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ABSTRACT

The complexity involved in developing distributed applications has decreased

with recent developments in distributed object-oriented platforms and emerging

standards such as the Common Object Request Broker Architecture (CORBA).

Graphics applications including three dimensional graphics packages, CAD/CAM

applications, and user interface management systems are one class of applications

that bene�t from these recent advances. However, these applications have some

special requirements and constraints such as the existence of many �ne-grain objects

and object graphs, the need for �ne-grain sharing of objects, and collaboration.

CORBA does not support �ne-grain objects and their sharing by di�erent clients.

We show how graphics applications can bene�t from an underlying support for

�ne-grain objects and large-grain objects. We also show that object migration,

and migration of objects of all granularities in particular, provides an elegant

solution for solving the problems of distributed graphics applications mentioned

above. We propose and implement a CORBA-based architecture that supports

copying, replication, and complete movement of object graphs and objects of all

granularities. Other issues such as concurrency control, which arise from sharing

or replicating objects and object graphs, are also addressed from the stand point

of graphics applications. All these ideas have been tested on sample applications

in the Alpha 1 geometric design and modeling system.
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CHAPTER 1

INTRODUCTION

With the increase in the popularity of the internet and with the change in

computer systems from the time-shared model to the network-as-computer model,

distributed systems have attracted the attention of many researchers. The semantic

gap between the functionality o�ered by a conventional operating system and the

abstractions required by a programmer using a higher-level language is aggravated

by distributed systems. An operating system typically o�ers a low-level interface

to the network communication primitives which makes the development of dis-

tributed applications di�cult. This motivated the development of many distributed

platforms such as OSF DCE, OLE, and CORBA. Distributed platforms simplify

the process of developing distributed applications by shielding the developer from

the aspects of distribution. Though there have been many advances in distributed

platforms, applications such as CAD/CAM systems and other graphics packages

cannot directly beni�t from these advances for several reasons. This chapter �rst

describes some of the issues involved in developing distributed applications and

explains how object-oriented programming and distributed object-oriented platforms

have helped in reducing the complexity involved in designing and developing a

distributed application. Then, it focuses on the issues in graphics applications that

are not particularly supported by distributed systems and platforms. The rest

of this thesis aims at solving the problems associated with developing distributed

graphics applications.

1.1 Distributed Applications

Tanenbaum de�nes a distributed system [1] as a collection of independent com-

puters that appears to the users of the system as a single computer. Distributed
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applications are special-purpose distributed systems which should provide the users

with the same \virtual uniprocessor" view. Distributed applications have many

advantages such as resource sharing, fault tolerance, concurrency, collaboration,

and economics.

Resource Sharing: Many applications are inherently distributed. For instance, a

bank, which has many branches geographically distributed across the world,

needs to share all the information about its customers and other assets, so that

the customers can use the services o�ered by any of the branches. Similarly,

resources such as printers and scanners could be shared by all the computers

on a network. It is highly unlikely that every computer would be connected

to its own printer or scanner. In essence, resource sharing can be either data

sharing or device sharing.

Fault Tolerance: A task in a distributed system is spread across several nodes.

Hence, the failure of any node in the system will only a�ect a portion of

the task. Ideally, failure of 10% of the nodes should result in a performance

degradation of only 10%. Distributed systems allow applications to move

from one node to another, or to replicate certain important computations on

multiple nodes. This increases the reliability of systems despite intermittent

network failures.

Concurrency: Distributed systems allow more e�cient use of the resources on the

network, through load balancing. This increases the concurrency between the

applications, and between various parts of the application, which results in

increased throughput of the system.

Collaboration: Computer Supported Collaborative Work (CSCW) is one of the

areas of growing interest among researchers and software designers. This

would allow designers from multiple backgrounds and distant locations to

work together on an application. For instance, a human interface expert and

user interface programmer, from two distinct locations, could develop an ideal
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user interface through CSCW. Such collaboration could be made possible only

through distributed systems.

Scalability and Incremental Growth: Requirements in an organization change

with time. When the expectations increase, it would be easier to add more

systems to the existing system, than to replace the entire system. Distributed

systems are easily scalable, since they allow new systems to be added to the

existing ones, incrementally.

Economics: Perhaps the greatest motivation in using a distributed system comes

from economic factors. It would be di�cult to increase the throughput of a

single system beyond a certain limit. Further improvements in performance

can be obtained only by connecting multiple computers together. Thus, a

distributed system o�ers a better cost-to-performance ratio than a mainframe

system.

Since a distributed application should shield the users from all the details of

networking and distribution, developing such an application becomes a nontrivial

task, without any support from convenient programming paradigms and underlying

operating systems. Object-oriented design and development has provided a conve-

nient programming paradigm, and the recent developments in distributed platforms

have solved the problem of providing underlying support.

1.1.1 Object-oriented Design

An object is a self-contained unit of software functionality containing both data

and procedures for working with that data. Under the object-oriented paradigm of

programming, programs are composed of objects that encapsulate certain speci�ed

functionality. Such a design provides the developer with many advantages, such

as component integration through clearly de�ned interfaces, ease of design through

abstraction, and reuse through inheritance. These advantages are discussed below

in detail.
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Component Integration: Components are entities that are not bound to any

particular program, language, or operating system. Well-planned and designed

objects serve as components in that they can be reused in many applications.

