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ABSTRACT

Current interactive modeling systems allow users to view models in wireframe or

Phong-shaded images. However, the wireframe is based on the model's parameteriza-

tion, and a model's features may get lost in a nest of lines. Alone, a fully rendered

image may not provide enough useful information about the structure or model fea-

tures. Human technical illustrators follow certain visual conventions that are unlike

Phong-shaded or wireframe renderings, and the drawings they produce are subjectively

superior to conventional computer renderings. This thesis explores lighting, shading,

and line illustration conventions used by technical illustrators. These conventions are

implemented in a modeling system to create a new method of displaying and viewing

complex NURBS models. In particular, silhouettes and edge lines are drawn in a manner

similar to pen-and-ink drawings, and a shading algorithm is used that is similar to

ink-wash or air-brush renderings for areas inside the silhouettes. This shading has a

low intensity variation so that the black silhouettes remain visually distinct, and it has a

cool-to-warm hue transition to help accent surface orientation. Applying these illustration

methods produces images that are closer to human-drawn illustrations than is provided

by traditional computer graphics approaches.
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CHAPTER 1

INTRODUCTION

The advent of photography and computer graphics has not replaced artists. Imagery

generated by artists provides information about objects that may not be readily apparent

in photographs or real life. The same goal should apply to computer-generated images.

This is the driving force behind non-photorealistic rendering. The term non-photorealistic

rendering (NPR) is applied to imagery that looks as though it was made by artists, such

as pen-and-ink or watercolor. Many computer graphics researchers are exploring NPR

techniques as an alternative to realistic rendering. More importantly, non-photorealistic

rendering is now being acknowledged for its ability to communicate the shape and struc-

ture of complex models. Techniques which have long been used by artists can emphasize

speci�c features, expose subtle shape attributes, omit extraneous information, and convey

material properties. These artistic techniques are the result of an evolutionary process,

conceived and re�ned over several centuries. Therefore, imitating some of these techniques

and exploring the perceptual psychology behind technical illustration are good �rst steps

in going beyond realistic rendering.

In this thesis I explore technical illustrations for a NURBS-based modeling system.

A driving force for exploring technical illustration comes from viewing the wireframe

representation of complex NURBS-based models, usually a mess of lines, as shown in

Figure 1.1. More motivation for exploring illustration techniques is provided by comparing

the two mechanical part images in Figure 1.2. The �rst image is a hand-tuned, computer

Figure 1.1. An few examples of a NURBS-based model displayed in wireframe. The
large number of isolines makes distinguishing key features di�cult.



2

(a) Hand-tuned Phong-rendered image of me-
chanical part by Dr. Sam Drake. It took him
approximately six hours to hand tune this image.

(b) Illustration of a mechanical part using
lines to separate parts and shading to con-
vey material properties. Courtesy Macmil-
lan Reference USA, a Simon & Schuster
Macmillan Company [28].

Figure 1.2. Hand-tuned Phong-shaded image versus technical illustration.

generated, Phong-shaded part, which took about six hours for Professor Sam Drake to

complete. The second image is an illustration from the book The Way Science Works

by Macmillian [28]. The illustration uses lines to separate parts and shading to convey

material properties. I would like to be able to automatically generate images with many

of the characteristics of the illustration in Figure 1.2(b) for NURBS-based models.

Examining technical manuals, illustrated textbooks, and encyclopedias reveals shading

and line illustration conventions which are quite di�erent than traditional computer

graphics conventions. The use of these artistic conventions produces technical illustra-

tions, a subset of non-photorealistic rendering. In order to create illustration rules for

technical illustration, I reviewed several books, e.g., [28, 25], and concluded that in addi-

tion to using color to di�erentiate parts [40], technical illustrators use black lines, as well

as a speci�c type of shading which rarely includes shadows. These two-dimensional (2D)

line illustration conventions can be imitated by drawing lines consisting of silhouettes,

surface boundaries, and discontinuities. Adding shading completes the image and can be

used to convey important nongeometric qualities of an object such as material properties.

Line, shading, and lighting techniques used by illustrators can convey a more accurate

representation of shape and material properties of mechanical parts than traditional com-
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puter graphics methods. These illustration techniques can improve or replace traditional

representation of models such as wireframe or Phong-shaded. In Chapter 2, I review what

has been done in computer graphics as well as some of the research on human recognition

in perception studies. In Chapter 3, I describe the illustration conventions used for lines

and shading. In Chapter 4, I discuss algorithms to imitate lines and shading of technical

illustration. I will also discuss how these may or may not change for three-dimensional

(3D) interactive illustrations. In Chapter 5, I will discuss the implementation details for

3D illustration, and in Chapter 6 I will draw some conclusions and propose some future

research goals.



CHAPTER 2

BACKGROUND

Non-photorealistic rendering (NPR) techniques vary greatly in their level of abstrac-

tion. In technical illustrations, shape information is valued above realism and aesthetics.

Therefore a high level of abstraction, like the images in Figure 2.1, would be inappropriate.

As summarized in Table 2.1, no work has been done which uses the ideas and techniques

of technical illustrators to generate not only 2D technical illustrations but also to provide

an interactive environment for viewing 3D models as 3D technical illustrations. A review

of the papers involving NPR or other illustration techniques used in computer graphics

reveals that most papers can be partitioned into two categories: those which generate

only aesthetic images and those whose purpose is to convey shape and structure. The

images in the latter category may themselves be aesthetically pleasing, but this is a

side e�ect rather than a primary goal. These papers can also be further divided into

those that generate a single image and those that are part of an interactive or animation

system. Human perception and recognition studies [2, 4, 7] are another valuable source

of information. These perception studies suggest an explanation of why line drawings,

like technical illustrations, are enough for object recognition and provide a hint as to why

they may also provide shape information.

2.1 Paint Programs and One-Shot Images

Creating sophisticated paint programs which generate single images and emulate

techniques used by artists for centuries was the focus of research done by Meier [27],

Haeberli [17], Curtis [10], Salisbury et al. [30, 31, 32], and Winkenbach et al. [38].

However, conveying shape and structure is not the goal of these images.

Meier [27] presents a technique for rendering animations in which every frame looks

as though it were painted by an artist. She models the surfaces of 3D objects as 3D

particle sets. The surface area of each triangle is computed, and particles are randomly

distributed. The number of particles per triangle is equal to a ratio of the surface area
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(a) Copyright 1996 Barbara
Meier [27]. Used by permission.

(b) Copyright 1990
Paul Haeberli [17].
Used by permission.

(c) Copyright 1997 Cassidy
Curtis [10]. Used by permis-
sion.

Figure 2.1. Non-photorealistic one-shot images with a high level of abstraction.

Table 2.1. Summary of non-photorealistic and other computer graphics papers.

Author Line
Drawing

Shading Automatic
(Not user-
driven)

3D
Interactive

Applicable
to
Technical
Illustration

Additional
Illustration
Rules*

Markosian [24]
p p p p

Dooley [11]
p p p p

Saito [29]
p p p p

Driskill [12]
p p

Elber [13]
p p p

Seligmann [34]
p p p p

Land [22]
p p p

Gooch [15]
p p p p

Zeleznik [42]
p p p

Salisbury [32, 31]
p p

Salisbury [30]
p p p

Winkenbach [38]
p p p

Winkenbach [39]
p p p

Meier [27]
p p

Haeberli [17]
p

Litwinowicz [23]
Curtis [10]

p

This Thesis
p p p p p

Note: \Line drawing" and \shading" categories are checked if the work uses shading
and line drawing conventions similar to traditional illustration techniques. \Automatic"
means that user intervention is not required and it is not a user-driven program; i.e.,
it is not like a paint program.
*Layout, cut-a-ways and object transparency, line style, etc.
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of triangle to the surface area of the whole object. To maintain coherence from one

shot of the object to the next, the random seed is stored for each particle. Particles are

transformed into screen space and sorted with regard to the distance from viewer. The

particles are then painted with 2D paint strokes, starting farthest from viewer, moving

forwards, until everything is painted. The user determines artistic decisions like light,

color, and brush stroke, similar to most paint programs. The geometric lighting properties

of the surface control the appearance of the brush strokes.

Haeberli [17] created a paint program which allows the user to manipulate an image

using tools that can change the color and size of a brush, as well as the direction and shape

of the stroke. The goal of his program is to allow the user to communicate surface color,

surface curvature, center of focus, and location of edges, as well as eliminate distracting

detail, to provide cues about surface orientation and to inuence viewer's perception

of the subject. Haeberli studied the techniques of several artists. He observed that

traditional artists exaggerate important edges. Where dark areas meet light areas, the

dark region is drawn darker and light region is drawn lighter. This causes the depth

relationship between objects in a scene to be more explicit where they overlap. Haeberli

also notes that artists use color to provide depth cues because, perceptually, green, cyan,

blue (cool-colored) shapes recede, whereas red, orange, yellow, magenta (warm-colored)

objects advance. He commented in his paper that he used these color depth cues and

other techniques to enhance digital images before the paint begins, but he never provided

any details on how these could be used algorithmically.

