient's tag is greater than 0, decrement it.

The resulting tag for each coe�cient indicates the number of additional unique

degrees of freedom required for maximal independence of the tear curve at that

coe�cient. Although the algorithm is simple, it may not be clear how best to use

this information, since, at this point, it is a heuristic. However, it may a�ect how the

tear curve should be split and may ultimately determine the best implementation.

These and other related questions are left for future work.

4.7.2 Su�ciency of O
(�)
ij

The span of the curve is used to compute the additional coe�cients (DOFs)

needed in the overlap mesh. Do these additional DOFs provide enough exibility to
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cause a given tear curve to be discontinuous along its length? This question can be

answered by carefully examining the construction of each Oij. The necessity of each

of the additional DOFs in the overlap meshes is demonstrated by the fact that in

order for the parametric regions on either side of a parametric curve embedded in a

given B-spline surface to be independent, the spans of the curve in each region must

be independent of each other. To impose the requirement that the neighborhood

around the ends of the tear curves have the same continuity characteristics as the

original surface, the spans of the endpoints must be totally dependent on the same

coe�cients.

Are more coe�cients necessary to describe the surface on either side of the tear?

To show that these are the only coe�cients needed, we �rst show that if a point

lies between two other points then the intersection of the spans of the two other

points is a subset of the span of the �rst point.

Theorem 4.1 Let points A, B, and C on a B-spline surface of order ku and kv in

the u and v directions, respectively, be described by parametric locations, (uA; vA),

(uB; vB), and (uC; vC), respectively. Let C be between A and B if min(uA; uB) �

uC � max(uA; uB) and min(vA; vB) � vC � max(vA; vB). Recall that S(p), is the

span of the point, p. Then if P�i;�j 2 S(A) \ S(B) then P�i;�j 2 S(C).

Proof. Assume, for now, that A, B, and C do not lie on knot lines. Let

S(A) = P[iA;:::;iA+ku�1];[jA;:::;jA+kv�1]

S(B) = P[iB ;:::;iB+ku�1];[jB;:::;jB+kv�1]

S(C) = P[iC ;:::;iC+ku�1];[jC ;:::;jC+kv�1]:

Consider �rst the argument for the row index i; the argument for j follows analo-

gously. If P�i;�j 2 S(A) \ S(B), then

max(iA; iB) � �i � min(iA; iB) + ku � 1:

Since C is between A and B,

min(iA; iB) � iC � max(iA; iB) (4.6)
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min(iA; iB) + ku � 1 � iC + ku � 1 � max(iA; iB) + ku � 1: (4.7)

Therefore,

iC � �i � iC + ku � 1

which with the analogous argument for �j, implies that

P�i;�j 2 S(C) = P[iC ;:::;iC+ku�1];[jC ;:::;jC+kv�1]:

As stated above, it is assumed that the points do not lie on knot lines. This

implies that the number of indices for a given direction that are in the span of a

point is equal to the order in that direction. If A or B lies on knot lines (at the

minimum in either direction), the spans become smaller, but because the restriction

becomes tighter, the argument still holds. However, if C lies on a knot line in a

given direction, the span of C is reduced by the number of knots at that parametric

location. This implies that Equation 4.7 does not follow directly from Equation 4.6

without additional argument.

Suppose then that uC lies on a knot with multiplicity m. Then the number of

indices in the span of C in the u direction is ku � 1 �m and the maximum index

for i in the span of C is iC + ku � 1 � m. We need to show that min(iA; iB) +

ku � 1 � iC + ku � 1 � m (the right-hand side of Equation 4.7 holds if m � 0).

By the de�nition of the B-spline basis functions, the number of knots between the

parametric locations of two points determines the di�erence between the beginning

index values of the spans of the two points. This means that

min(iA; iB) +m � iC :

Then,

min(iA; iB) � iC �m;

and so

min(iA; iB) + ku � 1 � iC + ku � 1 �m;

which is what we needed to show.