Objects are identi�ed by well-de�ned interfaces. This notion of objects results

in the fact that several objects, which are built independently, can be put

together in a meaningful way in an object-oriented environment. For example,

a matrix object (which provides several matrix operations) and other geometric

objects can be put together to create a rendering application in graphics. The

same matrix object could be used in a mathematics tool to solve a set of

linear equations. Component Integration is one of the main motivations in the

development of many object-oriented distributed platforms such as OLE and

CORBA.

Abstraction, Information Hiding, and Encapsulation: Abstraction is a way

of specifying what information is important and what is not, in the context

of a particular problem. There are di�erent kinds of abstractions, such as

functional abstraction and data abstraction, that give importance to di�erent

kinds of information. Information hiding speci�es the visibility of the infor-

mation that is classi�ed as less important by an abstraction. For instance,

in functional abstraction, implementation of the functions is hidden, while

making their interfaces visible. Encapsulation is covering a collection of items

with a well de�ned boundary. The boundary can be transparent, translucent,

or opaque, depending on the extent of the information that is to be hidden

from the user. It should be noted that, encapsulation can exist without any

information hiding. For instance, the struct de�nitions in C language provide

for a method of encapsulation, where all the information inside the structure

is visible to the user. On the other hand, classes in C++, provide a method of

encapsulation in which certain portions of the class are visible or transparent

(public members), certain portions are only partially visible or translucent

(protected members), and certain portions are invisible or opaque (private
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members).

An object-oriented language provides these three features, which allow an

object to be speci�ed in terms of a well-de�ned interface. The interface serves

as a contract for all the users, independent of the implementation and the

language used for the implementation of the object. Using these features also

enables reuse of objects and portability.

Inheritance and Dynamic Binding: Inheritance is a mechanism provided by

most of the object-oriented languages, where a type (called a subclass or derived

type) can inherit all the characteristics of another type(s) (called a superclass

or base type). Inheritance is used for two purposes - specialization, in which a

derived class can change the implementation of the methods provided in the

base class without changing the interfaces of the base class, and extension, in

which a derived class can add more data members and methods to those of the

base class. C++ provides for both interface inheritance, which allows the type

of a derived class to be inherited from that of its base class, and implementation

inheritance, whereby the implementation of the methods in the base class can

be reused in the derived class. Inheritance enhances the reuse and quality of

software. Programmers can reuse the types and implementations in the base

class instead of writing new code. They can use the well-tested base class code

in the derived classes, and this helps in reducing programming errors. Use of

inheritance also results in decrease in the size of the compiled code for the

reasons mentioned above.

In dynamic binding, the type of an object (and thereby, its associated oper-

ations and their implementations) need not be known fully until run time.

Dynamic binding is available in C++ via the use of the keyword virtual.

Though, there is some run-time overhead involved in the use of dynamic

binding, the advantages that it provides from the standpoint of 
exibility

and extensibility of software, far outweigh its disadvantages, in certain appli-

cations. Flexibility is the ability to easily recombine existing components into
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new con�gurations, and extensibility allows easy addition of new components.

Thus, inheritance and dynamic binding support evolutionary, incremental

development of reusable components by specializing or extending a general

interface or implementation.

Polymorphism: Polymorphism allows an application to make a request on an

object without knowing the exact type of the object. Objects in di�erent

classes receive the same message, yet react in di�erent ways and provide the

appropriate behavior. Polymorphism lets an application view two di�erent

objects through a common interface, eliminating the need to distinguish be-

tween related objects. Overloading is a variant of polymorphism by which one

can de�ne di�erent versions of the same method, discriminated by di�erent

parameters.

1.1.2 Distributed Objects

Classical objects (in the C++ sense) are known only in the program that cre-

ates them. On the other hand, distributed objects can reside anywhere on the

network. Remote clients can access them through method invocations. Actually,

programming in an object-oriented way makes more sense in a distributed set-

ting. In a single-user, single-machine setting, programmers may be reluctant to

use all the features of object-oriented languages for e�ciency considerations. For

example, they might resort to global variables and monolithic programs to avoid

passing parameters and calling functions. Such a style would not be possible in a

distributed application, since we still lack e�cient implementations of distributed

shared memory. Further, as we will see in the next section, developing a distributed

application adds a whole set of new requirements, which makes these applications

harder to develop and maintain.

1.1.3 Distributed Platforms

Despite the many advantages mentioned above, distributed systems have some

fundamental problems, such as latency, network failures, and security. Hence,
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developing a fail-safe distributed application, whose components collaborate e�-

ciently, transparently, and scalably, is di�cult. There are several di�erences in

the invocation of a local object as opposed to calling a method on a remote object,

which makes distributed application development harder. To give a clear idea of the

level of details that are to be handled, consider the case of a system that provides a

socket interface to an application developer. In addition to developing the normal

application code, the developer has to incorporate the following features into his

application:

Location of the Object: The program has to keep track of the network address

of the service provider.

Connections: The program has to establish the network connection to the service,

and close the connection after all the services are completed.

Marshaling: The server object may have been compiled on a di�erent architecture

and/or using a di�erent compiler compared to that of the client. This would

mean that the server might have a di�erent representation of the data types,

di�erent alignment for �elds within a structure, and di�erent conventions for

parameter passing. Hence, the client has to marshal its parameters in a form

that is suitable for the server.

Type Checking: Since socket descriptors are weakly typed, it would be di�cult

to check for the types of the parameters at compile time.