The computer-generated watercolor work by Curtis et al. [10] created a high-end

paint program which generates pictures by interactive painting, or automatic image

\watercolorization" or 3D non-photorealistic rendering. Given a 3D geometric scene,

they generate mattes isolating each object and then use the photorealistic rendering of the

scene as the target image. The authors studied the techniques and physics of watercolor

painting to developed algorithms, which depend on the behavior of the paint, water,

and paper. They provide information on watercolor materials and e�ects of dry-brush,

edge darkening, backruns, granulation and separation of pigments, ow patterns, glazing,

washes.

Salisbury et al. [32, 30, 31] designed an interactive system which allows users to paint

with stroke textures to create pen-and-ink style illustrations, as shown in Figure 2.2(a).

Using \stroke textures," the user can interactively create images similar to pen-and-
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ink drawings of an illustrator by placing the stroke textures. Their system supports

scanned or rendered images which the user can reference as guides for outline and tone

(intensity) [32]. In their paper, \Scale-Dependent Reproduction of Pen-and-Ink Illustra-

tions" [30], they gave a new reconstruction algorithm that magni�es the low-resolution

image while keeping the resulting image sharp along discontinuities. Scalability makes it

really easy to incorporate pen-and-ink style image in printed media. Their \Orientable

Textures for Image-Based Pen-and-Ink Illustration" [31] paper added high-level tools so

the user could specify the texture orientation as well as new stroke textures. The end

result is a compelling 2D pen-and-ink illustration.

Winkenbach et al. [38] itemized rules and traditions of hand-drawn black-and-white

illustrations and incorporated a large number of those principles into an automated

rendering system. To render a scene, visible surfaces and shadow polygons are computed.

The polygons are projected to normalized device coordinate space and then used to build

a 2D BSP (binary space partition) tree and planar map. Visible surfaces are rendered,

and textures and strokes applied to surfaces using set operations on the 2D BSP tree.

Afterwards, outline strokes are added. Their system allows the user to specify where the

detail lies. They also take into consideration the viewing direction of user, in addition to

the light source. They are limited by a library of \stroke textures." Their process takes

about 30 minutes to compute and print out the resulting image, as shown in Figure 2.2(b).

(a) Pen-and-Ink Illustration.
Copyright 1996 Michael Salis-
bury [30]. Used by permission.

(b) Pen-and-Ink Illustration. Copyright 1994
Georges Winkenbach [38]. Used by permission.

Figure 2.2. Computer-generated pen-and-ink illustrations.
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2.2 One-Shot Images Conveying Shape

The research reviewed in the previous section concentrated on generating aesthetically

pleasing images. The work done by Seligmann and Feiner [34], Winkenbach et al. [39],

Saito et al. [29], Land et al. [22], Elber [13], and Dooley et al. [11] generated images

in which the primary goal is to convey shape information. However, these techniques

generate single images and do not allow user interaction.

Seligmann and Feiner [34] created a system based on the idea that an illustration is

a picture that is designed to ful�ll communicative intent. They assert that the purpose

of illustration is to show an object's material, size, orientation, and, perhaps, how to

use it. The purpose is not only to display geometric and material information but to

also provide the viewer information about the object's features, physical properties, and

abstract properties. \Illustration objects are generated based on both the representation

of the physical object as well as the communicative intent"(p. 131), i.e., the images must

convey the geometric characteristics as well as the purpose of each of the objects, such

as which way to turn a dial on an image of a radio. Their \Intent-Based Illustration

System" (IBIS) uses a generate-and-test approach to consider how the �nal illustration

will look. For each illustration, there are several methods and several evaluators. By

performing the permutations of the methods and then evaluating them by the \rules,"

IBIS automatically generates the image that would look \best."

Winkenbach et al. [39] renders a single pen-and-ink style image for parametric free-

form surfaces, using \controlled-density hatching" in order to convey tone (intensity),

texture and shape, as shown in Figure 2.3. Their paper provides a highly detailed

algorithm on drawing lines (strokes) which gradually disappear in light areas of the surface

or where too many lines converge. They use a planar map constructed from the parametric

surfaces to clip strokes and generate outlines. The planar map is not constructed from 3D

Figure 2.3. One-shot computer-generated pen-and-ink images conveying shape by
Winkenbach. Copyright 1996 Georges Winkenbach [39]. Used by permission.
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BSP Trees, but by the following method. They tessellate every object and then compute

the higher-resolution piecewise linear approximations for all silhouette curves of meshed

objects, similar to Elber and Cohen [13], whose work is discussed in Section 2.3. The

planar map is created by determining which mesh faces are closest to the view. They

then use 2D BSP trees to implement shadows [6].

Saito and Takahashi [29] o�er convincing pictures to show how 3D models enhanced

with discontinuity lines, contour lines, and curved hatching can generate images which

convey shape and structure, as shown in Figure 2.4. They propose \new rendering

techniques to produce 3D images with enhanced visual comprehensibility," realized with

2D image processing. They construct a data structure called G-bu�er, which preserves a

set of geometric properties. If shapes and camera parameters are �xed, any combination

of enhancement can be examined without changing the contents of the G-bu�er.

Land and Alferness [22] present a method for rendering 3D geometric models as black

and white drawings. They compute Gaussian and mean surface curvatures of objects

and allow the user to threshold, combine, and modify these curvatures. They produce

images that contain shape information that is independent of orientation or illumination.

They state that, perceptually, humans are good at inferring shape from line drawings,

\Lines which approximate lines of curvature may be particularly e�ective indicators for

humans"(p. 2).

Elber [13] provides surface information with four types of curves: the surface boundary

curves, curves along C1 discontinuities in the surface, isoparametric curves, and silhouette

curves, as shown in Figure 2.5(a). All of the above curves except silhouette curves are

Figure 2.4. Another example of one-shot image conveying shape. Saito enhances a
shaded model by drawing discontinuity and contour lines. Copyright 1990 Saito [29].
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view-independent and only need to be calculated once per model. Silhouette curves are

calculated by normalizing the view orientation so that the view is on the positive z-axis

at in�nity and the image is projected onto the plane z=0. Elber de�nes a silhouette point

as a point on the surface whose normal has a zero z-component. The silhouette curve

of the surface becomes the set of silhouette points forming a continuous curve. When

a C1 discontinuity is found in a surface, Elber divides the surface into two surfaces.

Elber's methods cannot be applied directly in an interactive system, because the method

uses costly ray-surface intersection calculations to determine visibility. I build upon

his observations, using a di�erent method to calculate silhouettes in order to achieve

interactive rates.

Dooley and Cohen [11] created an illustration system which used display primitives,

such as transparency, lines with variable width, and boundary/end point conditions, as

shown in Figure 2.5(b). Visibility information is gathered by ray tracing, which helps to

communicate structure and illuminate unnecessary details and clutter. By establishing

a user-de�ned hierarchy of components, users can de�ne not only what they want to see

but how they want to see it. However, in their implementation the camera model is then

generated and for the rest of the process remains �xed. Most of time is spent ray tracing

to gather visibility information, which is done separately for lines and surfaces. After

the information on lines and surfaces is put together, illustration primitives are created,

(a) Copyright 1990 Gershon Elber [13]. Used by permis-
sion.

(b) Copyright 1990 Debra
Dooley [11]. Used by permis-
sion.

Figure 2.5. One-shot images conveying shape by Dooley and Elber.
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placed in an image bu�er, and read by a scan-line renderer. No measurements of the

time it took to generate the illustrations were given. The result is a 2D illustrated image

which cannot be manipulated like a 3D model.

2.3 Interactive Techniques

The batch-oriented systems presented previously lack the ability for the user to in-

teractively change the viewpoint. There are only a few systems which allow the user to

manipulate the viewpoint and the environment.

The Sketch system developed by Zeleznik et al. [42] uses gestures to create and ma-

nipulate polygonal shapes, \bridging the gap between hand sketches and computer-based

modeling programs." The emphasis of their system is creating and editing polygonal

objects.

Driskill [12] explored illustrating exploded views of assembly with minimal user inter-

vention through a 3D, interactive display. She listed some basic illustration rules as they

apply to exploded views; however, she was less concerned with how the model appeared,

since her emphasis was conveying relationships between parts.

Markosian et al. [24] developed a real-time 3D interactive system for illustrating non-

self-intersecting polygon mesh-based models, as seen in Figure 2.6. Their basic scheme is

to use probabilistic identi�cation of silhouette edges, interframe coherence of silhouette

edges, and improvements and simpli�cations in Appel's hidden-line algorithm [1], a

method based on the notion of quantitative invisibility which keeps track of front facing

Figure 2.6. Image from a frame of Markosian et al. [24] real-time 3D interactive system
for illustrating non-self-intersecting polygon mesh-based models. Copyright 1997 Lee
Markosian. Used by permission.
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polygons dependent upon the camera's position. However, using randomized checks for

silhouettes causes problems with frame-to-frame coherence as well as introducing the

risk of missing new silhouettes. They also had to add some extra tests to deal with

silhouettes that cusp. They view these possible silhouette misses as less important in a

real-time system. Using techniques based on economy of line, they convey information

with few strokes, displaying silhouette edges and certain user-chosen key features, such

as creases. In addition, they added options for sketchy lines or hatched shading strokes.