The argument is similar if max(iA; iB) or max(jA; jB) lies on a knot line.
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De�nition 4.14 For A and B on a B-spline surface, �, A and B are independent

of each other, if either S(A) \ S(B) = ; or if S(A) \ S(B) = T and �̂(A) = �A

and �̂(B) = �B then for all (i; j) 2 T , ��A(i; j) 6= ��B (i; j).

If the surface is not torn, then there is only one mesh, and the two points are

independent of each other if the intersection of their spans is empty. If a surface

is torn, then the spans can overlap, as long as each index pair in the intersection

corresponds to a control point in a di�erent mesh. Now we show that, in fact,

nothing is missing from O�.

De�nition 4.15 A and B are on opposite sides of the tear � if the straight line

(in parametric space) between A and B intersects the tear an odd number of times

(where intersection with a tangent of the tear that is not an inection counts as two

intersections, and an intersection at a tear endpoint is one intersection).

Even if two points are not on opposite sides of a tear by this de�nition, a complete

classi�cation, where every point is on one side of the tear or the other, is sometimes

useful. The containment function, �c, is used to provide this kind of complete

classi�cation in De�nition 4.12 of the torn B-spline surface.

Theorem 4.2 If A and B are on opposite sides of the tear, �, and S(A) and S(B)

are not part of a constraint region, then S(A) and S(B) are independent of each

other.

Proof. Assume A and B are independent of each other and on opposite sides of

the tear �, and assume that S(A) and S(B) are not part of a constraint region.

Let C be a point on � such that C lies on the line between A and B. Let �̂(A) =

�A and �̂(B) = �B. Suppose then that there exists an index pair, (i; j), such

that ��A(i; j) = ��B (i; j) and therefore (i; j) 2 S(A) \ S(B). This implies that

(i; j) =2 O�. Then by the Theorem 4.1, (i; j) 2 S(C). However, by de�nition, all

(i; j) 2 S(�) are in O� unless they are part of a constraint region. If (i; j) 2 O�

then ��A(i; j) 6= ��B (i; j) since the A and B are in regions on opposite sides of the
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tear, and this is a contradiction.

As indicated by the assumptions, Theorem 4.2 does not apply to the case

when individual control points are removed from the overlap mesh in order to

maintain smoothness in the regions surrounding the tear. Then there are fewer

DOFs and points on opposite sides of the tear are, by design, not completely

independent of each other. Results pertaining to constraint regions will be presented

in Section 4.10.3.

These theorems show that the de�ned overlap meshes are both necessary and

su�cient to provide the maximum exibility around the discontinuity.

Unfortunately, the assumptions also state that the points A and B had to be on

the opposite sides of a tear. If A and B are on the same side of a given tear, or

more precisely, �(A) = �(B), then they are dependent on each other as though the

tear did not exist, since they are guaranteed to use the same set of control points by

�. This implies that even if a tear should pass between the two points and double

back before terminating, theoretically requiring independence between the points,

this independence is not guaranteed. See Section 4.10.1 for a discussion of how to

split tears so that � is de�ned appropriately.

4.8 Masking Function, �

The masking function is the embodiment of the constraints within the data

structure. As such, this function is dependent on the overall structure of the tears

within the torn B-spline surface. Two aspects of the particular implementation

discussed here need to be clear before proceeding. The �rst is that the tears are

connected to the boundaries of the parametric region (or another tear) by adding

invisible parametric line segments, called extensions, to the endpoints of the tears.

These extensions partition the surface into disjoint parametric regions indicated by

c. The containment function, �c, is a classi�cation function and embodies these

disjoint regions; it is discussed further in Section 4.9. The second is the concept

that the disjoint regions and the tears are related to one another by an ordering,

called the signature ordering.
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De�nition 4.16 A valid signature ordering for a torn B-spline surface is a (possi-

bly partial) ordering of parametric regions and tears of a torn B-spline surface such

that

1. every tear and every disjoint region are in the graph of the ordering,

2. every tear directly precedes one and only one region in the graph,

3. no region is preceded by more than one tear,

4. tears are not directly preceded by tears, and

5. regions are not directly preceded by regions.

