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Abstract

In this paper we present a framework for minimum dis-
tance computations that allows efficient solution of mini-
mum distance queries on a variety of surface
representations, including sculptured surfaces. The frame-
work depends on geometric reasoning rather than numeri-
cal methods and can be implemented straightforwardly.
We demonstrate performance that compares favorably to
other polygonal methods and is faster than reported
results for other methods on sculptured surfaces.

1 Introduction

We introduce a framework for minimum distance calcula-
tions that applies well to both polygonal and parametric
model representations (Figure 1). The resulting methods
scale well with problem size, have time-critical properties,
and are interactive for large polygonal models and sculp-
tured surfaces.

In robotics, minimum distance queries have been used in
path planning [2], path modification [25], and collision
avoidance [15]. In computer graphics, minimum distance
computations have played roles in physical simulation
[1][20] and model prototyping [32]. A haptic prototyping
project [13] which uses minimum distance computations
to maintain local geometry on the haptic controller [30]
motivates our own interest.

2 Background

Much of the early work in this area comes from the robot-
ics and computational geometry communities, although
their work has often been focused on convex, polygonal
models. In the computer graphics community, the demand
for realistic, 3D environments has driven contributions in
collision detection and minimum distance computations.
We summarize approaches from both groups below.

2.1  Minimum Distance for Polygonal Models

Chin [4] and Edelsbrunner [10] both report on O(logN)
algorithms for finding the minimum separation between
two convex polygons. Dobkin [8] uses a different
approach to get the same result and extends his work to
arbitrary polyhedra. However, these theoretical algorithms
all have unknown and presumably large time coefficients.

2.1.1  Convex Polygonal Models

Lin [17] uses the Voronoi regions of convex polyhedra so
that local search methods for minimum distance will
always converge. The Voronoi regions structure space so
that the closest point can be updated in a constant time
step for small movements. The I-COLLIDE system [7]
follows this approach and adds a spatial sorting method to
reduce the number of object interactions. This method has
been extended to handle collisions between concave poly-
hedral objects by decomposing the object into hierarchies
of convex objects [23].

Gilbert [11] employs the Minkowski difference of two
convex objects to determine their minimum separation.
With slight modification [3] this method can also provide
constant time updates for slowly moving polyhedra.
Chung [5] added an efficient means of updating the
Minkowski difference to create a collision detection
method for convex polyhedra.

2.1.2  General Polygonal Models
Quinlan [24] produced an efficient method of finding the
minimum separation between general concave polyhedra
by exploiting hierarchical, spherical bounds to prune por-
tions of the model. The method prunes by establishing
upper bounds on the minimum distance with depth-first
descent to the leaf nodes of the models. Allowing approxi-
mate results (“relative error”) speeds convergence and
demonstrates log(N) scalability, where N is the number of

FIGURE 1. The minimum distance between models.
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polygons in the scene. When exact distance is required,
however, the log(N) complexity no longer holds. Sato et al
[26] created a collision detection method for arbitrary
polyhedra by combining Quinlan’s sphere-tree method
and Gilbert’s convex method.

2.2  Minimum Distance for Parametric Models
Existing methods for solving minimum distance queries
for sculptured models lose much of the geometric flavor of
methods for polygonal models. Instead, root-finding or
minimization methods solve systems of equations that
describe conditions for the minimum distance.

2.3  Minimum Distance to a Surface
Mortenson [21] derives equations for different types of
surface distance measures. For a point P, the closest point
on a surface S is the nearest root of

(EQ 1)

This high order equation is difficult to solve; a slightly
easier approach is to simultaneously satisfy[22]

 and (EQ 2)

Our research group has found this approach to be slow (on
the order of one second on an SGI Indigo2) and to exhibit
numerical problems in practice.

2.3.1  Minimum Distance between Convex Surfaces
Limaiem [16] has presented methods for finding the mini-
mum distance to convex parametric curves and surfaces as
well as the minimum distance between them. His algo-
rithm converges to a local minimum distance by repeat-
edly finding the closest point on alternating surfaces.