The end result is a 3D interactive environment, where a single frame looks like an artist's

sketch. They achieved their real-time interaction by using the silhouette calculated in

the previous frame to guess at which lines are to be shown in the next. Their methods

are only applicable for polygonal models and do not convey material properties.

2.4 Perception Studies

In computer graphics there has been very little work on quantifying claims like \Image

1 conveys more shape information than Image 2." However, perceptual psychologists have

performed numerous studies and experiments, trying to learn about human recognition

and the way we visually process information. Perception studies can help to provide a

quantitative analysis instead of merely giving an educated hypothesis on the e�ectiveness

of an image to convey shape information. Studies by Christou et al. [7], Braje et al. [4],

and Biederman et al. [2] support the use of line drawings as an e�ective method for

providing substantial shape information.

A study by Christou et al. [7] showed four scenes to subjects. Each scene was composed

of a number of planar, cylindrical, and ellipsoidal surfaces. One scene contained shaded

surfaces (similar to Phong shading); another scene with textured objects; a scene which

only included contours, the line-drawn edges of the objects; and a scene with contours and

textured objects. The subjects were asked to specify the surface attitude, the orientation

of the local tangent plane at a point on a surface with respect to the viewing direction,

at random points on in the scene. These tests showed that the subjects had improved

performance in the scenes containing contours. They concluded, \a few simple lines

de�ning the outline of an object su�ce to determine its 3-D structure. The ecological

signi�cance of contours is clear. They delineate the di�erent components of complex

objects and the di�erent parts of a scene"(p. 712).

Another recognition study by Braje et al. [4] found that humans fail to use much
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of the information available to an ideal observer. Their conclusion was that human

vision is designed to extract image features, such as contours, that enhance recognition,

disregarding most of the other information available.

Biederman et al. [2] concluded that simple line drawings can be identi�ed about as

quickly and as accurately as fully detailed, textured, colored photos of the same object

with the same viewpoint. The question they tried to answer was whether the presence

of gradients made it easier to determine an object's 3D structure over that which can

be derived solely by the depiction of an object's edges. They concluded, for example,

that one could determine the curvature of a cylinder, planarity of a square, or volumetric

characteristics of a nonsense object from a line drawing, without the presence of surface

gradients. They noted that instruction materials for assembling equipment are more

easily followed when the parts are drawn instead of photographed. Their opinion is that

reproduced photographic images typically have insu�cient contrast for determining the

contours of components. Although it seems that one could modify a photograph to get

the necessary contrast, there are other techniques, like cut-a-ways, that cannot be easily

accomplished, if at all, with photography.

2.5 Background Summary

Non-photorealistic rendering techniques used in computer graphics vary greatly in

their level of abstraction. Those that produce images such as watercolor or pen-and-ink

are at a high level of abstraction which would be inappropriate for technical illustration.

Using a medium level of abstraction like technical illustration helps to reduce the viewer's

confusion by exposing subtle shape attributes and reducing distracting details. Adding

interaction gives the user motion cues to help deal with visual complexity, cues that are

missing in 2D images. A review of past research reveals that no one has created a 3D

interactive environment that takes advantage of shape information given by line drawings

and artistic shading, presenting the shape information without the confusion produced by

the many lines in a wireframe representation or the limitations of Phong-shaded images.
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ILLUSTRATION TECHNIQUES

The illustrations in several books, e.g., [25, 28], imply that illustrators use fairly

algorithmic principles. Although there are a wide variety of styles and techniques found

in technical illustration, there are some common themes. This is particularly true when

examining color illustrations done with air-brush and pen. The following characteristics

are present in many illustrations, as shown in Figure 3.1:

� edge lines are drawn with black curves.

� matte objects are shaded with intensities far from black or white with warmth or

coolness of color indicative of surface normal.

� a single light source provides white highlights.

� shadows are rarely included, but if they are used, they are placed where they do not

occlude details or important features.

� metal objects are shaded as if very anisotropic.

These form only a subset of the conventions used by illustrators. I have concentrated

only on the material property and shading aspects of illustration. Work done in com-

puter graphics by Seligmann and Feiner [34] and Dooley and Cohen [11] concentrate on

additional aspects of technical illustration like layout, object transparency, and line style.

These characteristics result from a hierarchy of priorities. The edge lines and high-

lights are black and white, respectively, and provide a great deal of shape information

themselves. Several studies in the �eld of perception [2, 4, 8, 35] have concluded that

subjects can recognize 3D objects at least as well, if not better, when the edge lines

(contours) are drawn versus shaded or textured images. Christou et al. [7] concluded in

a perceptual study that \a few simple lines de�ning the outline of an object su�ce to

determine its 3-D structure"(p. 712). As seen in children's coloring books, humans are
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Shadows do not
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Cool
Shading

Warm
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Figure 3.1. Technical illustration conventions. Copyright 1995 Volvo Car UK Lim-
ited [28].
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good at inferring shape from line drawings. Lines can help distinguish di�erent parts and

features of an object and draw attention to details which may be lost in shading. As

demonstrated by Figure 3.1(a), many illustrators use black edge lines to separate parts.

Sometimes an illustrator might choose to use a white highlight line instead of a black

edge line for interior silhouettes or discontinuities. Deciding which lines to draw and how

to draw them is essential in imitating the conventions used in technical illustration. In

Section 3.1, I will discuss the rules, properties, and types of lines needed to convey shape

information like the line drawings of technical illustrators. In the next chapter I will

discuss implementation details.

When shading is added, in addition to edge lines, shape information can be maximized

if the shading uses colors and intensities that are visually distinct from both the black

edge lines and the white highlights. This means the dynamic range available for shading

may be limited. Figure 3.1(a) provides a good example of how an illustrator uses lights

and artistic shading. In the �gure, the light is up and to the right of the object and

produces highlights as you would expect in a computer-generated Phong-shaded image.

However, the illustrator also used cool shading for the upper part of the object with

warm shading on the lower, bottom half of the object. This cool and warm shading is

not dependent upon the light and may have been used to pull the eye from the cut-a-

way to the bottom of the image. Illustrators rarely use shadows in an illustration. As

shown in Figure 3.1(b), shadows are used only when they do not obscure details in other

parts. Another important characteristic used in technical illustration is the conveyance

of material property. Figure 3.1(b) shows how an illustrator alternates bands of light

and dark to represent a metallic object, similar to the real anisotropic reections seen

on real milled metal parts. These shading conventions will be investigated in detail in

Section 3.2.

3.1 Lines in Technical Illustration

To decide which lines to draw, I started by analyzing some examples from hand drawn

technical illustrations. The illustration in Figure 3.2 consists of just enough lines to

separate individual parts and to suggest important features in the shape of each object.

Most NURBS modeling systems display only a wireframe or a shaded image. A

wireframe display is common because it can give a lot of information which is occluded

by shading. However, a wireframe display of a complex model can be confusing due
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Figure 3.2. An example of the lines an illustrator would use to convey the shape of this
airplane foot pedal. Copyright 1989 Macdonald & Co. (Publishers) Ltd. [25].

to the number of lines being displayed. The wireframe of a NURBS surface consists of

isolines, which are parameterization dependent. Figure 3.3 demonstrates that changing

which isolines are displayed can change the perception of the surface.

By drawing silhouettes, surface boundaries, and discontinuities for a NURBS-based

model instead of isolines, one can imitate the lines drawn in technical illustrations without

being parameterization dependent. An example of these three di�erent line types is

provided in Figure 3.4. Silhouettes contain the set of points on a surface where E(u; v) �

n(u; v) = 0 or the angle between E(u; v) and n(u; v) is 90 degrees, given a point on a

surface, �(u; v), with E(u; v) as the vector from the eye to �(u; v), and n(u; v) as the

surface normal (Figure 3.5). Regions where the surface normal changes abruptly, C1

discontinuities, are also important in de�ning the shape of an object. Sometimes surface
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Figure 3.3. Changing which isolines are displayed can change the perception of the
surface. The image on the right looks as if it has a deeper pit because the isolines go thru
the maximum curvature point on the surface. Images courtesy of David Johnson.

DiscontinuitiesBoundariesSilhouettes

Figure 3.4. Illustrators use lines to separate parts of objects and de�ne important
shape characteristics. This set of lines can be imitated for NURBS models by drawing
silhouettes, boundaries, and discontinuities, shown above (drawn over the wireframe
representation).

boundaries also need to be drawn, but only in the case where there is not a surface

connecting another surface or where the joint between surfaces changes abruptly. For

example, the vertical boundary drawn in a dotted line in Figure 3.4 should not be drawn,

since it is a shared surface boundary [18]. The calculations and implementation details

necessary to create these line drawings will be addressed in Chapter 4.