By this de�nition, a region may precede any number of tears (including none),

but a region's direct precedence of more than one tear is discouraged for simplicity

and ease of implementation.

De�nition 4.17 The signature for a region of a torn B-spline surface is de�ned by

the portion of the signature ordering of the torn B-spline that precedes and includes

the region.

With these de�nitions, every distinct parametric region, c, has a unique signa-

ture. The implementation and other issues surrounding the signature ordering for

a surface is discussed in Section 4.10.6.

De�nition 4.18 The masking function, �c(i; j) : ZZ
2 ! f0; : : : ; Tg, determines if a

particular coe�cient, O(�)
ij , is used in parametric region, c. Let (u0; v0) = �(tmin),

(u1; v1) = �(tmax) and D =
S
fS(ui; vi)ji = 0; 1; (ui; vi) does not lie on another

discontinuity (such as a surface boundary or another tear)g. Then �c(i; j) = � if

1. there exists a point, (u; v), on �, such that (i; j) 2 S(u; v)�D,

2. O(�)
ij exists and � is the last tear in the signature of c, and

3. O(�)
ij has not been replaced by another DOF by being a member of the span of

an extension (more details are in Section 4.10.7).
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There are special considerations for tears which intersect.

4.8.1 Intersecting Tears

A tear may intersect another tear in one of two ways: 1) end to end or 2) side

to end. Other cases are not allowed by the de�nition of a tear curve. Where the

endpoint of a tear lies is critical to determining the continuity of the surface near

that point. If the endpoint of a tear lies on the edge of a discontinuity (either

the boundary of the surface, or another tear), then the span of the endpoint may

be used as part of the overlap mesh in its entirety because no continuity needs to

be maintained at that point. The two discontinuities (in particular, the tears) are

said to have a parent-child relationship at the point of intersection (see Figure 4.6).

Since no modi�cations need to be made when processing the tear that the second

tear abuts to, it is considered the parent. The abutting tear is considered the child

since the computation of the additional coe�cients depends on the intersection.

The end to end case is very similar in that a parent-child relationship is also

determined. In this case, however, the particular relationship is not necessarily

clear. In most cases, it makes no di�erence which tear is the parent and which is

the child. The only di�erence seen by experimentation is that the determination of

parent

from parent

End-to-end

extension 

child

T-join

parent

child

A) B)

Figure 4.6. Example of parent-child relationships for two types of intersections.
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the coe�cients may be more complex for a particular relationship in some cases.

The exact nature of this complexity relates to the composition of the control meshes

for some regions. In particular, experiments have shown that fewer exceptions to

the general composition rules are encountered when the parent tear precedes the

child tear (see Section 4.10.6 for a discussion of precedence rules and ordering). The

parent-child relationship pertains only to a given intersection. In particular, a set

of tears may have a circular relationship when considering all endpoint intersections

of all tears (see Figure 4.7).

These conditions provide the inherent constraints of the representation by en-

forcing continuity within patches containing the endpoints of the tear curves and

providing additional DOFs to guarantee the independence of patches which are

separated by the tear. For the de�nition and discussion of signatures, see Sec-

tion 4.10.6. For a discussion of prevention and propagation, see Section 4.10.7.

