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Abstract
We develop a data structure, the spatialized normal cone
hierarchy, and apply it to interactive solutions for model
silhouette extraction, local minimum distance computations, and
area light source shadow umbra and penumbra boundary
determination. The latter applications extend the domain of
surface normal encapsulation from problems described by a point
and a model to problems involving two models.
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1 Introduction
Many computer graphics applications depend upon the surface
normal at a point on a model. Data structures to encapsulate sets
of these surface normals have accelerated backface culling,
lighting, model simplification, and silhouette extraction. In this
paper, we expand the application of one such data structure, the
spatialized normal cone hierarchy, to interactively solve
seemingly disparate problems: local minimum distance
computation and area light source shadow boundary
computations. In addition, we introduce variable precision
silhouette extraction through application of spatialized normal
cones.
While there exist previous methods for encapsulating surface
normal information, they typically have been applied to problems
that can be described in terms of a point, such as a viewpoint or
point light source, and a single model. We apply the spatialized
normal cone data structure to problems involving two models,
such as between a polyhedral light source and a model. This
extension enables application to a much richer set of problems.

2 Background
In this section we review previous work on normal encapsulation.
Some additional background material will appear in the sections
covering particular problem domains.
The work most related to ours is Luebke and Erikson�s work on
view-dependent simplification [1]. They associate a cone, which

encapsulates normals, with a sphere, which bounds space. This
hierarchical data structure is used to refine polygonal models near
their silhouettes, where artifacts from approximation are more
apparent.
Shirman and Abi-Ezzi use a slightly different �cone of normals�
technique for backface culling of Bézier patches [2]. They
position a cone that encapsulates the range of normals such that
the associated geometry also falls within the cone. Backface
culling occurs when the viewpoint falls within a backface cone
derived from the spatialized cone.
Other backface culling methods include Kumar et al.�s work on
hierarchical clustering [3]. This method encapsulates the front-
and-back facing regions of a polygonal model in a collection of
half-space clusters. Zhang and Hoff reduce the normal clustering
problem to that of a �normal mask�, which allows very efficient
per-triangle testing of normal direction against a backface bit
mask with a single logical AND operation [4].
Surface normal encapsulation is also used in silhouette edge
detection. Benichou and Elber [5] store the arcs associated with
polygon edges on a Gaussian sphere [6]. Gooch et al. [7] store the
arcs on the Gaussian sphere and build a hierarchy of spherical
triangles for efficient search. Neither of these methods associates
regions of Euclidean space with the normals and thus are suitable
only for orthogonal projection viewing space.
Sander et al. [18] extended [2] to large, polygonal models with a
hierarchy of �anchored cones�. The cones conservatively bounded
the front and back-facing regions of the triangles inside a node.
These techniques were all developed for problems where the
encapsulated normals interact with a single point, such as a light
source or viewpoint. This limits their application to the problems
described above: backface culling, lighting, and silhouette edge
extraction. In the following sections we show that spatialized,
encapsulated normals apply to a broader set of problems.

3 The Spatialized Normal Cone
Hierarchy
The following description of the data structure is as it applies to a
polygonal mesh, although it can be adapted to other model
representations. The data structure is simple, consisting of a
normal cone, represented by a cone axis vector and a cone
semiangle; and a Euclidean bounding volume, in this case a
sphere, represented by a center and a radius (Figure 1.A). The
bounding volume associates the normals with a particular region
of model space, or spatializes the normal cone. Each node of the
data structure also contains pointers to two child nodes, and a
pointer to an underlying triangle if it is a leaf node.
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node. It is simple to test if no vectors are orthogonal by
computing the angle between the normal and view cone axes, and
expanding and contracting that angle by the sum of the cone half-
angles. Nodes that pass this test are recursively tested to the leaf
level where an exact edge test is applied.

4.1.1 Results
We tested our perspective silhouette extraction method on several.

eye
A.
re 1.A: The spatialized n
e of normals and bounds
e starts at the eye and en

ply this data structure to
s, edges, and triangles. N
s is not important for t
for the construction of ap
ves.