Baraff [1] uses the closest points between strictly convex
surfaces to create “witnesses” --- simpler geometry that
captures the disjointedness of two models. Local numeri-
cal methods update the closest points. Snyder [27] tracks
the closest points between parametric surfaces with local
numerical methods initiated by polygonal collision detec-
tion.

2.3.2  Minimum Distance between Concave Surfaces
Lin [18][19] also uses a polygonal first pass to initiate
numerical methods for concave surface-surface minimum
distance finding. Once a bounding polyhedron indicates a
potential for collision, resultant methods solve for the min-
imum distance to the underlying surface. Local methods
quickly update the solution in the case of movement.
Times range from one second to several minutes for find-
ing the global solutions using an IBM RS/6000.

Snyder has developed a global minimum distance method
for parametric surfaces that avoids examining all extrema
of the distance and instead finds the global minimum by
using interval methods. His method determined the global
minimum for an example problem in five seconds on an
HP9000 series 835 workstation [28].

2.4  Collision Detection
We relate the collision detection problem to the minimum
distance problem by observing that a collision can be
detected by when the minimum distance is zero. Below,
we describe some collision detection methods that are
related to this paper’s contribution.

2.4.1  Collision Detection for Polygonal Models
OBBtrees [12] apply to general polygonal models, as does
Hubbard’s work with sphere trees [14]. Both methods
build bounding hierarchies around the original models.
The OBBtree work is based on an efficient overlap test for
oriented bounding-boxes. Hubbard’s work used spheres as
bounding primitives and concentrated on generating effi-
cient hierarchies using a medial-axis construction method.

2.4.2  Collision Detection for Parametric Models
Von Herzen [33] developed a collision detection method
for time-dependent parametric surfaces which prunes por-
tions of the surface using Lipschitz bounds. Snyder [29]
extended the method to better handle manifold contacts
and used interval methods for efficiency.

2.5  Summary
Approaches for convex regions typically depend on guar-
anteed convergence of local methods for efficiency. In the
concave case, methods for concave polygonal models
have emphasized hierarchical geometric processes, while
methods for concave sculptured models treat the problem
as root-finding of some distance equation. We would like
to find some common ground for polygonal and paramet-
ric models.

3 A Minimum Distance Framework

We have developed algorithms to compute the minimum
distance to an object and the minimum separation between
objects for polygonal and parametric surface representa-
tions. These algorithms are based on a common set of geo-
metric operations, allowing us to describe methods for
finding minimum distance as part of a general framework.

3.1  An Overview of the LUB-Tree Framework
We refer to our minimum distance framework as a lower-
upper bound tree (LUB-tree) framework. Each surface
representation that is part of the framework must provide a
set of common operations, including bounding volume
generation, lower bound on distance computation, upper
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bound on model minimum distance computation, bounding
volume refinement, and a method of determining computa-
tion termination. A pruning method based on lower and
upper bounds uses these operations to converge to the
minimum distance.

The pruning method starts by invoking the bounding vol-
ume generation operation on each of the two models. We
treat these bounding volumes as the top nodes of hierarchi-
cal bounding trees and connect them as an active pair of
nodes. Active pairs point between nodes that still may be
part of the minimum distance solution. We then search and
prune the bounding hierarchies using the following proce-
dure.

1. For each active pair, compute lower bounds on the
distance between nodes using the nodes’ bounding
volumes and lower bound operations.

2. Establish an upper bound on the minimum
distance between the models using the upper bound
computation operation.

3. Prune the active pair list by comparing each lower
bound distance to the current upper bound. (A lower
bound greater than the upper bound implies that the
contained geometry must be farther away than the
minimum distance.)

4. Split remaining active pairs into new active pairs
by invoking the refinement operation.

5. Repeat until the termination of computation
method returns true.

Essentially, we wish to show that portions of the model
cannot be part of the minimum distance solution. Hierar-
chical bounds allow us to efficiently test portions of the
model and potentially remove large portions from consid-
eration without high computational cost.