4.9 Containment Function, �

Suppose that two points, A and B, are on opposite sides of a tear as shown in

Figure 4.8. Then S(A) = f(i; j)ji = 3; 4; 5; 6; j = 2; 3; 4; 5g and S(B) = f(i; j)ji =

3; 4; 5; 6; j = 4; 5; 6; 7g. Then S(A)
T
S(B) = f(i; j)ji = 3; 4; 5; 6; j = 4; 5g. If these

parent

Parametric Domain

Extension from parent

Extension curve flow

child

Figure 4.7. Example of circular parent-child relationships.
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Figure 4.8. Illustration of overlapping spans for two given points. a) Parametric
domain with points A and B on opposite sides. b) Control mesh indicating spans.

two points are to be independent, it is necessary to partition, or separate, the surface

into regions which are evaluated with di�erent sets of control points. In particular,

control points with subscript pairs in the intersection of the spans must have a

unique control point identity for each side. The containment function, �, classi�es

each parametric location with respect to each of these separated parametric regions.

The containment function, �, can be constructed, for example, via a set of oriented

boundary loops which are determined by extending tear curves to boundaries

(see Figure 4.9). The parametric locations on the boundaries between parametric

regions are de�ned in more than one parametric region so the classi�cation must

have more information. If the parametric location is on a tear, an is left ag is used

to disambiguate the results of this function. If the parametric location lies on an

extension of the tear curve, an arbitrary choice can be made since the parametric

regions must be continuous along the extension. If the parametric location is on a

tear, this ambiguity is expected. Otherwise, the representation enforces smoothness

in that region, so the choice is arbitrary.

De�nition 4.19 The containment function �c(u; v) : IR
2 ! f0; 1g is the charac-

teristic function of the restricted domain of the parametric region, c.

�c(u; v) =

(
1 if (u; v) 2 domain(c)
0 otherwise:

(4.8)
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C3

C0

C
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2

C4

C1

Primary monotonic direction

4

3

2

Figure 4.9. Tears in a surface with dashed extension curves.

PT
c=0 �c(u; v) represents the number of distinct parametric regions which contain

a particular parametric location. In the interior,
PT

c=0 �c(u; v) = 1. Along interior

boundaries, that is, tears and their extensions,
PT

c=0 �c(u; v) = 2. At points of

intersection of the interior boundaries, the sum can be higher.

4.10 Implementation

In Section 4.7 it was shown that the additional degrees of freedom created by the

introduction of a tear into the torn B-spline surface are both necessary and su�cient

to provide the maximum exibility allowed by the discontinuity. Determining

the mask values � for each parametric region is probably the most challenging

task in implementing the torn B-splines. Intuitively, each additional coe�cient

created by the discontinuities in the surface must be used by a parametric region to

di�erentiate it from its adjacent parametric regions across the discontinuity. This

is accomplished by assigning to each parametric region a unique combination of

additional DOFs from the tears in the structure.

One procedure which determines the parametric regions and their unique com-

binations of DOFs can be outlined as follows:

1. Split tears into monotonic segments.
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2. Compute O(�).

3. Determine necessary extension directions and extend curves.

4. Separate the domain into parametric regions, c�, i.e., de�ne �c.

5. Order parametric regions and tears.

6. Construct �c(i; j).

4.10.1 Splitting Tears

Tear curves are split into monotonic sections with respect to the parametric

domain for two primary reasons. Foremost, the monotonicity provides a framework

within which parametric regions and tears can be ordered without cycles. A natural

ordering can then be derived from adjacency and parametric value information.

This is important for determining a unique set of control points for each parametric

region. The second reason can be most clearly seen by considering some examples.

In Figure 4.10, the tear curve enters and leaves the same patch twice (known as

\doubling back"). Intuitively, this should cause the patch to be split into three

independent patches (I, II, and III in Figure 4.10). However, since the two outside

patches are on the same side of the tear, they will belong to the same parametric

region and therefore use the same set of control points. That is, the two outside

sections, I and III, will not be independent as expected. A related example is in

Figure 4.11. In this �gure, the tear curve \spirals" back into the same patch again,

causing even more confusion. In Figure 4.10 it is at least clear which region each

section of the patch belongs to, even though they are dependent. In Figure 4.11,

the center section of the patch in question belongs to the regions on both sides of

the curve. Unless the two parts of the tear curve which pass through the patch

are di�erentiated, the description of the surface is ambiguous. In both of these

examples, it is not necessary for the curves to pass through the same patches to

cause these problems. They only need to pass through patches which are dependent

on the same coe�cients. It is easy to see that in most cases, if a curve spirals or
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I IIIII

Figure 4.10. Example of a curve that \doubles back."