Constructing th
st step in the process cons
hy. We use the pu
www.cs.unc.edu/~geom/S
ng volume hierarchy [8]. 
bounding sphere for use in
re.
cond step computes a no
an bounding volume. Th
 from the triangle normals
ctor is set to the average
um angle between the cone

pplications
following sections, we de
 cone hierarchy on differen
ouette extraction, the si
 in this paper.

Silhouette extr
ttes occur when a triang

or triangle across an edge
angles T1 and T2 with norm
hared edge E is a silhouett

( )(⋅ NVN1
�

r way of characterizing t
oring triangle normals ove
nal to the view vecto

ion, the view vector is alw
ion, there are a range of po
geometry contained with

e use the sphere as a co
ns. The set of vectors betw
by a cone from the eye to t
e view cone (see Figure
e eye to the center of the 
ne angle is the arcsine of 

to the view cone axis lengt
ctor contained within th
in the node�s normal cone
B

ormal cone encompasses the
 the geometry. 1.B: The view
closes the bounding sphere.

 a polygonal mesh structure of
ote that the connectivity of the

he operation of our algorithms,
propriate normals for each of the

e hierarchy
tructs a spatial bounding volume
blicly available PQP code

SV/) to construct the Euclidean
The geometry at each node is fit
 the spatialized normal cone data

rmal cone for each node of the
is is done by finding an average
 contained in that node. The cone
 normal. The cone angle is the
 axis and the normals.

monstrate use of the spatialized
t problems. We start with its use

mplest of the applications we

action
le faces towards the eye and a
 faces away from the eye. So for
als N1 and N2 and a view vector

e edge if [4]

) .02 ≤⋅V
�

his is that the span of the two
r an edge must contain a vector
r. In the case of orthogonal
ays the same. Under perspective
ssible view vectors from the eye

in the bounding sphere for that
nservative bound on that set of
een the eye and the geometry is

he bounding sphere. We call this
 1.B). The view cone axis runs
spherical bounding volume. The
the ratio of the bounding volume
h.
e view cone is orthogonal to a
, there may be a silhouette in that

different models and compared the results against an exhaustive
silhouette search method. All tests were run on an SGI Onyx2
computer with a 195 MHz MIPS R10000 processor.

Model # triangles Exhaustive Normal Cone Ratio

Bunny 23,000 5Hz 27Hz 5x
Sphere 33,000 11Hz 340Hz 31x

Figure 2: Using a spatialized normal cone provides a several
time speedup over an exhaustive search for silhouettes.

The sphere showed a larger increase in update rates relative to a
brute force approach. For the bunny model, the bumpy surface
and increased complexity of the silhouette meant increased
difficulty in pruning.

4.1.2 Variable precision silhouettes
On models with fine detail, the silhouette can contain a
surprisingly large number of edges. Similarly, for high-resolution
models, the silhouette edges may be below pixel size. In both
cases, there is wasted computational effort. In the first case, the
edges are largely redundant as they project to the same part of the
view plane. In the second case, the small silhouette edges
represent detail that is impossible to see.
The spatialized normal cone hierarchy provides a means to attack
these issues. We can stop descending the normal cone hierarchy
when the normal cone angle falls below a threshold level. The
challenge is to produce a variable precision silhouette for that
node that replaces the numerous exact silhouettes.
Our approximation is to compute a line by projecting the node�s
normal cone axis to the view plane and finding the cross product
of that and the view cone axis. This line is placed at the center of
the node�s bounding sphere and clipped to the bounding sphere.

4.1.2.1 Variable precision silhouette discussion
We tested the 69,000 triangle bunny model at various threshold
angle values, measuring the number of edges found and the time
to extract the edges. The silhouette remained visually pleasing
even with less than half the edges of the full silhouette. At low
numbers of edges, the bunny shape was still recognizable and
silhouette extraction was 20 times faster than for the full
silhouette (Figure 3).

http://www.cs.unc.edu/~geom/SSV/
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Extrema of the distance can be found by differentiating and
finding the roots of the resulting set of equations. We remove the
parameters for clarity and denote the partial derivative of the
surface with a subscript.
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The roots of these equations yield a set of local extrema in
distance between the two models. Choosing the minimum solution
provides the global minimum distance solution. This approach is
very different from the Euclidean pruning method used for
polygonal models and is the basic approach adapted in thiss
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4.2.2 Local minimum distance for polygonal
models
We start by describing the solution to the minimum distance
between a space point and a polygonal model. Ultimately, we
wish to find all the surface features, such as faces, edges, or
vertices, on the model such that the range of normals for the
feature contains the vector from the space point to the closest
point on the feature (Figure 4).