3.2  Illustrating the Algorithm

We illustrate this approach in Figure 2 for the simple case
of finding the minimum distance from a point P to a
polyline. Just as an example, we use an axis-aligned
bounding box (AABB) as the bounding volume, assume the
existence of a method that returns the distance to a nearby
polyline vertex as the upper bound operation, and perform

refinement by splitting in half the polyline contained
within a node. Computation termination occurs when the
nodes contain single line segments and we cannot refine
the AABBs any further.

The pruning method starts by creating an active pair that
points to P and to the top-level node. The algorithm
descends the bounding hierarchy around the polyline seg-
ments in a breadth-first manner, while computing lower
bounds for each active pair and an upper bound at each
level in the hierarchy. These bounds determine which
active pairs refine into new active pairs and which are
pruned. When an active pair points to a box surrounding a
single line segment that segment is accepted for exact dis-
tance computation. That exact distance is both a lower
bound to that node and a potential upper bound on the
minimum distance to the model. The pruning method
stops when there are no more active pairs. The upper
bound returns as the exact minimum distance.

3.3  Best and Worst-Case Performance
In a pathological case, for a polyline with N segments,
there could be 2N lower bound and log2N upper bound

distance computations, which would make the perfor-
mance worse than the N distance calculations needed
using a simple linear algorithm. In the best case, one of the
bounding boxes would always be removed at each level
and there would be log2N lower and upper bound calcula-

tions, which is a significant advantage over the linear algo-
rithm.

Now, imagine the case of finding the minimum distance
between two models, each with N segments. In the best
case, only one active pair survives the pruning at each
level, so there would be log2N lower and upper bound cal-

culations. This compares favorably with the  distance
calculations a naive algorithm would require. In the worst
case, where each segment is within every bounding box

and no pruning occurs, there would be 

lower bound and log2N upper bound distance computa-

tions. This exponential lower bound result is fortunately
very difficult to produce in anything resembling a useful
model. In a more typical bad case of the models being par-
allel flat surfaces, or concentric spherical regions, the
algorithm uses 2N lower bound and log2N upper bound
distance computations, still better than a naive algorithm.

3.4  Minimum Distance for Concave Polyhedra
The LUB-tree framework applies to arbitrary polygonal
models (Figure 1). In order to ask minimum distance que-
ries for this surface representation, we must define the
LUB-tree framework operations. For a bounding volume,

FIGURE 2. A. We compute a lower bound on the active pair. 
B. An upper bound is found using cached vertices.
C. The active pair refines. D. One active pair is pruned.
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we precompute a hierarchy of oriented bounding boxes
(OBBs) using the publicly available OBBTree package[12]
(Section 2.4.1). Gilbert’s convex algorithm (from Section
2.1.1) measures the distance between the OBBs to find the
lower bound on distance. Greater efficiency results from
using a two-pass approach to pruning --- a quick sphere-
sphere test can compute a rough lower bound on distance
and if that distance is less than the current upper bound we
compute the more expensive, but more precise, OBB dis-
tance.

Each node points to a small set of vertices from the bound-
ary of the contained geometry. These vertices allow us to
compute an upper bound on the minimum distance. Since
the vertices are part of the model, the distance to a vertex
is an upper bound on minimum distance for the model. At
each level of the model hierarchy, we save the active pair
with the smallest lower bound. We find the smallest dis-
tance between each set of cached vertices from the nodes
of the saved active pair to establish an upper bound on the
minimum distance between the models.

Active pairs that remain after pruning split into new active
pairs by applying the refinement operator. In the case of a
precomputed bounding hierarchy, descent to children
nodes accomplishes refinement.

The method terminates when all the processed active pairs
point to leaf nodes, which contain single triangles. Gil-
bert’s convex algorithm computes the distances to and
between leaf node triangles.

3.5  Minimum Distance for Sculptured Models
Sculptured models, particularly NURBS, are the surface
representation of choice in many CAD/CAM packages.
We would like to be able to perform minimum distance
computations directly on these models without having to
resort to conversion to polygonal forms. Since the mini-
mum distance problem can be phrased succinctly for
sculptured models [9] (Eq. 2) researchers have focused on
methods of solving these high-order equations. A geomet-
ric approach, such as the LUB-tree, avoids many of the
numerical issues that complicate those methods.