3.1.1 Line Weight

There are many line weight conventions and an illustrator chooses a speci�c line weight

convention dependent upon the intent of the 2D image. In the book Technical Illustration,
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Figure 3.5. De�nition of a silhouette: At a point on a surface, �(u; v) and given E(u; v)
as the eye vector and n(u; v) as the surface normal, a silhouette point is de�ned as the
point on the surface where E(u; v) � n(u; v) = 0 or the angle between E(u; v) and n(u; v)
is 90 degrees.

Martin [25] discusses three common conventions, as shown in Figure 3.6:

� Single line weight used throughout the image

� Two line weights used, with the heavier describing the outer edges and parts with

open space behind them

� Variation of line weight along a single line, emphasizing the perspective of the

drawing, with heavy lines in the foreground, tapering towards the farthest part

of the object.

Figure 3.6. Three line conventions suggested by Judy Martin [25]. Left: single line
weight used throughout the image. Middle: heavy line weight used for out edges and
parts with open space between them. Right: vary line weight to emphasize perspective.
Copyright 1989 Macdonald & Co. (Publishers) Ltd. [25].
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Other less often used conventions include varying the line weight dependent upon the

direction of the light source, giving a shadowed e�ect or varying the line due to abrupt

changes in the geometry (curvature based). However, most illustrators use bold external

lines, with thinner interior lines.

3.1.2 Line Color and Shading

In almost all illustrations, lines are drawn in black. Occasionally, if the illustration

incorporates shading, another convention may apply in which some interior lines are

drawn in white, like a highlight. This technique may be the representation of the real

white highlights as can be seen on edges of the mechanical part in Figure 3.7. By using

this convention, lines drawn in black and white suggest a light source, and denote the

model's orientation. For example, Figure 3.8 shows how an artist may use white for

interior lines, producing a highlight.

3.2 Shading in Illustrations

Shading in technical illustration brings out subtle shape attributes and provides in-

formation about material properties, as shown in Figure 3.9. Most illustrators use a

single light source and technical illustrations rarely include shadows. In most technical

illustrations, hue changes are used to indicate surface orientation rather than reectance

Figure 3.7. This photograph of a metal object shows the anisotropic reections and the
white edge highlights which illustrators sometimes depict.
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Figure 3.8. Illustrators sometimes use the convention of white interior edge lines to
produce a highlight [25].

because shape information is valued above precise reectance information. Adding a hue

shift to the shading model allows a reduction in the dynamic range of the shading, to

ensure that highlights and edge lines remain distinct. A simple low dynamic-range shading

model is consistent with several of the principles from Tufte's recent book [36]. He has a

case study of improving a computer graphics animation by lowering the contrast of the

shading and adding black lines to indicate direction. He states that this is an example of

the strategy of the smallest e�ective di�erence:

Make all visual distinctions as subtle as possible, but still clear and e�ective.

Tufte feels that this principle is so important that he devotes an entire chapter to it

in his book Visual Explanations. Tufte's principle provides a possible explanation of why

cross-hatching is common in black and white drawings and rare in colored drawings: col-

ored shading provides a more subtle, but adequately e�ective, di�erence to communicate

surface orientation. Based on observing several illustrations, surfaces with little or no

curvature are generally at or Phong-shaded in technical illustrations. Surfaces which

have high curvature are shaded similar to the Phong shading model or are cool-to-warm

shaded as in Gooch et al. [15], unless the surface has a material property such as metal.

Illustrators apply di�erent conventions to convey metallic surface properties, especially

if the object has regions of high curvature like an ellipsoid. In the next chapter I will

discuss the algorithms used for shading in computer graphics and why it is inadequate

for technical illustration. I will also discuss the shading algorithms used by Gooch et al.
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Figure 3.9. Illustrators combine edge lines with a speci�c type of shading. Shading
in technical illustration brings out subtle shape attributes and provides information
about material properties. Left: Compare this shaded image of airplane pedal to the
line drawing in Figure 3.2. Copyright 1989 Macdonald & Co. (Publishers) Ltd. [25].
Right: Engine. Courtesy Macmillan Reference USA, a Simon & Schuster Macmillan
Company [28].

for matte and metal objects.

3.3 Illustration Summary

Technical illustration can be imitated in computer graphics by using black edge lines,

a single light source, tone and undertone shading with highlights as presented in Gooch

et al., and no shadows. For a NURBS-based model, displaying silhouettes, surface

boundaries, and discontinuities provides shape information similar to that of traditional

technical illustrations. In the next chapter, I will discuss some algorithms for �nding

these silhouettes, boundaries, and discontinuities using geometric information of NURBS

surfaces. I will also mention some of the other possibilities for generating edge lines for

polygonal objects, like the work of Markosian et al., as well as some image processing

techniques.



CHAPTER 4

ALGORITHMS FOR ILLUSTRATION

One of the most important issues to address when trying to create illustrations is

how to calculate the edge lines. Edge lines for polygonal objects can be generated

interactively using the techniques of Markosian et al. [24]. In order to calculate edge

lines for higher-order geometric models, like NURBS, the surfaces would have to be

tessellated to apply Markosian's technique. On high-end systems, image-processing tech-

niques [29] could be made interactive. In Section 4.1, I will discuss how silhouettes,

surface boundaries, and discontinuities can be calculated for NURBS surface, as well as

suggest some other techniques for calculating edge lines. After calculating edge lines, the

illustrations are completed by considering a new shading model and material properties

presented by Gooch et al. [15], summarized in Section 4.2. In Section 4.3, I will discuss

the considerations that need to be made to create 3D technical illustrations.

4.1 Algorithms for Finding Edge Lines

Using the geometric information intrinsic to NURBS allows some precalculations.

Surface normals are view-independent and can be precalculated, given that it is known

which normals one will need. As stated in Section 3.1, in order to imitate the edge lines

used in technical illustration for a NURBS model, surface boundaries and discontinuities,

as well as silhouettes, need to be drawn. In Section 4.1.1, I will discuss how to �nd

boundaries and discontinuities for NURBS surfaces. In Section 4.1.2, I will de�ne some

algorithms for �nding silhouettes on NURBS surfaces.

4.1.1 Algorithms for Finding Boundaries
and Discontinuities

Surface boundaries and discontinuities are view-independent and only need to be cal-

culated once per model. Boundaries can be found easily from the surface implementation.

As discussed in Section 3.1 and Figure 3.4, not all boundaries should be drawn. I de�ne

unshared boundaries to mean those surface boundaries which are not shared by any
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other surface [18]. Only \unshared" boundaries should be drawn, or in the cases where

the joint between two surface boundaries changes abruptly. Discontinuities are due to

knot multiplicities and are very simple to extract since they fall along isolines.

4.1.2 Algorithms for Finding Silhouettes for NURBS

Silhouettes are the only view-dependent part. A brute force method will be at

interactive so long as the number of surfaces and the amount of silhouette testing are

kept reasonable. De�ning the bounds on reasonable depends on machine and program

speed as well as the number of control points for the NURBS model.

I have explored three methods for �nding silhouettes for a given viewpoint. I will

de�ne the methods as Mesh Method, Tessellated-Mesh Method, and Srf-Node Method.

4.1.2.1 Some De�nitions

Let:

� � the surface

�(u; v) � a point on the surface at parametrics valuesu; v

E(u; v) � vector from the eye point to �(u; v)

n(u; v) � the normal at �(u; v)

� � the angle between the vectors E(u; v) and n(u; v)

mi;j � control point of the mesh indexed by i; j

Given E(u; v) and n(u; v), a silhouette point is de�ned as the point on the surface where

E(u; v) � n(u; v) = 0 or the angle between E(u; v) and n(u; v) is 90 degrees, as shown in

Figure 3.5.

Linear interpolation is done only in one parametric dimension, u or v, keeping the other

constant. Given two surface points at parametric values t1 and t2, such that t1 = (t1; vo)

and t2 = (t2; vo), �i can be de�ned by n(ti), the normal at ti, and E(ti), the eye vector,

as seen in Equation 4.1.

�i = arccos(
E(ti) � n(ti)

kE(ti) � n(ti)k
):
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Given �1 and �2 and the corresponding parametric values, t1 and t2, linear interpolation

will give an approximate t� where the angle is 90 degrees or �
2
:

t� = t2 � (t2 � t1)
(�2 �

�
2
)

(�2 � �1)
:

Linear interpolation is further explained by Figure 4.1

4.1.2.2 Mesh Method

The Mesh Method relies upon the control mesh of a surface, �, to supply information

on where a silhouette could and could not be. Due to the variation diminishing properties

of the control mesh, one can rule out where there cannot be a silhouette point on the

surface. If there is a silhouette in the control mesh, then there may be a silhouette

point on the surface of the object. However, �nding silhouettes is not easy and requires

maintaining some large data structures. For every mesh point, mi;j , one needs a control

point data structure which contains u, v, surface point �(u; v), normal n(u; v), mesh

indices i and j, and the sign, �, of E(u; v) � n(u; v). A 2D marching-cube data structure

is necessary for holding the silhouette points and assembling them into silhouette curves.