Figure 4: The line between the space point and the feature is in
line with the normal at the feature.

The minimum distance is the length of the shortest such vector to
a feature on the model. Note that the solution, couched in terms of
normals, is the same technique we used for perspective silhouette
extraction. Indeed, the nodes of the normal cone hierarchy can be
pruned in the same manner as for silhouettes, just by changing the
test from orthogonal view and normal cone to a test for parallel
minimum distance and normal cone vectors.
Also, it is not necessary to select only the shortest line as the
solution. Instead, all the lines that satisfy the criteria may be used.
These are the local minimum distance solutions from the space
point to the model (Figure 5), a problem that is difficult to even
formulate with the standard techniques for global minimum
distance.



Figure 5: All the solutions satisfying the normal cone
approach. The local minimum distance lines extend to each leg,

the cow�s udder, and tail.

4.2.3 Leaf tests for local minimum distance
The leaf test for the local minimum distance is much more
complicated than the leaf test for silhouettes, or even for global
minimum distance. In a global minimum leaf test, the minimum
distance between the space point and the leaf triangle is computed
and compared to previous leaf distances.
To test for a locally minimum distance, the leaf test finds the
closest point on the triangle to the space point. The feature
associated with this closest point must contain a normal that is
parallel with the vector from the closest point to the space point,
the minimum distance vector. The closest point may lie on a
triangle face, edge, or vertex, each with a characteristic range of
normals.

Figure 6: A. The vertex normal is surrounded by triangles. B.
Each triangle normal maps to a point on the Gauss sphere and

each edge maps to an arc. We share the normal range for a
vertex among each surrounding triangle.

If the closest point lies on the triangle face, one must only
compare the triangle normal with the minimum distance vector. If
the closest point lies on a triangle edge, the minimum distance
vector must be compared against the span of normals from the
triangle face to the edge normal.
When the closest point matches up with a triangle vertex, the
minimum distance vector must be compared against the span of
normals for the vertex. Each vertex normal covers an area on the
Gauss sphere defined by the surrounding triangle face normals
(Figure 6). This area is divided into non-overlapping regions to
associate with each surrounding triangle for computational
efficiency and to prevent redundant solutions. A possible region
would be to take the span from the triangle normal to the vertex
normal and then half of each edge span. However, that produces a

quadrilateral on the sphere that may cross itself in complex ways.
Instead, the triangular span from the triangle normal to the vertex
normal to the left neighbor�s face normal (Figure 6.B.) is
associated with each triangle vertex. Given this association, it is
easy to determine if the minimum distance vector falls within the
triangular range of normals.

4.2.4 Local minimum distance for two models

Figure 7: The view cone becomes the dual view cone �
encompassing all possible normals between the models.

We are now ready to extend this approach to problems involving
two different models, such as the local minimum distance between
two polygonal models. Essentially, when there are two models, we
must account for a range of vectors between nodes on the two
models, not just the range of vectors between a space point and a
node of a single model. The view cone now becomes the dual
view cone, the span of vectors possible between the two bounding
spheres (Figure 7). The pruning test for a node checks if the
normal cones are parallel to the dual view cone and inward facing.
This extension allows pruning of each model�s normal cone tree
down to leaf nodes that may meet the local minimum distance
requirement. The leaf test is just the leaf test for a single model
applied twice, once to the triangle in each leaf.

4.2.5 Results
First, we tested the space point to model method with a variety of
models. The models rotated randomly while the space point
stayed fixed a short distance above the surface.

Sphere Holes3 Small bunny Large bunny

# triangles 32,700 11,800 10,800 69,500
Time (ms) 0.06 0.05 0.1 0.2

Figure 8: The local minimum distance from a point in space to
a model is fast for a range of model types.

The local minimum distances (including the global minimum
distance) from a point in space to a model (Figure 8) are
computed in sub-millisecond time. This makes the presented
approach appropriate for a number of tasks, including haptic
rendering of polygonal models [19] and volumetric conversion
[20].