We will quickly review some terminology used for B-
spline sculptured surfaces. These surfaces are piecewise-
polynomial functions of two parametric variables, com-
monly u and v, which form the domain of the surface. The
control mesh of the surface provides the vector coeffi-
cients, or control points, for the basis functions. A local set
of control points influences each polynomial piece of the
surface and completely contains the piece within its con-
vex hull (Figure 3.A). The parametric nodes of the surface
are an easily computable first-order approximation of the
closest points on the surface to the control points [6].
Refinement algorithms embed the surface into a new
parameter space with more degrees of freedom and com-
pute appropriate additions to the control mesh
(Figure 3.B).

We can apply the LUB-tree framework to sculptured mod-
els by defining the needed operations. A B-spline sur-
face’s local convex hull and refinement properties provide
the basis for the needed operations.

We form the initial nodes of the bounding hierarchy from
the polynomial pieces of the surface. Thus, the active pair
list is initialized by pairing up the local convex hulls of
each surface. Similar to the way we computed lower
bounds on polygonal models using OBBs, we compute
lower bounds for parametric spline models by applying
Gilbert’s algorithm to the local convex hulls of each active
pair. Just as performance improved in the polygonal case
with the addition of an initial sphere-sphere test, we first
prune the active pairs by checking the distance between
their dynamically updated AABBs.

An upper bound on the minimum distance allows us to
prune active pairs. During each pass through the active
pair list, we save the active pair with the smallest lower
bound. We map the closest points between each convex
hull from the saved active pair onto the underlying sur-
faces using bilinear interpolation between the parametric
nodes associated with the vertices of the control mesh
(Figure 4)[27][30]. The distance between the points on the
surface forms an upper bound on the minimum distance

FIGURE 3. A. Each polynomial piece of the surface is 
contained within its local convex hull of control points. B. The 
control mesh collapses towards the surface after refinement.

A. B.

FIGURE 4. A. We find the closest points on the convex hulls 
of the active pair with the smallest lower bound. B. Bilinear 
interpolation between nodes maps the point onto the surface. 

A. B.
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.

The algorithm removes the active pairs that have lower
bounds greater than the upper bound distance. We wish to
refine the remaining polynomial pieces; however, refine-
ment applied repeatedly to the initial surface may produce
extraneous refinement in areas that have been already
pruned. We group polynomial pieces into active regions
formed from contiguous polynomial pieces and extract
each active region through refinement at the region’s para-
metric boundaries (Figure 5). We can now refine the
extracted surface without extra refinement in the original
surface. New active pairs form from the refined surfaces.

Figure 6 demonstrates how the algorithm initially extracts
and refines three separate regions on the goblet. As refine-
ment occurs the lower and upper bounds become more
accurate and the algorithm prunes the top and bottom por-
tions of the goblet. Finally, the upper bound distance con-
verges to the exact minimum distance on the stem of the
goblet, stopping the computation.

3.5.1  Improving Worst-case Convergence
In a tensor-product surface preferred parametric directions
exist, namely along isoparametric lines, and active regions
that fall along these directions refine most efficiently. Cer-
tain spatial configurations of models can produce contigu-
ous active pairs that group into an active region that falls

diagonally in parameter space (Figure 7.A). We introduce
the notion of granularity of regions to reduce unnecessary
refinement in these situations. By extracting active regions
containing only a limited number of polynomial pieces per
region we improve convergence. Using granularity of
regions, a long diagonal in parameter space is broken into
many small surfaces which quickly approximate the solu-
tion and avoid refinement in unwanted regions
(Figure 7.B).

3.5.2  Performance
Even though the refinement only doubles the number of
polynomial pieces at each iteration, for B-splines, the con-
trol mesh converges quadratically[6] to the surface. Thus,
the upper bound converges in only a few iterations through
the active pair list. 