Error Handling: In a network environment, errors can occur during the trans-

mission of messages. So, the client has to handle these conditions, and appro-

priately retransmit the messages.

Security: The client application code has to handle all the security considerations

that would be involved in transmitting a message across a network.

Portability: Using a particular interface, such as sockets, would limit the porta-

bility of an application. Major parts of the client code have to rewritten
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when this interface changes to something else, for instance, an Inter Process

Communication (IPC) object library.

Other major issues that are involved in designing a distributed object system

(or a distributed object platform) are:

Object Location: Some systems �x the positions of the objects once they are

created, whereas others allow migration of objects. Object migration is con-

sidered at length in the next chapter, and in the reminder of this thesis.

Transparency: There are several features in a distributed system that can be kept

transparent to the user. For instance, the location of objects could be handled

by the system, or could be left to the user. There are several disadvantages, as

mentioned above, in leaving such details to the application developer. Further,

if a system allows for moving objects, the user can be informed about the

migration, or the system can keep track of the new location, and forward all the

invocations to the new location. Developing a fully transparent system would

entail signi�cant overhead and ine�ciency in a distributed system, whereas a

system which gives full control to the users would shift the di�culties to the

application developer.

Processor allocation: There are two main models by which processes in a dis-

tributed system are allocated to processors - the workstation model in which

each user executes processes on exactly one machine, and the processor pool

model, in which all users have equal access to all processes. Most of the

distributed systems fall somewhere between these two extremes.

Communications: Messages between objects can be exchanged in many ways -

synchronous, semisynchronous, or asynchronous. In synchronous mode, an

object (or an application) that has invoked a method on another object blocks

till it gets the response. In asynchronous mode, the client that has invoked the

operation will be interrupted when the response is available. So, the client will
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not be blocked for the response. In a semisynchronous mode of operation, the

client polls for the response periodically while continuing its normal operation.

Multithreading: Multithreading an application would result in increase in per-

formance, at the cost of portability and increase in development and debug

time.

Server Concurrency: Servers in a distributed environment can be of two types:

iterative servers and concurrent servers. Iterative servers queue up requests

and handle them in FIFO fashion. Concurrent servers use multithreading to

simultaneously handle requests from multiple clients. Iterative design is most

suitable for short duration services that exhibit little variation in execution

time (e.g., unix commands such as time and echo). On the other hand, concur-

rent servers require more stringent scheduling strategies and synchronization

mechanisms, and are more suitable in internet services such as ftp. Changing

from one implementation to the other should not a�ect the application clients.

Deferred Activation: Objects can be activated in the servers when a method

is invoked on them. In the rest of the time, they can be in a dormant state.

When a method is invoked on a dormant object, it can be reactivated. Deferred

activation would be appropriate for less frequently used objects, and when the

system is composed of a large number of objects. Such a mechanismwould also

reduce system load, and increase the e�ciency in the use of available resources.

Deferred activation, if implemented, should be completely transparent to the

user.

Persistence and Object Lifetime: An object is said to be persistent if it can

live outside the process that has created it. Object persistence could be

achieved by storing the state of the objects on a persistent storage device.

However, there are several issues that makes the implementation of persistence

harder, such as references to other objects within an object, and transparent

translation of the object state between memory and disk. Persistence, coupled



10

with checkpointing, would be useful in a distributed application since clients

should be able to access server objects inspite of network failures.

Heterogeneity: A distributed system will often be composed of machines with

di�erent architectures, and running di�erent operating systems. Objects in a

distributed system should be able to interact with other objects in the system,

irrespective of the machine and operating system on which they are being

executed. Heterogeneity in architectures leads to di�erences in parameter

passing techniques, byte ordering di�erences (little-endian or big-endian), and

conversions between binary formats supported by the architectures. Operating

systems di�er in their support for multithreading, shared memory implemen-

tations, and system call interfaces (e.g., POSIX or Win32).

Network Protocols: Building a system that supports many LAN and WAN pro-

tocols would be di�cult to implement. TCP/IP, X.25, ISO OSI, Novell IPX

/ SPX are some of the common protocols that handle certain communication

features in very di�erent ways.

Consistency: Several problems in consistency arise due to caching on clients and

servers. On the other hand, caching is essential for reducing communication

overheads. Problems in consistency also arise when messages are in transit, or

when objects are replicated.

Garbage Collection: Garbage collection can be very complex in a distributed

environment, since a process on another machine can be holding the reference

to a particular object. Garbage collection should be safe and lively. Objects

with references should not be garbage collected (safety) and objects with no

references should be garbage collected (liveness).

A Distributed Object Platform is a utility that isolates some or all of these con-

cerns from the distributed application developer. It provides a high-level interface,

so that developers can focus on the speci�c application requirements. Examples of
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such platforms include the Common Object Request Broker Architecture (CORBA)

and Object Linking and Embedding (OLE). We take an in-depth look at CORBA

in the next chapter.

1.2 Special Issues in Graphics Applications

Graphics applications such as 2D and 3D graphics packages, CAD/CAM appli-

cations, and user interface management systems (UIMSs) are one class of applica-

tions that bene�t largely from a distributed object-oriented design. The Alpha 1

geometric design, modeling, and manufacturing system at the University of Utah is

one such application that is composed of many components such as a model graph

constructor, a model-viewer, and a renderer, in addition to all the graphics objects

such as points, curves, and polygons. These components can exist anywhere on

the network, and each of these components needs to interact with the others. In

addition to the issues raised by common applications, as discussed in the previous

section, graphics applications raise an additional set of issues. These issues, which

are discussed below, are the main motivation for the work in this thesis.