A. B.



 

Figure 9: The local minimum distances between a torus and
sphere. The highlighted color indicates a tested leaf node and

the lines show local solutions.

For testing this method for the distance between two models, we
compared the speed of the local minimum distance method with
the global minimum distance method from the PQP package.

1 sphere
2 torus

1 torus
2 cow

1 torus
2 bunny

# Triangles 1 8192 4096 4096

# Triangles 2 4096 5804 69451

PQP (secs) 0.007 0.006 0.0057

Normal cone 0.004 0.008 0.0059

Figure 10: Timing results for finding the distance between
models.

The normal cone method worked best on fairly smooth surfaces.
This suggests it may be a good choice for certain classes of
models, such as those derived from subdivision surfaces. It had
more difficulty on surfaces with a lot of fine detail, such as the
bunny. The small bumps on the bunny translate into a wide range
of normals in a small area, as well as producing numerous local
minima. The normal cone method is competitive with the global
method, and is returning all the local minima as well, as in Figure
11.

4.2.6 Discussion

Figure 11: The local minimum distance returns more
information about the distance between models than the global

minimum distance.

This project was motivated by the need for a predictive contact
algorithm in a haptic rendering system [17]. The haptic system
needed to initialize local tracking methods in order to provide
high response feedback. A global method will only report on one

location, possibly missing other nearby regions of interest.
Additionally, a simple modification to a global algorithm to return
all pairs of triangles within a certain distance can result in
thousands of pairs to interpret. Finding the local minima returns
enough potential contact points to be useful without overloading
the system.
In Figure 11, the normal cone method finds potentially interesting
points on the legs, head and body of the cow compared to the one
point provided by the global minimum. We expect that these local
minimum distances may provide additional useful guidance for
tasks such as path planning, simulation, and haptics.

4.3 Shadow boundary computations
The local minimum distance method found points on the models
with normals collinear with each other and with the minimum
distance vector. Another interesting case is obtained by finding
points on the models with surface normals collinear with each
other but orthogonal to their connecting vector.
If the surface normals point in the same direction, then the set of
solution lines defines an envelope that is mutually tangent to each
model. If one model is considered an area light source and the
other model considered a light blocker, then this envelope defines
the boundary of the hard shadow, or umbra, of these two objects.
If the surface normals point in opposite directions, but still
orthogonal to their connecting vector, then the envelope defines
the boundary of the soft shadow, or penumbra (Figure 12).

Figure 12: The shadow umbra and penumbra boundaries are
defined as lines mutually tangent to each model. The spatial
normal cone hierarchy enables interactive computation of

these boundaries.

The leaf test for shadow boundaries uses the same normal span
division structure as the local minimum distance leaf test. In this
case, though, we are looking for edges and vertices with a shared
normal direction and with normals orthogonal to the line between
them.

4.3.1 Results
We tested the speed of the spatialized normal cone hierarchy
approach using a sphere light source with 2000 triangles and a
torus consisting of 4000 triangles. The method computed the set
of umbra and penumbra solution lines at an update rate of 4Hz. A
considerable portion of this time was spent moving the thousands
of solution lines into the view space out of their model object
spaces.
Reconstructing the exact shadow is a higher dimensional process
[14]. However, an approximate shadow can be obtained using



these boundaries. Other problem areas, such as discontinuity
meshing in radiosity solutions [15], make use of the boundaries of
the shadows to guide effort in solving for global illumination.

5 Discussion and Conclusion

Figure 13: Silhouettes, local minimum distances for pt-model
and model-model, and shadow umbra and penumbra
boundaries all being computed simultaneously using

spatialized normal cone hierarchies at interactive rates.
As Figure 13 shows, a spatialized normal cone hierarchy is a
flexible data structure and pruning technique useful in a variety of
applications. Prior techniques for using orientation information in
geometric computations for polygonal models have been limited
to interactions between a point source and the model. Backface
culling and silhouette edge extraction are important examples of
this problem domain. We have developed two new extensions to
the point-model normal domain: variable precision silhouettes and
local minimum distance. In addition, we have extended the
domain of problems over which surface normal information plays
a role into problems that depend on the interplay between two
models. Using this new formulation, we are able to efficiently
solve two new problems in the polygonal domain: the local
minimum distance between two models and shadow boundary
computation.
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