When running the closest point to surface algorithm we

obtain a parametric precision of 10-6 at speeds of 10-50Hz.
This compares well to the times of around one second we
found using a numerical method (Section 2.3). The mini-
mum distance between the cup and spiral (Figure 1) con-
verged at 2-20Hz depending on the distance and their
orientations. We contrast these rates to times from one
second to several minutes reported in the literature (Sec-
tion 2.3.2). Our times were measured on an SGI Indigo2.

3.5.3  High-order Surfaces
Earlier, we mentioned our belief that a geometric approach
avoids many difficulties associated with more numerical
methods. One difficulty that numerical methods have is a
lack of stability on high-order surfaces[18]. Using the
LUB-tree approach we tested a B-spline patch with orders
ranging from two to seven in each parametric direction.
The algorithm remained stable even for the high-degree
surfaces and time to convergence appeared directly pro-
portional to the order in each direction.

3.6  Breadth-first vs. Depth-first Search
We have chosen to search the LUB-tree hierarchy in a
breadth-first manner, as opposed to a depth-first search as
in Quinlan [24]. In Section 3.6.1, we show that breadth-
first search appears to be more efficient than depth-first

u
v

FIGURE 5. A. Polynomial pieces in the parametric domain 
that remain after pruning are grouped into regions. B. Each 
region is extracted as a separate surface and refined. C. New 
pruning and grouping continues the process.

A. B. C.

FIGURE 6. Extraction of active regions and surface 
refinement during pt-surface minimum distance.

Active
regions

FIGURE 7. A. In this degenerate case, unnecessary 
refinement occurs. B. Convergence is improved with the 
notion of granularity of regions.

A. B.
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search. Then we conclude by demonstrating how breadth-
first search allows time-critical behavior by establishing
upper and lower bounds early in the computation.

3.6.1  Efficiency and Scalability

We tested the time to solution for a range of polygonal
model sizes using both the LUB-tree approach and a
depth-first search similar to Quinlan’s. The LUB-tree
search was approximately twice as fast as the depth-first
search and showed sub-linear cost with increases in model
complexity. Times for minimum distance between models
ranged from 20 ms to 150 ms for models with 575 to
23581 triangles (Figure 8) when running on an SGI
Indigo2.

3.6.2  Time-critical Properties

Our LUB-tree methodology has time-critical properties, a
useful characteristic in interactive systems. Our method
can begin converging immediately to the solution since no
large pre-processing step exists and upper and lower
bounds get established early in the computation. Figure 9
illustrates this behavior for a parametric surface. The time

per iteration is fairly constant, while the error in the dis-
tance measure is halved each iteration.

3.6.3  Scheduled Cost

We have measured the average time cost for many of the
LUB-tree operations, such as the time for computing the
distance between spheres or the distance between OBBs.
Using these times, we can schedule an allowed cost for the
algorithm and have it return upper and lower bounds on
the minimum distance. Figure 10 demonstrates this behav-
ior on a 2000 triangle model. The upper bound distance
quickly converges to the correct distance. This suggests
that we can use cheaper, approximate solutions with low
error. The lower bound distance also converges to within
15% of the correct distance fairly quickly. The error pla-
teaus at the final level of the bounding hierarchy because a
lower bound cannot be extracted until the level finishes.

4 Future Work

We have implemented methods for the minimum distance
between a point and surface, between surface and surface,
and between polyhedral model and polyhedral model, as
well for the 2D equivalents. Currently, we are adding
operations for finding the distance between models of dif-
ferent surface representations, such as between polygonal
and parametric models. In addition, the framework notion
supports adding specialized objects with simple distance
computations, such as holes made of cylinders. We hope
we can improve efficiency for certain classes of models by
adding specialized types that occur frequently.

5 Conclusion

We have demonstrated practical computation of distances
for non-convex polyhedra and sculptured surfaces within a
common framework. The LUB-tree method is straightfor-
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ward to implement and has useful properties such as time-
critical behavior and scheduled computation cost.
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