III

I

II

Figure 4.11. Example of a curve that spirals.
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doubles back, that this type of problem is likely to occur.

Spirals are eliminated completely by splitting new tear curves into monotonic

sections in any given primary direction since to spiral the curve must have a min-

imum or maximum relative to any given direction. However, isolating monotonic

sections in a spiral may result in a given curve section doubling back (see I, II,

and III, in Figure 4.12). Unfortunately, the doubling back case is more di�cult to

correct. Splitting the curve into monotonic sections with respect to both primary

parametric directions will solve this problem, but splitting curves this way in all

cases is not necessary. It would be the most e�ective if the problem cases could be

identi�ed and split only if necessary. Since identifying these problems (especially

the doubling back case) is nontrivial, they will be left for future work.

Splitting a tear results in two independent curves whose endpoints intersect. If

endpoints intersect by accident, it is usually di�cult to detect, but in this case

the exact nature of the intersection is known. The parent-child relationship (intro-

duced in Section 4.8.1) can be assigned arbitrarily by ordering the curve segments

Secondary direction splits

Monotonic direction

I

II

III

IV

Primary direction splits

Figure 4.12. Example of a curve that spirals and \doubles back" and the
monotonic splits that may be required.
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according to beginning parametric value. The parent's endpoint in question is

extended in the monotonic direction whereas the child's endpoint is not extended

(see Section 4.10.3).

4.10.2 Computation of O(�)

Computation of O(�) proceeds directly from the maximal independence algo-

rithm presented in section 4.7.1.

4.10.3 Determination of Extension Directions

The tears are extended from their endpoints in the parametric domain out to

another boundary, either an actual boundary of the surface, or another tear or

extension. The span of the extension is considered a continuity constraint region,

since an extension bounds two or more surfaces whose control points in the span

of the extension must be the same. Figure 4.9 shows an example of a surface

with a set of tears and their extensions. The regions in Figure 4.9 labeled Ci are

the parametric regions separated by the extended tears. The wise choice of the

extension direction is essential to a maximally independent surface.

The extension directions are crucial because they inuence the ordering of the

parametric regions and tears and a�ect the ease of maintaining the boundary

conditions within the structure. Since the extensions are added by the structure,

they need to be as unobtrusive as possible. In light of the discussions in the previous

section on the importance of monotonicity, it would seem that the best extension

would maintains the monotonicity of the tear in the primary direction. Particularly,

the span of the extension must avoid intersecting the overlap mesh of the tear.

Since the span of the extension is shared by regions on both sides of the tear,

automatically maintaining continuity across the extension would be impossible.

This is now developed formally.

De�nition 4.20 An extension, �, of � is valid if (i; j) =2 S(�) for all (i; j) 2 O�.

To see why a valid extension is required, suppose that span of the extension

curve contains a pair (i; j) that is also contained in the set of control points of O�.
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Choose a point, x, on the extension curve such that (i; j) 2 S(x) (see Figure 4.13).

Because of the continuity of B-splines, there exists two points, x̂1 and x̂2, in the

neighborhood of x such that x̂1 is on one side of the extension curve and x̂2 is on

the other side. Given that the region on one side of the extension does not use O�

and the region on the other side does, then these two points are not dependent on

the same control points and the regions are not the same along the extension curve

at x even though they are required to be.

Even with this criteria, there are generally several options, two of the most

obvious are given here.