Resources: As discussed earlier, one of the main advantages in using a distributed

system is resource sharing. This can be easily observed in graphics appli-

cations. Graphics applications require special capabilities such as graphics

workstations (for user interfaces, animation, and rendering), computational

workstations for executing compute-intense algorithms (such as rendering al-

gorithm or transformations on graphs of objects), color printers, and scanners.

Some of the architectures have special built-in capabilities, such as z-bu�ers,

for displaying graphics, while some of them have high computational capabili-

ties. Better utilization of these resources would be possible if the applications

were distributed.

User Interfaces: One of the chief requirements in the design of user interfaces

is their isolation from the underlying application. The abstractions used in

building user interfaces (such as menus and buttons) should be distinct from
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those used in building the application (such as polygons and curves). There can

be communication between these abstract objects, but each of them should not

depend on speci�c implementation details of the other. In an isolated system,

it would be easy to change certain parts of the implementation, or certain

parts of the interface, without a�ecting the whole system. For example, it

should be possible to change the interfaces from command-line interaction to

menu interaction without any change in the application. With such isolation,

applications can be running on one system, while the interface can be presented

to the user on another system, e.g., one with powerful graphics capabilities.

Another aspect that should be considered in designing good user interfaces is

that they should be able to put together components from di�erent parts of

the system into a single window. Fresco [2] is an example of such interface

development tool, which would help in distributing components of the interface

across a collection of machines. An interface built with such a tool can,

for instance, take a picture from a CAD database, a message from another

location, compose them with some local interface options, and form a user

interface in a single window.

Interaction and Response Times: Interaction is one of the key aspects of a

graphics application. Most of the graphics applications provide some method

of interaction with the objects involved. Immersive environments and virtual

reality take the interaction a step further, involving the user completely in the

interaction. Response time, which is the time lag between the user input and

the response of the system, is one of the main considerations in designing good

applications and interfaces. In particular, virtual reality applications impose

real-time requirements on the interaction. As network delays are involved in

a distributed application, a distributed graphics application designer should

give high importance to interaction, and consider ways of reducing response

time.
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Granularity of Objects: A graphics application typically is composed of objects

of varying granularities. Large-grain objects are characterized by their large

size, relatively large number of instructions that they execute to perform an

invocation, and relatively few interactions they have with other objects. They

often reside in their own address space, and are thus heavy weight in nature.

Examples of large-grain objects in a graphics application are a model-viewer,

a model-constructor, or a renderer. On the other hand, �ne-grain objects are

characterized by their relatively small size and large number of interactions

with other objects. They share the address space of the process in which

they are created, and there can be many �ne-grain objects within one address

space. Example of �ne-grain objects in graphics applications are the various

graphics objects such as points, lines, polygons, and curves. Thus, a graphics

application has a few large-grain objects and a large number of (typically,

10; 000 in one large model) �ne-grain objects. The platform we choose for

such an application should provide support for objects of all granularities,

by providing e�cient interaction mechanisms between �ne-grain objects, and

uniform interfaces for all objects to the application developer.

Object Graphs: Most of the graphics applications build graphs of objects. The

Alpha 1 system uses a model graph to represent the dependencies between

objects. For instance, a line object can be dependent on two point objects that

de�ne the end points of the line. Similarly, the line can be a part of an outline

curve object. These dependencies can be modeled using a graph as shown

in Figure 1.1. Such a graph can be used to propagate the changes made in

any of the objects involved, to all its dependents, recursively. For example,

when the coordinates of the point A in the graph are changed, the line, and

hence the outline could be updated. Object graphs introduce dependencies

between objects in the form of containment, where one object is contained

within another object, or reference, where one object contains a reference to

another. Object graphs introduce special problems when objects are migrated,
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Figure 1.1. An example of an object graph

or for implementing object persistence. There are also several issues that need

to be addressed while deciding the locations of objects within a graph, since

they need to interact frequently.

Fine-grain Sharing: Dependencies in a graph propagate as seen in the above

example. This restricts graphs from being replicated on multiple nodes. How-

ever, it can be observed that multiple users can alter independent portions

of the graph. For instance, we can let object A in the graph of Figure 1.1

to reside on node X, and all other objects on node Y. This introduces the

notion of �ne-grain migration of objects within a graph, and exerting control

restrictions on these objects. There are no easy mechanisms to decide which

group of objects in a graph should be migrated. These decisions are, in general,

dependent on the application semantics.

Collaboration: Collaboration in design and development is very common in gra-

phics applications. Not only would users like to work on the same design, but

they would also want changes made by one user to be re
ected immediately on

all the machines, in the ideal case. Collaborative design has been successfully

demonstrated in the Alpha 1 system by running the c-shape-edit server
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(which is a model-graph constructor) on one machine, and having the model-

viewer clients on di�erent machines. However, there are several de�ciencies

in this collaboration. The manipulated object is local to one of the users.

Further, there are no mechanisms that would enable one user to control the

views of the other users. E�cient interaction with the underlying model, by

all the users, would require replication of the object graph on all the clients, so

that the users can manipulate independent portions of the graph. This would

also bring in consistency requirements between graphs of replicated objects,

which is a nontrivial task.