The 2D marching-cube data structure contains four control points and their (u,v) values,

as well as a list of possible silhouette points (four are possible between the mesh points

with four additional points possible at the mesh points).

N
N

 N
E

θ1
θ = 90ο

θ 2

Figure 4.1. Interpolating silhouettes: After two neighboring surface points with di�erent
�'s are found, the point where E(u; v) � n(u; v) = � = 0 can be found by linearly interpo-
lating in u or v with the two angles as calculated in Equation 4.1. Note: �1 = E1 �n1 > 0
and �2 = E2 � n2 < 0.
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The algorithm is as follows. First �nd the normals at each of the control mesh points.

For every mesh point, there are up to four possible normals that need to be calculated,

n1;3, n1;2, n4;3, n4;2 as can be seen in Figure 4.2. This calculation only needs to be done

once per surface; the rest of the calculations needs to be made every time the viewpoint

changes.

Next, classify each mesh normal based on the sign, �, of E(u; v)�n(u,v). There are four

signs per mesh point. For example, a 4x3 control mesh can be visually represented and

stored in a table like Figure 4.3.

To de�ne which set of signs signal a possible silhouette, I looked at the combinations of

�'s stored in the table. The trick is in determining what constitutes a possible silhouette.

This method creates a large number of sign group variations which can indicate possible

silhouettes, as can be seen by looking at the combinations of pluses and minuses around

each mesh point in Figure 4.4(a). The implementation of this method involves a large

set of case statements, looking at the mesh and the relative signs to determine where

silhouettes may be.

u

v

vec2

vec3

vec1 vec4

m i , j−1

m i , j

m i , j+1

m i −1, j m i +1, j

n 1 , 2 vec2vec1= x
n 4 , 2 vec2vec4= x
n 4 , 3 vec3vec4= x
n 1 , 3 vec3vec1= x

Four Normals:

Figure 4.2. Calculating the mesh normals: The four mesh normals which corre-
spond to mi;j are n1;3, n1;2, n4;3, n4;2, where for example n1;3 = vec1 � vec2, with
vec1 = mi;j �mi�1;j and vec2 = mi;j�1 �mi;j .

�0;0 �0;1 �0;2 �0;3 �0;4 �0;5
�1;0 �1;1 �1;2 �1;3 �1;4 �1;5
�2;0 �2;1 �2;2 �2;3 �2;4 �2;5
�3;0 �3;1 �3;2 �3;3 �3;4 �3;5

Figure 4.3. Envision the mesh method as a table of signs, where � can be +, -, or 0.
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Comparisons need to be made in both the u (mi;j and mi+1;j) and in the v (mi;j and

mi;j+1) directions.

First check for �i;j = 0. If �i;j = 0 then interpolate based on the parametric values

associated with mi�1;j and mi+1;j to get the silhouette point on the surface, if there is

one.

Next, check for changes between the mesh points in the u and v directions, i.e., mi;j

and mi+1;j , as well as mi;j and mi;j+1. For example, this would mean looking at the two

groups: m1;1 (�1;1, �1;2, �2;1, �2;2) and m2;1 (�1;3, �1;4, �2;3, �2;4) in Figure 4.3.

There are four sign comparisons made per box in the 2D marching cube data structure:

for example, (�0;2 and �0;3), (�1;2 and �1;3), (�0;2 and �1;2), (�0;3 and �1;3).

If a sign change is found, then the linear interpolation described in Section 4.1.2.1 will

provide a silhouette point at u,v. The silhouette points are stored in the 2D marching-

cube structure. Silhouette points are turned into silhouette curves by traveling though

the marching cube data structure, connecting points to form edges. The top image in

Figure 4.4 provides a visualization of the �i;j and Figure 4.5 the approximate silhouette

lines for the Mesh Method and the Srf-Node Method. Figure 4.6 shows the results of the

Mesh Method on a surface. Using the Secant Method or Newton's Method, these edges

can be re�ned.

4.1.2.3 Tessellated-Mesh Method

A variation on the Mesh Method is the Tessellated Mesh Method. In order to simplify

the number of possible sign combinations, I tessellated the control mesh. The control

mesh of a surface is a set of bilinear patches. I split each of those bilinear patches into

triangles by choosing the diagonals to be in the direction of minimum curvature across

each bilinear patch. Then there is only one normal per triangle or two normals per

bilinear patch. However, checking for silhouettes with these normals only tells one where

a silhouette may be. After choosing the area that may have silhouettes, you then have to

�nd the corresponding point on the surface and �nd the nearby silhouette point and curve

if it exists. A winged-edge data structure can keep track of all of these data and is useful

for turning silhouette points into silhouette curves. The only part left is to re�ne these

jaggy lines as seen in Figure 4.7 into silhouette curves. I did not proceed past �nding the

approximate silhouette curves because this method was too slow.



28

0,0
u

v + + + + + + + + + + + + + + + + + + + - - - - -
+ + + + + + + + + + + + + + + + + + + - - - - -
- - - - + + + + + + + + + + + + + + + + + - - +

- - - - + + + + + + + + + + + + + + + - - - - -
+ + + + + + + + + + + + + + + + + - - - - - - -

+ + + + + + + + + + + - - - - - - - - - - - - -
+ + + + + - - - - - - - - - - - - - - + + + + +

+ + + + + + + + + + + + + + + + + + + + + + + +

(a) Mesh Method

+

+

+

+

+

+

+

+ +

+

+

+

+

+ +

+ + + + + + + + + +

+ + + + + +

- -

-- -

-

-

--

------

+++-------

+ + + + + + +

+ + +

0,0
u

v

(b) Srf-Node Method

Figure 4.4. These images show the control mesh (in uv-space) for a surface where +,
-, or 0 denotes the sign of the dot product E(u; v) � n(u; v). For the Mesh Method, there
are up to four dot products that need to be calculated per mesh point, only one per mesh
point for Srf-Node Method.
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(b) Srf-Node Method

Figure 4.5. These images show the control mesh (in uv-space) for a surface, with
approximations to the silhouettes. The sign of the dot product E(u; v) � n(u; v) are
denoted by +, -, or 0.
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(a) View of surface with silhouettes generated with mesh
method.

(b) Looking down on sur-
face with silhouettes.

Figure 4.6. Mesh Method.

(a) View of surface with approximate silhouettes generated
with the tessellated mesh method.

(b) Looking down on sur-
face with approximate sil-
houettes.

Figure 4.7. Tessellated Mesh Method.

4.1.2.4 Srf-Node Method

The Srf-Node Method is the most concise. Nodes correspond to parameter values

which are the average of consecutive sets of (order � 1) knots from the knot vector,

ignoring the �rst and last ones. There are exactly the same number of nodes as there are

control points. It is often convenient to use the nodes when a parameter value or point

on the curve needs to be associated with a control point [19].

A normal is calculated for every node point on a surface, as shown in Figure 4.4(b).

This calculation can be done as a preprocess and only has to be done once per surface.

Then, E(u; v) �n(u; v) is calculated for every view and every node point, where n(u; v)
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is the surface normal at the node point and E(u; v) is the vector from the eye to the point

on the surface. The resulting signs of the dot products, �i;j , are stored in a table, one per

node point, as shown in Figure 4.8. If �i;j is zero then there is a silhouette at that node

point on the surface. By searching the table in the u direction and then in the v direction,

a silhouette can be found by comparing �i;j to �i+1;j and �i;j to �i;j+1, respectively. If

a sign changes from + to - or from - to +, then there is a silhouette between those two

points on the surface, as shown in Figure 4.4(b).

When a region containing a silhouette point is found between two node points, it is

linearly interpolated, as shown in Figure 4.1. The interpolation is based on two surface

points and the respective angles formed by the normal and the eye vector, calculated as

in Equation 4.1 and 4.1 and as discussed in Section 4.1.2.1.

In order for this method to work, the surface has to be su�ciently re�ned or it may

miss silhouettes, as discussed in Figure 4.9. Surface re�nement only needs to be done

once and can be done as a preprocess over the whole surface. However, the re�nement

increases the number of control points and thus the number of checks necessary to locate

the silhouette points. It may be better to re�ne the area where a silhouette may be, based

on testing the control mesh.

Using a 2D marching-cube data structure makes it easy to connect the silhouette

points to form linear silhouette curves. Figure 4.5(b) provides a visualization of the �i;j

and the approximate silhouette lines. This method results in edge lines as displayed in

Figure 4.10. Another exaple is shown in the top down view shown in Figure 4.11 and the

view from the eye point in Figure 4.12.

�2;0 �2;1 �2;2 �2;3

�1;0 �1;1 �1;2 �1;3

�0;0 �0;1 �0;2 �0;3

Figure 4.8. Visualize the Srf-Node Method as a table of signs (�i;j), where �i; j can be
+, -, or 0.
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Figure 4.9. Srf-Node Method can result in missed silhouettes depending upon the node
points. If for example, the node points were those that correspond to �1, �2,and �3, there
would be three missed silhouette points because �1, �2,and �3, are all less than 90 degrees
and there would be no sign change. However, if the nodes points were �, �2,and �3, then
� is greater than 90 degrees and �2 is less than 90 degrees, so the silhouette between
the two corresponding node points would not be missed and could be interpolated. The
problem of missing these silhouettes can be remedied by re�ning the control mesh.