1. Extend the tear by continuing the tear in the tangent direction (in parametric

space) of the tear at the endpoint. This approach has the advantage of being

easy to understand conceptually, and it maintains the continuity of the tear

at the endpoint.

2. Extend the tear by an isoparametrically straight segment in the primary

monotonic direction, away from the tear in the direction closest to the tangent

at the endpoint. The advantages of this approach are that the signature

ordering tends to remain the same independent of the order in which tears

�
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a. b.

x

Figure 4.13. Points in the neighborhood of x on either side of the extension.
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are extended, and it is generally easier to deal with computationally.

For computational purposes, the second option was chosen for implementation in

this thesis. For tears that have been split into monotonic sections, the tangent of the

tear at the split point is perpendicular to the monotonic direction, so extensions

are made in the direction opposite the normal of the tear relative to parametric

space. In the case of a parametrically straight tear, where the normal is not well-

de�ned, the choice is arbitrary. If convenient, the tear may be extended so that the

orientation of the extended tear relative to the primary monotonic direction will

match that of the other tears.

Another special case occurs when two extensions \run into each other." This

happens when the extension directions are opposites of each other and the end-

points have the same position perpendicular to the monotonic direction (as in

Figure 4.14(A)). The are several options in this case.

1. Choose one curve and extend it slightly perpendicular to the monotonic direc-

tion and then proceed as before (as in Figure 4.14(B)).

2. Choose another direction for one of the tears (as in Figure 4.14(C)).

The �rst option is also probably the best option. This option has the advantage of

keeping the ordering characteristics provided by the monotonicity of the tears. The

second option has the advantage that a certain set of directions can be preset so

that the monotonicity can be maintained and the various choices can be permuted

until a solution is found.

Since these extensions are critical to the separation of regions and ultimately to

the composition of coe�cients for those regions, a solution must be guaranteed if

an option is to be viable. A viable solution has the following characteristics:

1. all extensions of tear curves satisfy the requirements of avoiding the overlap

mesh of their corresponding tears,

2. no extension may terminate at the endpoint of another tear.
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Primary monotonic direction

A) B) C)

Figure 4.14. Extensions that \run into each other." (A) The problem. (B)
Solution 1: Right angle sidestep. (C) Solution 2: Alternate directions.

It is easy to see that the �rst option given above will always provide a solution.

Since there are a �nite number of possible extension curves (two for each tear curve)

and an in�nite number of extension distances, there will always be a distance to

extend the curve before turning in the monotonic direction so as to avoid running

into any other extension.

The viability of second option is a bit more di�cult to show. In order for two

extensions to \run into each other," they must be aligned exactly and moving in

opposite directions. Further, no other tear endpoint lies on this \line of sight"

between the two endpoints (if so, the two would not run into each other). Suppose

we label these two extensions as a conicting pair. Let n(< 1) be the number

of preset extension directions (given as o�sets to the tangent of the curve at

the endpoint). Suppose, then, that there exists at least one conicting pair and

that for both extensions, all other possible directions would result in a conicting

pair. Taking it one step further, suppose that the one of the extensions switches

directions in response to the conict. In order to continue having a problem, the

new conicting pair must have potential conicts in all directions. In the limit,

there must be (2T )n extensions causing conict, where T is the number of tears,

since each extension has a conicting extension in each direction. But if n > 1, this

is impossible since there are only 2T extensions. Therefore, as long as there are 2

or more possible extension directions, the second option will provide a solution.
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Unfortunately, the second option may require �nding a solution among (2T )n

possibilities, so heuristics should be used to govern the selection process. For-

tunately, experimentation has shown that although the possibility of a conict

occurring is high, especially in arti�cial situations, a simple set of rules will result

in a solution in O(T ) time. Following is a brief list of one rule set that is e�ective.