Existing distributed platforms such as CORBA do not support �ne-grain objects.

They also do not provide any special purpose solutions to application speci�c

problems such as the ones mentioned above. In this thesis, we explore solutions to

these issues and show that migration of objects of all granularities is an e�ective

means to:

� utilize resources on the network,

� support interaction between objects in an object graph,

� provide �ne-grain sharing and interaction of objects,

� reduce the response time in interactive tasks, and

� implement a fault-tolerant application.

We propose and implement object migration on the top of a well-standardized

distributed platform, CORBA, which resolves most of the issues raised in sec-

tion 1.2 e�ectively. We use an implementation of CORBA, called Orbeline from

PostModern Computing. We consider and implement several migration policies

such as replication, copying, and complete movement. Migration of large-grain

and �ne-grain objects, granularity issues involved in migration of object graphs,

�ne-grain sharing of objects in a graph, and concurrency control on shared objects,

are also considered. Finally, all the implementations are tested on a distributed
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object-oriented implementation of Alpha 1.

The rest of this thesis will be organized as follows. Chapter 2 de�nes object

migration and discusses the issues involved in migration in greater detail. Other

related works and how our model compares with the existing implementations of

CORBA, are also discussed in Chapter 2. Chapter 3 discusses object services which

provide the framework for implementing object migration. In Chapter 4, we explain

how object services can be used to implementmigration of large-grain and �ne-grain

objects. The complexities involved in migration of object graphs are considered in

Chapter 5, and concurrency control strategies for maintaining consistency between

replicated objects are elaborated in Chapter 6. All our ideas will be tested on a

few sample applications of Alpha 1, and the results will be presented in Chapter 7.

We summarize our conclusions in Chapter 8.



CHAPTER 2

OBJECT MIGRATION

A distributed object-oriented system is composed of many objects that can reside

anywhere on the network. These objects interact by exchanging messages with each

other. Object migration involves moving an object from one node to another on the

network. The original node on which the object was located is called its source, and

the �nal node is called its destination. The migrated object, then, becomes local

to the destination, and the destination can invoke methods on the object locally,

without resorting to any remote invocations.

There are many reasons why one would like to migrate objects. Some of the

most common reasons are summarized below.

Load Balancing: Migrating objects reduces the workload on the source machine.

Load leveling across the machines in a network can be obtained by migrating

objects, as workloads change dynamically. This increases the overall perfor-

mance of the system.

Resource Sharing: Resource sharing was cited as one of the primary motives in

using a distributed system. Object migration provides for an improved way

to share resources. Objects that need particular resources that are located

remotely can be moved to the corresponding nodes.

Fault Tolerance: Objects can be copied or replicated on multiple nodes. When

one of the nodes containing an object fails, the system can still continue its

normal operation using the objects located on other nodes. Further, objects

can be migrated to other nodes, during graceful degradation of a faulty node.
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Less Communication Overhead: A local method invocation involves less over-

head than a remote invocation. A remote invocation inevitably involves pa-

rameter marshaling delays on both sides and network delays. By bringing the

required objects to the working node, all the remote calls can be converted

into local calls. This decreases the response time in interaction, which was

cited as one of the requirements for a graphics application.

Granularity in Object Graphs: By replicating parts of the object graph on

di�erent nodes, users can update the graph simultaneously. Objects can also be

replicated with di�erent access rights. Thus, an object that is being modi�ed

by one user, can be viewed by a di�erent user. This increases the concurrency,

and hence the throughput of the system.

System Administration: By clustering related objects together, kernel opera-

tions such as I/O and page faults can be amortized. For instance, if two objects

require access to the same data structures, the number of total page faults can

be reduced by co-locating the two objects, and using the data structures that

are already in memory.

Persistence: In general, persistence is implemented as migration of objects to and

from a stable storage. Hence, object migration simpli�es the implementation

of object persistence.

There are more advantages that come about frommovement of �ne-grain objects.

Some of these are listed below.

Data Movement: Fine-grain object migration provides for an e�cientmechanism

to move light-weight objects and other small data items between nodes. In

the absence of such a scheme, we need to make use of ine�cient coarse-grain

techniques such as �le transfer.

Invocation Performance: The parameter objects can be moved to the location

of the remote server object before invoking any methods on it. This would
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provide for the conventional call by value semantics of programming languages.

Garbage Collection: Fine-grain object migration simpli�es distributed garbage

collection, since all the objects can be moved to the sites where their references

exist.

We observe that object migration solves a number of issues that were raised by

graphics applications, in Chapter 1. Object migration does not come free of cost,

and there are certain disadvantages associated with migrating objects.

Migration Overhead: Migration can result in costly time overhead, if the mi-

grated objects are large, and if there are very few methods invoked on the

migrated object at the destination. Object migration will be useful only when

the estimated overhead in remote invocations on the object are greater than

the overhead involved in migrating the object itself. Another case where object

migration can result in poorer performance is when two clients try to migrate

an object simultaneously. To overcome these problems, there should be some

control mechanisms on object migration.

Security: There should be more stringent security restrictions when objects can

migrate on the network. This was one of the reasons for the unpopularity of

object migration in the past. With more and more research in security, and

with the development of languages such as Java, which allow the entire code to

be migrated, people are willing to allow objects to be moved to their machines.

Hard to Implement: There are several possibilities to be considered, and several

decisions to be made, before implementing a scheme for object migration.