(a) View of surface with silhouettes and surface boundaries
generated with Srf-Node Method.

(b) Looking down on sur-
face with silhouettes and
surface boundaries.

Figure 4.10. Srf-Node Method.
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Figure 4.11. Looking down on surface with silhouette generated with Srf-Node method.
Compare this image with the 2D projection and approximation of silhouettes shown in
Figure 4.5 using the Mesh method and the Srf-Node method.

Figure 4.12. View of the same surface represented in Figure 4.5, 4.4, and 4.11 with
silhouettes generated with the Srf-Node method.
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4.1.2.5 Silhouette Finding Summary

The Mesh Method and the Tessellated-Mesh Method are counter-intuitive and do not

have the elegant algorithmic nature that the Srf-Node method has. There appears to be

far too many combinations of the signs of the dot product, sign(E(u; v) � n(u; v)) = �'s,

that could signal a possible silhouette in the Mesh Method and Tessellated-Mesh Method.

Once it is determined that there is a silhouette on the control mesh and hence a possible

silhouette on the surface, there would need to be a check to determine whether or not

there is a silhouette on the surface.

The Srf-Node method is the most concise and does not require the maintenance of

large data structures which may bog down the desired interactive rates. However, the

Srf-Node method has the restriction that all of the surfaces must be su�ciently re�ned.

Although this increases the number of dot products that need to be calculated, most of

operations can be done as a preprocess.

In order to achieve real-time geometric silhouette calculations, one could take advan-

tage of previously calculated silhouettes and the movement of the view to approximate

the next set of silhouettes. As in Markosian's algorithm, there would have to be some

way of determining where silhouettes may suddenly appear, i.e., a region that suddenly

has silhouettes that were not in the previous frame. Normal or visibility cones [33, 20]

could also be used to rule out where silhouettes could not be; then a test of the whole

surface may not be necessary. If the model can be su�ciently tessellated, Markosian's

algorithm may be preferred. However, for a highly trimmed NURBS model, tessellation

may not be the best choice.

4.1.3 Other Methods for Calculating Edge Lines

Trying to �nd these silhouettes based on geometry may be too slow for very large

models. The Srf-Node method requires su�ciently re�ned surfaces and bogs down on

large models like the Bezier teapot model which has 23 surfaces.

At SIGGRAPH 1998, Cassidy Curtis presented a technical sketch entitled \Loose and

Sketchy" [9]. Based on 3D geometry he calculated edge lines using a depth map. The

depth map is converted into a \template image," which approximates the edge lines in

the image. In the template image, each pixel represents the amount of ink needed in its

immediate neighborhood. The template image is created by calculating the magnitude

of the gradient of the depth map, thresholding it to give binary values, and then blurring

the result. This technique may be faster than using the geometric information to get edge
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lines. Curtis then uses this template image and another image called the \force �eld," also

created from the depth map, along with a stochastic, physically-based particle system to

create sketchy lines. This method is not interactive, and his algorithm takes about 10-60

seconds to generate \loose and sketchy" images, but may be interactive if used only to

calculate the template image.

Other methods for implementing interactive/real-time edge line should be explored,

especially using OpenGL, both in software and hardware. For example there is a sample

program called \silhouette" which uses the OpenGL API's stencil bu�er [26], but this

method misses interior silhouettes.

4.2 Shading Algorithms

4.2.1 Traditional Shading of Matte Objects

Traditional di�use shading sets luminance proportional to the cosine of the angle

between light direction and surface normal:

I = kdka + kd max
�
0; l̂ � n̂

�
;

where I is the RGB color to be displayed for a given point on the surface, kd is the

RGB di�use reectance at the point, ka is the RGB ambient illumination, l̂ is the unit

vector in the direction of the light source, and n̂ is the unit surface normal vector at the

point. This model is shown for kd = 1 and ka = 0 in Figure 4.13. This unsatisfactory

image hides shape and material information in the dark regions. Both highlights and

edge lines can provide additional information about the object. These are shown alone

in Figure 4.14 with no shading. Edge lines and highlights could not be e�ectively added

to Figure 4.13 because the highlights would be lost in the light regions and the edge lines

would be lost in the dark regions.

To add edge lines to the shading in Equation 4.1, either of two standard heuristics

could be used. First ka could be raised until it is large enough that the dim shading is

visually distinct from the black edge lines, but this would result in loss of �ne details.

Alternatively, a second light source could be added, which would add conicting highlights

and shading. To make the highlights visible on top of the shading, kd could be lowered

until it is visually distinct from white. An image with hand-tuned ka and kd is shown
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in Figure 4.15. This is the best achromatic image using one light source and traditional

shading. This image is poor at communicating shape information, such as details in

the claw nearest the bottom of the image, where it is colored the constant shade kdka

regardless of surface orientation.

4.2.2 Tone-based Shading of Matte Objects

In a colored medium such as air-brush and pen, artists often use both hue and

luminance (grayscale intensity) shifts. Adding black and white to a given color results in

what artists call shades in the case of black and tints in the case of white. When color

scales are created by adding gray to a certain color they are called tones [3]. Such tones

vary in hue but do not typically vary much in luminance. Adding the complement of a

color can also create tones. Tones are considered a crucial concept to illustrators and

are especially useful when the illustrator is restricted to a small luminance range [21].

Another quality of color used by artists is the temperature of the color. The temperature

Figure 4.13. Di�use shaded image using Equation 4.1 with kd = 1 and ka = 0. Black
shaded regions hide details, especially in the small claws; edge lines could not be seen if
added. Highlights and �ne details are lost in the white shaded regions.
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of a color is de�ned as being warm (red, orange, and yellow), cool (blue, violet, and green),

or temperate (red-violets and yellow-greens). The depth cue comes from the perception

that cool colors recede whereas warm colors advance. In addition, object colors change

temperature in sunlit scenes because cool skylight and warm sunlight vary in relative

contribution across the surface, so there may be ecological reasons to expect humans

to be sensitive to color temperature variation. Not only is the temperature of a hue

dependent upon the hue itself, but this advancing and receding relationship is e�ected by

proximity [5]. Gooch et al. used these techniques and their psychophysical relationship

as the basis for their shading model.

The classic computer graphics shading model can be generalized to experiment with

tones by using the cosine term (̂l � n̂) of Equation 4.1 to blend between two RGB colors,

Figure 4.14. Image with only highlights and edges. The edge lines provide divisions
between object pieces and the highlights convey the direction of the light. Some shape
information is lost, especially in the regions of high curvature of the object pieces.
However, these highlights and edges could not be added to Figure 4.13 because the
highlights would be invisible in the light regions and the silhouettes would be invisible in
the dark regions.
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kcool and kwarm:

I =

 
1 + l̂ � n̂

2

!
kcool +

 
1�

1 + l̂ � n̂

2

!
kwarm:

Note that the quantity l̂ � n̂ varies over the interval [�1; 1]. To ensure the image

shows this full variation, the light vector l̂ should be perpendicular to the gaze direction.

Because the human vision system assumes illumination comes from above [14], it is best

to position the light up and to the right and to keep this position constant.

An image that uses a color scale with little luminance variation is shown in Figure 4.16.

This image shows that a sense of depth can be communicated at least partially by a hue

shift. However, the lack of a strong cool-to-warm hue shift and the lack of a luminance

Figure 4.15. Phong-shaded image with edge lines and kd = 0:5 and ka = 0:1. Like
Figure 4.13, details are lost in the dark gray regions, especially in the small claws, where
they are colored the constant shade of kdka regardless of surface orientation. However,
edge lines and highlights provide shape information that was gained in Figure 4.14, but
could not be added to Figure 4.13.
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shift makes the shape information subtle. The unnatural colors may also be problematic.

The colors chosen for this hue shift must be picked with care. A red-green hue shift

would be undesirable because of red-green color blindness. A blue-yellow hue shift is

most common in many art forms and may be most natural because of yellow sun-light

and shadows lit by the ambient blue sky. Blue and yellow, having a very large intensity

shift, will also provide the desired luminance shift.

In order to automate this hue shift technique and to add some luminance variation

to the use of tones, Gooch et al. examined two extreme possibilities for color scale

generation: blue to yellow tones and scaled object-color shades. The �nal model is a

linear combination of these techniques. Blue and yellow tones are chosen to insure a cool

to warm color transition regardless of the di�use color of the object.