4.10.4 Initial Extension Rules

Given a curve, determine the initial guess of the extension direction for the

extension at the beginning of the curve by the following rules. For the sake of

terminology, the tangent of the curve at its beginning points in the direction of

curve. The inverse of this tangent points away from the curve. However, the tangent

of the curve at the end of the curve points away from the curve and the inverse

tangent points toward the curve. All evaluations are relative to the parametric

space of the surface.

1. Determine which of the primary monotonic direction or its inverse is closest to

the inverse tangent direction at the beginning of the tear. Use this direction

if the tangent at the beginning of the tear is not perpendicular to the primary

direction.

2. If the tangent at the beginning of the tear is perpendicular to the primary

monotonic direction, determine the direction closest to the inverse of the

tangent at the end of the tear. Use this direction if the tangent at the end of

the tear is not perpendicular to the primary direction.

3. If both ends of the tear have tangents perpendicular to the primary monotonic

direction, use the extension direction closest to the vector from the end of the

tear to the beginning of the tear, provided this vector is not perpendicular to

the primary monotonic direction.

4. If all of the above fail, use the secondary monotonic direction closest to the

inverse of the tangent at the beginning of the curve. This is guaranteed (except

for rare degenerate cases) to be nonzero if all of the above fail.
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Once an initial guess is made, any enumerative technique can be used to �nd a

solution for which there are no conicts.

The removal of conicting pairs is necessary in order to produce exactly T + 1

separate parametric regions. If T tears are in the surface, there is the potential

for T + 1 unique coe�cients for a particular (i; j) pair in the torn surface. There

must be a unique parametric region for each of these potential coe�cients in order

to provide the maximum exibility for each of the tear curves. If a conicting pair

persists, the number of separate parametric regions is reduced by 1.

After the directions have been determined, the curves are extended and infor-

mation regarding intersections is compiled for each tear.

4.10.5 Parametric Regions, �c

The current implementation uses trimming loops to separate the domain into

parametric regions although other techniques such as a quadtrees may be just

as applicable. Information about where the extended tear curves intersect the

boundaries and other tears is used to compile a set of boundary loops. One notable

side e�ect of this process is that the particular curve segments of the tear curves

which make up the boundary for a given parametric region can be cached. This

information is used to determine the signature ordering of the parametric regions

and tears (see Section 4.10.6).

4.10.6 Ordering Parametric Regions and Tears

Finally, the piecewise functions, �c(i; j), determine the composition of coe�-

cients from the overlap meshes and original mesh in each of the parametric regions.

We refer to the ordering which determines these compositions as a signature or-

dering (de�ned in Section 4.8). The signature of each parametric region must be

unique. The signature ordering is an alternating, possibly partial, precedence rela-

tion, beginning with a single root parametric region. The ordering then alternates

after this: tear, region, tear, region, etc. Every tear and parametric region are

required to be part of this precedence relation. From this relation, the signature

ordering for each of the parametric regions is the portion of the precedence graph
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which precedes the given parametric region (de�ned formally in Section 4.8). The

precedence graph is denoted by an ordered set. For example, suppose a precedence

relation for a given torn B-spline surface is cI < A < cII < B < cIII, where ci

are the parametric regions and i are the tear curves. The root of the graph is cI

and its signature ordering is denoted by the empty set, fg, since nothing precedes

it. The signature ordering for cII is denoted fcIAg. In a similar fashion, the

signature ordering for cIII is denoted fcIAcIIBg. Although every tear and region

must be included in the signature for the surface, at certain points the relation is

only partially speci�ed. In this case the notation used is illustrated in the following

example: if cI < A < cIII and cII < B < cIII are the partial orderings that are

known for the surface, then f[fcIAg; fcIIBg]cIIIg denotes the precedence relation

for the surface. The rules of precedence are given in Section 4.10.6.2 below.