Some of these possibilities are discussed in the next section. In the absence

of portable and standard distributed platforms, there were some attempts to

provide operating system support for object migration. This has not come out

to be very successful, in terms of giving the user, control on the granularity of

migration.
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2.1 Issues in Object Migration

There are several options along several dimensions that are available for im-

plementing object migration. In some cases, implementors have to decide on an

appropriate option, whereas in other cases, they can provide multiple options to

the users.

Degree of Migration: Object migration is an imprecise word which can be made

more speci�c by the degree of migration. Copying an object involves making

a copy of the object at the destination. The original object (which we call the

target) and the copied object do not share any resources in common; the copied

object gets a new identity. Replication is copying an object, but in this case,

the target and the replicated object share the same identity. Updates to a

replicated object should be re
ected in the target, and vice-versa. Replication

requires concurrency control strategies on the object involved. An object can

also be completely migrated from the source to the destination. In this case,

the target object ceases to exist on the source, and will be identi�ed with the

same identity on the destination.

Object Kind: There are di�erent kinds of objects in a distributed object system.

Objects can be classi�ed as passive or active depending on whether they are

associated with any server process or not. They can be classi�ed as quiescent

or nonquiescent, based on the stability of their state. If there are any methods

that are active on the object, then it is nonquiescent. More fundamentally,

objects can be stateful or stateless (or immutable) depending on whether they

have any data members encapsulating the state of the object.

Migrating an active object involves migrating the associated process along

with the object. This introduces all the concepts of process migration, which

in the limiting case includes migrating the user space of the process (including

text, data, and stack segments), and migrating the kernel state (including the

information stored by the kernel for switching contexts, register contents, and

condition codes, resources such as open �le handlers and message channels,
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and the entire environment including the process id, user id, current working

directory, signal masks and handlers, resource usage statistics, timers, and

references to parent and child processes).

To migrate nonquiescent objects, either the system has to wait for the current

processes to �nish execution, or it should migrate the the currently executing

processes along with the object. To migrate stateful objects, we need to

de�ne operations to externalize the state of the objects. This can be further

complicated if the state of the object involves system resources such as �le

descriptors, which may not be identical across the entire system (for instance,

if there is no underlying common network �le system).

Server Policies: For active objects, the server that is associated with the object

can have di�erent server policies. In a shared server policy, multiple active

objects share the same server, whereas only one object can be active at a

given time in a server in an unshared server policy. In a server-per-method

policy, each invocation of a method is implemented by a separate server being

started. Object migration is dependent on the policy being used. For example,

in a shared server policy, migrating one of the shared objects will be complex,

if these objects share some resources, or interact with each other.

Related Objects and Object Graphs: Objects often contain or reference other

objects. For example, Figure 2.1 shows an object A referencing another object

B. When the object A is migrated, the reference to object B is no longer

valid. We either need to migrate B to the new location, and reestablish

the relationship between the objects (as in 2.1c), or need to convert all the

invocations on B to remote invocations.

Heterogeneous Architectures: Migrating an object across heterogeneous ar-

chitectures adds more challenges to the implementation. This is generally

achieved with the help of meta-data which are used to convert data from one

architecture to another. For example, if we need to migrate the state of an
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(a) Object A and B on node X (b) After migrating A to node Y

Figure 2.1. E�ect of migration on related objects
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object across heterogeneous architectures, it will be essential to ensure that

the de�nition of the corresponding class of the object exists on the destination

architecture. Otherwise, object migration will involve class migration, and

recompiling the class on the destination.

Object Location: The implementation can opt to hide the details about the new

location of the migrated object from the client applications, or decide to inform

the clients about the new location. In the former case, the implementation

has to handle all the messages that arrive at the old location, appropriately,

by forwarding them to the new location. The burden on the application

programmer will increase if the client has to keep track of the object location.

Residual Dependency: The on-going need for a host to maintain data structures

or provide functionality for an object even after the object migrates away from

the host, is known as residual dependency. Residual dependency is undesirable,

since it a�ects the reliability and performance of the system while increasing its

complexity. The state of an object is now distributed across many machines,

and this is undesirable for the reliability of the system. Further, forwarding

every message to the new location through the old location defeats the purpose

of object migration, which is intended to reduce the network delays.

Implementing Transparency: It was pointed out that transparency to the user

is one of the main concerns in implementing migration. Implementing trans-

parency is di�cult for several reasons. For complete transparency, the user,

and every other system (including devices and �les), should be completely

unaware of the migration. For instance, the processes that are associated with

the migrated objects should still exist in the process table of the original host.

Users should be able to kill, stop, or restart these processes, just like any other

local process. In general, complete transparency is di�cult to achieve. This

leads to di�erent levels of transparency, such as
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1. Location transparency: The location of the object need not be known to

the clients before and after migration.

2. Access transparency: The invocation of the object is the same wherever

the object is located.

3. Migration transparency: There is no noticeable di�erence in latency, in

method invocations, before, during, or after migration.

4. Fault transparency: Objects migrate before node failures so that the user

is not aware of the failures.

Communication Channels: All the communication channels with the clients

need to be closed before migration and reopened after migration. All the

messages that are received during migration should be handled. This could be

done by leaving a proxy object at the original host, and requiring it to forward

all the messages to the migrated object after the communication channels are

reestablished. An easier solution would be to refuse all the messages during

migration, requiring the client to retransmit the requests later.