The blue-to-yellow tones range from a fully saturated blue: kblue = (0; 0; b); b 2 [0; 1]

in RGB space to a fully saturated yellow: kyellow = (y; y; 0); y 2 [0; 1]. This produces a

Figure 4.16. Approximately constant luminance tone rendering. Edge lines and
highlights are clearly noticeable. Unlike Figures 4.13 and 4.15 some details in shaded
regions, like the small claws, are visible. The lack of luminance shift makes these changes
subtle.
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very sculpted but unnatural image and is independent of the object's di�use reectance

kd. The extreme tone related to kd is a variation of di�use shading where kcool is pure

black and kwarm = kd. This would look much like traditional di�use shading, but the

entire object would vary in luminance, including where l̂ � n̂ < 0. A compromise between

these strategies will result in a combination of tone scaled object-color and a cool-to-warm

undertone, an e�ect which artists achieve by combining pigments. The undertones can

be simulated by a linear blend between the blue/yellow and black/object-color tones:

kcool = kblue + �kd;

kwarm = kyellow + �kd: (4.1)

Plugging these values into Equation 4.1 leaves four free parameters: b, y, �, and �.

The values for b and y will determine the strength of the overall temperature shift, and

the values of � and � will determine the prominence of the object color and the strength

of the luminance shift. In order to stay away from shading which will visually interfere

with black and white, intermediate values should be supplied for these constants. An

example of a resulting tone for a pure red object is shown in Figure 4.17.

Substituting the values for kcool and kwarm from Equation 4.1 into the tone Equa-

tion 4.1 results in shading with values within the middle luminance range as desired.

Figure 4.18 is shown with b = 0:4, y = 0:4, � = 0:2, and � = 0:6. To show that the exact

values are not crucial to appropriate appearance, the same model is shown in Figure 4.19

+

=

pure blue to yellow

pure black to object color

darken

select

final tone

Figure 4.17. How the tone is created for a pure red object by summing a blue-to-yellow
and a dark-red-to-red tone.
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with b = 0:55, y = 0:3, � = 0:25, and � = 0:5. Unlike Figure 4.15, subtleties of shape in

the claws are visible in Figures 4.18 and 4.19.

The model is appropriate for a range of object colors. Both traditional shading and

the new tone-based shading are applied to a set of spheres in Figure 4.20. Note that

with the new shading method objects retain their \color name" so colors can still be used

to di�erentiate objects like countries on a political map, but the intensities used do not

interfere with the clear perception of black edge lines and white highlights. One issue

that is mentioned as people study these sphere comparisons is that the spheres look more

like buttons or appear attened. I hypothesize a few reasons why this may be so. The

linear ramp of the shading may be too uniform and cause the spheres to atten. The

shading presented here is just a �rst pass approximation to the shading artists use and

Figure 4.18. Luminance/hue tone rendering. This image combines the luminance shift
of Figure 4.13 and the hue shift of Figure 4.16. Edge lines, highlights, �ne details in
the dark shaded regions such as the small claws, as well as details in the high luminance
regions are all visible. In addition, shape details are apparent unlike Figure 4.14 where
the object appears at. In this �gure, the variables of Equation 4.1 and Equation 4.1 are:
b = 0:4, y = 0:4, � = 0:2, � = 0:6.
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much improvement could be made. Another problem may be that the dark silhouettes

around to the object may tie the spheres to the background. Figure 4.21 shows three

sets of spheres, shaded the same but put against di�erent gradations of background. The

edge lines of the spheres on the darkest background fade a little bit and even seem to thin

towards the light, due to the gradation of the background. In my opinion, the spheres

set against the darkest background, where the edge lines loose some emphasis, seem to

be a little more three dimension than the spheres with edge lines.

Figure 4.22 shows both the Phong-shaded spheres and the spheres with new shading

without edge lines. Without the edge lines, the spheres stand out more. Spheres are not

really the best model to test this new shading and edge lines. Edge lines are not really

necessary on a sphere, since edge lines are used by illustrators to di�erentiate parts and

discontinuities in a model, something that is not really necessary in a simple model like

Figure 4.19. Luminance/hue tone rendering, similar to Figure 4.18 except b = 0:55,
y = 0:3, � = 0:25, � = 0:5. The di�erent values of b and y determine the strength of
the overall temperature shift, where as � and � determine the prominence of the object
color, and the strength of the luminance shift.
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Figure 4.20. Comparing shaded, colored spheres. Top: Colored Phong-shaded spheres
with edge lines and highlights. Bottom: Colored spheres shaded with hue and luminance
shift, including edge lines and highlights. Note: In the �rst Phong-shaded sphere (violet),
the edge lines disappear, but are visible in the corresponding hue and luminance shaded
violet sphere. In the last Phong-shaded sphere (white), the highlight vanishes, but is
noticed in the corresponding hue and luminance shaded white sphere below it. The
spheres in the second row also retain their \color name."

Figure 4.21. Tone and undertone shaded spheres with backgrounds getting darker.

Figure 4.22. Shaded spheres without edgelines. Top: Colored Phong-shaded spheres
without edge lines. Bottom: Colored spheres shaded with hue and luminance shift,
without edge lines.
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a sphere. However, it is a computer graphics tradition to test a shading model on the

spheres.

4.2.3 Shading of Metal Objects

Illustrators use a di�erent technique to communicate the surface properties of metallic

objects, as shown in the photograph in Figure 4.23. In practice illustrators represent

a metallic surface by alternating dark and light bands. This technique is the artistic

representation of real e�ects that can be seen on milled metal parts, such as those found

on cars or appliances. Milling creates what is known as \anisotropic reection." Lines

are streaked in the direction of the axis of minimum curvature, parallel to the milling

axis. Interestingly, this visual convention is used even for smooth metal objects [25, 28].

This convention emphasizes that realism is not the primary goal of technical illustration.

To simulate a milled object, Gooch et al. [15] maps a set of 20 stripes of varying

intensity along the parametric axis of maximum curvature. The stripes are random

intensities between 0.0 and 0.5 with the stripe closest to the light source direction

overwritten with white. Between the stripe centers the colors are linearly interpolated.

An object is shown Phong-shaded, metal-shaded (without and with edge lines), and

metal-shaded with a cool-warm hue shift in Figure 4.24. The metal-shaded object is

more obviously metal than the Phong-shaded image and the metal-shaded object with

edge lines provides more shape information. The cool-warm hue metal-shaded object is

not quite as convincing as the achromatic image, but it is more visually consistent with

the cool-warm matte-shaded model of Section 4.2.2, so it is useful when both metal and

Figure 4.23. An anisotropic reection can be seen in the metal objects in this
photograph.
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(a) Phong-shaded object. (b) New metal-shaded object
without edge lines.

(c) New metal-shaded object
with edge lines.

(d) Metal-shaded object with a
cool-to-warm shift.

Figure 4.24. Representing metallic material properties.
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matte objects are shown together.

4.3 3D Illustration

Imitating 2D technical illustrations is fairly straightforward. However, there are

several new issues to address when creating 3D illustrations. Three-dimensional technical

illustrations involve an interactive display of the model while preserving the characteristics

of technical illustrations. By allowing the user to move the objects in space, more

shape information may be available than can be conveyed by 2D images. Interaction

provides the user with motion cues to help deal with visual complexity, cues that are

missing in 2D images. Also, removing the distracting wireframe lines and displaying

just silhouettes, boundaries and discontinuities will provide shape information without

cluttering the screen, as shown in Figure 4.25.

The question remains, \how do the 2D illustration rules change for a 3D interactive

technical illustration?" Adapting the shading and line conventions presented in Chap-

ter 3 is fairly straightforward as long as the line width conventions have frame-to-frame

coherence. The more interesting issues depend upon changing the viewer's position versus

moving the object. Since there are no protocols in traditional illustration, it may be best

to model these 3D illustration conventions based on how one would move real object.

This has an e�ect on how the light changes with respect to the object. The light position

can be relative to the object or to the viewer. When one looks at a small object in

one's hand, one turns the object and does not move one's head, so the light stays in the

same position relative to the eye. However when one moves an object in an modeling

program or when one is looking at a large part, ones is actually moving the eye point,

not the object. As shown in Figure 4.26, the shading model presented in Section 3.2 is

used to its full advantage if the surface varies completely from cool to warm, as shown in

comparing Figure 4.26(b) and Figure 4.26(c). This would mean moving the object, not

Figure 4.25. Comparing this �gure to Figure 1.1, the edge lines displayed provide shape
information without cluttering the screen.
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the viewpoint.

When illustrators light multiple objects, they may use a di�erent shading across

di�erent objects, inferring that each object has its own light, which does not a�ect the

other objects in the environment, similar to the \virtual lights" by Walter et al. [37]. For

example, two objects in a scene may be lit di�erently to draw attention to di�erent at-

tributes of each object. If this was accomplished by adding two lights to the environment,

the multiple highlights would be confusing.

Most material properties are semiconstant as the view direction or lighting changes.

However the metal shading presented in Section 4.2.3 is the replication of the anisotropic

reection due to the surface of the object and the reection of the environment. When a

real metal part is rotated in one's hand, the banding does not stick to the object, but re-

mains constant since the environment is not changing. However, in an non-photorealistic

(a) Frame of model with
new shading in an interac-
tive environment with lights
positioned up and to the
right.

(b) Frame after the cam-
era position is moved to view
the side of the model.

(c) Frame after moving the
object instead of the cam-
era, allowing the surface to
vary completely from cool to
warm.