A valid signature ordering does not require that an ordered relationship exists

between all combinations of tears and regions. It is possible for the relation to

have branches (see cases 2a and 2b, below), in which case a precedence relationship

is not de�ned between members of the branches. However, branching is allowed

only in some cases (for examples of inappropriate branching, see cases 1a and 1b,

below). It is usually desirable for the precedence relation to be totally ordered,

even if the signature ordering is valid. In the case of branches, either a speci�c

method is used to create a total ordering or an arbitrary precedence is assigned for

convenience. There are two primary reasons to create a total ordering. First, in

some cases it is necessary to prevent DOFs from being dropped. Second, if it is

not necessary, then assigning an arbitrary order will not a�ect the outcome. The

reasoning behind this is that if a particular ordering a�ected the outcome, where

the outcome is the interdependence between two parametric regions, then either a

precedence relationship can be determined, or it is required (as in the branching

case, above). The essential requirement is that the signatures be di�erent: this

is what is required to provide the maximum independence between regions. As

long as the signatures follow the rules below, any set of unique signatures will

result in the same amount of freedom. This can be easily shown by observing that



63

if the signatures are unique, then the di�erence in composition between adjacent

surfaces is the addition of the DOFs associated with the tear which forms the

boundary. Therefore, completing the ordering is a good idea regardless of the

particular situation. Determining an order with the fewest complications is best

accomplished by reorienting the tears so they all travel in approximately the same

direction. Then the ordering can easily be determined. For the purposes of this

discussion, tears refer to the actual tear combined with its extensions.

4.10.6.1 Reorientation of Extended Tears

Once we have determined the necessary extensions for each of the tear curves,

the extended tear curves can be reoriented so that all of the tears are oriented in

the same direction within the domain of the surface. If v is the primary monotonic

direction, then the extended curves, except for the few rare cases, can be oriented so

that the beginning of the curve has the smallest v value. In the rare case in which the

tear curve was extended in the secondary monotonic direction, the reorientation is

relative to the secondary monotonic direction (in this case, u). After reorientation,

the curve's left side is the region to the left of the curve when looking from the

beginning to the end.

4.10.6.2 The Precedence Relation

The precedence relation is determined by the following rules.

Rule 1: A parametric region, cI , precedes a tear, A, cI < A, if any part of

A's left side lies on an edge of cI .

Rule 2: A tear, A, preceeds a parametric region, cI , A < cI , if A's right side

lies on an edge of cI .

Rule 3: (Transitivity) If cI < A and A < cII, then cI < A < cII .

Rule 4: No tear may be in immediate predecessor of more than one parametric

region.
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These rules create a partial ordering (possibly with branches) of alternating

parametric regions and tears within the surface. Additional rules used to create a

total ordering are given below. When all parametric regions have a unique signature

ordering, the signatures are considered to be valid.

There are several tear con�gurations which result in branching of the signature

ordering. To provide a valid signature ordering, additional relational pairs may be

necessary. The cases in question are:

1a. Two tears intersect the left parametric boundary where the lower tear is

oriented toward the boundary and the upper tear is oriented away from the

boundary (Figure 4.15).

1b. Two tears intersect the right side of the same tear within the surface where

the lower tear is oriented toward the boundary and the upper tear is oriented

away from the boundary (Figure 4.15).

2a. Two tears intersect the right parametric boundary where the lower tear is

oriented away from the boundary and the upper tear is oriented toward the

boundary (Figure 4.16).

2b. Two tears intersect the left side of the same tear within the surface where the

lower tear is oriented away from the boundary and the upper tear is oriented

toward the boundary (Figure 4.16).

Cases 1a and 1b are similar with the parametric boundary, b, and the larger tear,

C , playing the same role. In both cases, the parametric regions, cI and cIII , are

not ordered with respect to each other. From the rules given previously, cI < A,

A < cII , cIII < B and B < cII , and in Figure 4.15(1a), cIV < C , C < cI ,

C < cII and C < cIII in addition (see Figure 4.15(1b)). The signatures with this

partial ordering are
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Figure 4.15. Common boundary signature conicts.
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Figure 4.16. Branching of signatures.