Auditing and Statistics: The system should have some kind of log to record the

usage statistics of objects by di�erent clients. This can be used in certain

decisions regarding the destinations for migrating objects.

2.2 CORBA

Object Management Group (OMG), which is a consortium of several companies

including Sun, HP, DEC, and IBM, attempts to de�ne the various facilities that

are necessary for distributed object-oriented computing [3]. This de�nition, which

is popularly known as the the Object Management Architecture (OMA) Reference

Model, is shown in Figure 2.2. The central component of this model is the Ob-

ject Request Broker (ORB), which is responsible for transparent communication

between objects. In other words, it enables objects to make and receive requests

and responses in a distributed environment. Object Services are a collection of

basic services (interfaces and objects) that provide basic functions for using and
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Object Services

OBJECT REQUEST BROKER

Application Objects Common Facilities

Figure 2.2. OMA reference model

implementing other objects. We shall look at many examples of Object Services,

and how they are implemented, in the next chapter. Common Facilities are a

collection of services that provide general purpose capabilities, such as email, which

are useful in many applications. Application Objects are objects that are part of a

speci�c distributed application. OMG de�nes standards for the ORB, the Object

Services, and the Common Facilities.

The Common Object Request Broker Architecture (CORBA) [4] is an OMG

de�ned standard for ORB in the OMA reference model. CORBA de�nes all the

interfaces that are available through or by the ORB to the objects. It addresses

the problem of making distributed application development no more di�cult than

developing a centralized application. Thus, it isolates the application developer

from most of the issues discussed in Section 1.1.3, and provides an infrastructure

for integrating application components into a distributed application. For instance,

CORBA:

1. isolates the details about object location from the client programs. It keeps

track of the information regarding the various servers running at di�erent

locations on the network, and provides for a transparent mechanism for the
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clients to invoke methods on the server objects.

2. transparently establishes and breaks communication channels when the clients

invoke methods on the remote objects.

3. marshals the parameters before transmitting them to and from the server

objects. The clients need not consider the architectural and compilation

di�erences in data formats that exist between di�erent machines.

4. performs static compile time checking (using stubs) and run-time checking

(using interface repositories) to avoid unexpected failures in the system.

5. provides for several policies, such as atmost once or best e�ort transmission

schemes, to support retransmission during network failures.

6. supports di�erent architectures, operating systems, and network protocols.

7. allows servers to be multithreaded or concurrent. Further, these servers can be

changed from iterative servers to concurrent servers, and vice-versa, without

a�ecting client applications.

It should be noted that inherent problems with distributed systems, such as

latency, network failures, and security, still exist in CORBA. CORBA implementors

should take necessary steps to handle these problems.

Objects use the Interface De�nition Language (IDL) to de�ne their interfaces.

IDL is a C++-like language which supports interface inheritance. Clients get to

know about the services o�ered by objects from these interfaces. As an example,

the interface of a simple math object is shown in Figure 2.3. The math object

supports three functions - seta(), setb() set the state of the math object, and

add() returns the result of adding the two numbers from the state.

Compiling an IDL speci�cation would result in stubs and skeletons. A stub is

a proxy class that can be compiled with the client application. For the example

above, the stub consists of a class called math, whose functions transparently invoke

the remote math object, get the results, and deliver them to the client. The client
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interface math {

void seta(in double a);

void setb(in double b);

double add();

};

Figure 2.3: IDL interface for math object

will be completely unaware of the remote invocation. A skeleton is a class that

can be compiled with the server application. The skeleton will be responsible for

generating upcalls on the server object when any of the clients invoke a method on

that object.

A typical client application, which connects to a math object and performs some

invocations, is shown in Figure 2.4. The client performs some initialization, and

connects to a math object. After that, the client can use the reference for invoking

methods, just as in C++.

The server, on the other hand, needs to implement the functions that are

provided by the math object and instantiate a math object. The code in Figure

2.5 shows how the server implements a math object, does some initialization, and

waits for requests. Note that the server interacts with the Basic Object Adaptor

(BOA) to register the implementation of the object, and to receive requests. BOA

is a CORBA interface available for the server objects, to obtain object references

and register server implementations. BOA is also responsible for keeping track of

which object references correspond to which objects, and thus helps the ORB in

locating the required objects.

In this example, we have seen several components of CORBA, such as the ORB

core, IDL stubs, IDL skeletons, and the BOA. In addition, there are other interfaces

to CORBA. The Dynamic Invocation Interface (DII) o�ers a convenient mechanism

to form requests on object servers at run-time, as opposed to the IDL stubs, in which

all the calls have to be de�ned at compile-time. The Dynamic Skeleton Interface

(DSI) is the counterpart of DII on the server side. All the components of CORBA

are depicted in Figure 2.6.
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main(int argc, char **argv) {

// initialize the ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// bind to a remote math object

math *m = math::_bind();

// use the math object to invoke methods on it

m->seta(3.1);

m->setb(4.3);

cout << m->add();

// release the math object reference

CORBA::release(m);

return 1;

}

Figure 2.4: Client application for math object
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// implementation of the math object

class _im_math : public _sk_math {

CORBA::Double x, y;

public:

// constructor

_im_math() : _sk_math(NULL) {};

// implementation for methods

void seta(CORBA::Double a) { x = a; }

void setb(CORBA::Double b) { y = b; }

CORBA::Double add() { return (x + y); }

};