Figure 4.26. Frames from the NPR JOT Program, to which I used Markosian et
al.'s silhouette �nding technique [24] and added the OpenGL approximation to the new
shading model. This will be discussed further in Chapter 5.
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interactive environment it may be too jarring to have the metal shading changing abruptly.

Using a metal texture would be more appropriate and a metal texture in an interactive

environment would still convey the material property.

Another notion is to allow the relative size of the object to control the motion of the

viewer, the object, and the light source in an interactive 3D illustration. In the end,

allowing the user to choose whether the object moves or the eye point changes, as well

as having control over the lights, may help the viewer gain the most shape information.



CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1 Edge Lines

The algorithms for the Srf-Node Method, the Mesh Method, and the Tessellated-Mesh

Method were all integrated into the Alpha 1 system, using the existing NURBS surface

evaluators and functions when possible. Alpha 1 is a B-spline research system which

integrates computer graphics, modeling (geometric, simulation, and physically based),

rendering (realistic and non-realistic), virtual prototyping, mechanical design, visualiza-

tion, animation, teleconferencing, and human-computer interaction. In the viewer called

\motif3d," one can load a NURBS model and toggle display options such as isolines, the

control mesh, and Phong shading. I added the option to display silhouettes as well as

the new shading, as explained in the next section.

Using the JOT program, a Utah-Brown collaboration, I was able to use the OpenGL

shading model approximation presented in the next section along with the silhouette

�nding technique of Markosian et al. to produce interactive illustrations for polygonal

models, as shown in Figure 5.1. The original Sketch [42] system was deeply intertwined

with the Brown UGA [41] system, which prevented easy distribution of Sketch. To

overcome this problem, Sketch was rewritten as part of the JOT framework. JOT allows

Sketch to work with di�erent underlying graphics kernels that provide basic services

such as CSGs, intersection, creation of geometric primitives, etc. Currently JOT works

with various graphics kernels including Alpha 1, the Amodeler package from Autodesk,

ARCADE (from Fraunhofer IGD), and a partial implementation on top of Open Inventor.

In addition, JOT can be used on various di�erent UNIX platforms and Windows NT.

5.2 Approximation to New Shading Model

The new shading model presented in Section 4.2.2 cannot be implemented directly in

high-level graphics packages that use Phong shading. However, the Phong lighting model
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(a) Image of with edge lines only. (b) Image with new shading and edge lines.

Figure 5.1. An Alpha 1 model that was tessellated and imported into the JOT NPR
Program.

can be used as a basis for approximating our model. This is in the spirit of the nonlinear

approximation to global illumination used by Walter et al. [37]. In most graphics systems

(e.g., OpenGL) negative colors for the lights can be used. Then Equation 4.1 can be

approximated by two lights in directions l̂ and �̂l with intensities (kwarm � kcool)=2 and

(kcool � kwarm)=2 respectively, and an ambient term of (kcool + kwarm)=2. This assumes

the object color is set to white. The Phong highlight should be turned o� to remove the

jarring artifacts caused by the negative blue light. Highlights could be added on systems

with accumulation bu�ers [16].

C++ Code fragment for generating the two lights, using the OpenGL API:

GLfloat R_warm, G_warm, B_warm,R_cool, G_cool, B_cool;

R_warm=207/255.0; G_warm=207/255.0; B_warm=145/255.0;

R_cool=80/255.0; G_cool=80/255.0; B_cool=145/255.0;

GLfloat hi_diffuse[] = { (R_warm-R_cool)/2.0,

(G_warm-G_cool)/2.0,

(B_warm-B_cool)/2.0 };

GLfloat lo_diffuse[] = { (R_cool-R_warm)/2.0,

(G_cool-G_warm)/2.0,

(B_cool-B_warm)/2.0 };

GLfloat hi_position[] = { 1, 1, EYE, 1 };
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GLfloat lo_position[] = { -1, -1, EYE, 1 };

GLfloat ambient[] = { 0.5, 0.5, 0.5 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);

glLightfv(GL_LIGHT0, GL_DIFFUSE, hi_diffuse);

glLightfv(GL_LIGHT0, GL_POSITION, hi_position);

glEnable( GL_LIGHT0 );

glLightfv(GL_LIGHT1, GL_DIFFUSE, lo_diffuse);

glLightfv(GL_LIGHT1, GL_POSITION, lo_position);

glEnable( GL_LIGHT1 );

This approximation is shown compared to traditional Phong shading and the exact

model in Figure 5.2. Using this approximation, I was able to add the new shading to the

Alpha 1 system as well.

A light source cannot be used for metals on a conventional API. However, either

environment maps or texture maps can be used to produce alternating light and dark

stripes.
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(a) Phong shading model for
colored object.

(b) New shading model without
edge lines.

(c) New shading model: edge
lines, highlights, and cool-to-
warm hue shift.

(d) Approximation: Phong
shading, two colored lights,
and edge lines.

Figure 5.2. Comparison of traditional computer graphics techniques and techniques for
creating technical illustrations.



CHAPTER 6

CONCLUSION

One of the largest goals in computer graphics has been realistic image synthesis.

However, in a number of situations, an image which highlights particular information

is valued above realism. For example, an automobile repair manual uses illustrations to

remove unnecessary details and to draw attention to speci�c features.

Many computer-generated images have to be hand-tuned and they still convey shape

poorly. The goal of my research was to use the techniques explored by illustrators for

centuries to automatically generate images like technical illustrations and to be able to

interact with these illustrations in three dimensions.

As seen in Figure 6.1(a), Phong-shaded 3D imagery does not provide geometric in-

formation of the same richness as human-drawn technical illustrations. In this thesis,

I have reviewed some conventions to create computer-generated images and interaction

which imitates colored technical illustrations. One of the most important characteristics

of illustration is the use of lines to separate parts and to strengthen shape information,

as seen in Figure 6.1(b).

The shading used in computer-generated illustrations should use a low dynamic range

which does not interfere with black edge lines and white highlights. By combining the

tone and undertone techniques of the shading presented in Section 4.2.2, the shading may

strengthen the shape information, while maintaining the low dynamic range. It is easy

to see how important the role is that edge lines play in distinguishing parts or surface

discontinuities, as shown in Figure 6.2(a). This new shading is tailored not to interfere

with edge lines and highlights. Shading without edge lines results in a subtle image, from

which it is harder to distinguish key boundaries of the model.

As shown in Figure 6.2(b), putting together a low dynamic range shading which

uses tones and undertones with edge lines results in an image that may convey more

shape information than the traditional Phong-shaded approach, Figure 6.1(a). Using the

illustration model presented in this thesis, one is no longer required to guess the best
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(a) Phong-shaded image. (b) Image with edge lines
only.

Figure 6.1. Phong shading versus edge lines.

(a) Image with new shading
without edge lines.

(b) New Shading with Edge
Lines.

Figure 6.2. Edge lines.
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position for lights or to tweak the coe�cients of the lighting model. In this thesis, I have

also explored representing metal material properties, using a convention similar to that

of most illustrators, as discussed in Section 4.2.3 and shown in Figure 6.3.

Since there are few examples of interactive 3D illustrations, there are not any conven-

tions one has to follow. Adapting the shading and line conventions presented in Chapter 3

is straightforward as long as the line width conventions have frame-to-frame coherence.

However, when interacting with 3D illustration one has to address the issue of whether

to move the object or just change the viewer's position in model space. There are cases

when one would want to move around a large object (changing the view), and conversely

one may want to move a small object as if holding it (moving the object). This is

directly related to whether the light moves or sticks to an object. It may be disorienting

for the shading to change on a part as orientation of the part changes. However, the

shading model presented in Section 3.2 is used to its full advantage if the surface varies

completely from warm to cool. This would mean moving the object, not the viewpoint.

However, when a manufacturer designs the hood of a car, they want to look at the way

the appearance of the car changes as the light changes. Therefore, an interactive 3D

illustration environment should consider the relative size of the object in order to control

Figure 6.3. These computer generated images were produced by using the illustration
convention of alternating dark and light bands, to convey the metallic material property
of the two images. The convention is rather e�ective, even for an object that may not
naturally be metal.
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the motion of the viewer and the object, as well as the illumination source and allowing

the user to control these options to maximize the amount of available shape information.

6.1 Future Work

The work presented here is exploratory and shows the advantages of non-photorealism

in its ability to convey shape information. There are many possible improvements and

additions to this work including incorporating other illustration techniques such as auto-

matic layout, di�erent line styles, cut-a-ways, exploded views, and object transparency.

Exploring a nonlinear shading model or a perceptually uniform gradation from cool to

warm may tap into more shape information.

I have proposed a new method of displaying and interacting with 3D models; however

it has not been proven that these illustration methods are better than a photograph. It

has been observed that in some images, the new shading may atten an object, but I

could only get opinions or make my own hypothesis. Scienti�cally analyzing whether

or not the techniques presented here provide more shape information than traditional

approaches in computer graphics may lead to more e�ective methods for conveying the

important geometric properties of 3D models.
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