// server's main

main(int argc, char **argv) {

// initialize the ORB and BOA

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

// Instantiate a math object

_im_math math_server;

// Tell the BOA that the object is active and ready

boa->obj_is_ready(&math_server);

// Tell the BOA to enter the event-loop

boa->impl_is_ready();

return 1;

}

Figure 2.5: Server for math object
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Figure 2.6: The structure of ORB interfaces in CORBA

2.2.1 Support for Object Migration in CORBA

In addition to standardizing the ORB, OMG is also in the process of setting

standards for Object Services and Common Facilities. One of the Object Services

that has been �nalized is the LifeCycle Service. The LifeCycle service de�nes a

generic cosLifeCycle object that supports operations to move, copy, and destroy

objects. Objects that need to provide these lifecycle services should inherit from

cosLifeCycle interface. The LifeCycle service only de�nes a client's view of

the lifecycle. A client that has an object reference to an object that supports

the cosLifeCycle interface can invoke operations such as move(), copy(), and

destroy() on these objects. The LifeCycle service does not provide any operation

to replicate objects. In this thesis, we implement the speci�cations of the LifeCycle

service, which provides for the basic layer to move or copy independent objects.

LifeCycle services and their implementations are described in detail in Chapter 4.

Some of the common problems associated with migrating objects are solved

in CORBA, because of the underlying transparency provided by the ORB. For

instance, once an object is migrated and is registered at the new location, the

clients can continue to invoke methods on it. They need not be informed about

the new location of the object. Also, as we will see later, CORBA o�ers convenient

mechanisms for keeping track of object locations (using Naming Service), and for

externalizing the state of the object on the network (using Externalization Service).
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The basic drawback with CORBA is its inability to support �ne-grain objects.

Objects in CORBA are large-grain active objects that are bound to a server process.

The Interface De�nition Language does not have any constructs for de�ning �ne-

grain objects which can be exchanged between clients. Further, all the mechanisms

needed to exert more control on migration, such as deciding which objects should

be migrated, have to be built on the top of the basic functionality provided by the

CORBA Object Services. CORBA also does not o�er any solutions to the problems

of concurrency control, since it does not deal with replication or �ne-grain sharing

of objects. In this thesis, we build layers on the top of the CORBA Object Services,

that give an application developer more control on the objects being migrated, and

address the related problems of granularity and concurrency control.

2.2.2 CORBA Compliant ORBs

In addition to the components mentioned above, CORBA also consists of a set of

language mappings. These language mappings provide source code compatibility

between applications written for di�erent CORBA implementations. Language

mappings also de�ne the standards for implementing the basic types of CORBA,

and prototypes for the functions that are not part of any CORBA object in-

terfaces. Currently, language mappings exist for C, C++, and Smalltalk. An

ORB is CORBA-compliant if it follows the CORBA standard for the ORB, and

the standards for one language mapping. There are other levels of compatibility

de�ned in CORBA. Interoperability compliance requires an ORB to interact with

other ORBs using a set of standards (protocols and standard format for object

references). It should be noted that Object Services and Common Facilities are not

a part of any CORBA compliance de�nition.

There are many ORBs (both commercial and research oriented) that are CORBA

compliant. Examples include Orbeline, HP ORB Plus, and Electra. These ORBs

di�er in some respects. They use di�erent mechanisms and di�erent function calls

for obtaining initial object references. When a client application comes up, it needs

to bind to a remote object to obtain its services. Binding involves obtaining the
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initial object reference. HP ORB Plus uses the resolve initial references()

function and the naming service to obtain the initial references, while Orbeline uses

a 
at naming scheme, and uses a nonstandard bind() call to obtain the initial

reference. Orbeline checks if the objects are located locally on the same node as

the client, and bypasses the normal RPC calling style if that is true. Orbeline

also provides for some basic fault tolerance features in the form of ability to run

multiple instances of osagent, which is their standard object location agent, on

di�erent nodes. These osagents exchange objects between each other in case of

failures.

Electra, on the other hand is an ORB developed primarily to explore the im-

plications of adding group communication, replication, and fault tolerance to the

standard CORBA de�nition. Electra is the ORB that comes closest to our thesis,

for having implemented replication. None of these ORBs consider mechanisms

for migrating objects of all granularities, grouping objects within a graph, and

migrating compound objects. Electra achieves concurrency control by multicasting

the messages to all the replicated objects in a group. We propose techniques for

replicating parts of the graph, for exerting control on which parts are replicated

or migrated, and for �ne-grain sharing of the objects within a graph. Further, we

support di�erent policies in migration, such as copying, replicating, and completely

moving objects and object graphs. Our e�orts in this thesis are motivated by

a wider set of considerations (which arise from graphics applications) than just

fault-tolerance.

2.3 Related Work

There were many attempts to provide transparent operating system support for

object migration. Emerald, Guide, and Shadows are some of the examples of these

systems.

Emerald [5] supports migration of �ne-grain objects. Each object in Emerald

has a unique network-wide name, which is used in identifying objects when they

are moved between nodes. Objects in Emerald can also have references to other
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objects. Programming constructs, such as attached, are provided to specify which

related objects should be moved when one of them moves. It also provides two

parameter passing techniques called call-by-move and call-by-visit which specify

whether the parameter object stays at the destination, or is migrated back to the

source after the invocation is complete. In addition to the motion of �ne-grain

objects, Emerald also supports the migration of active objects, along with the

associated processes. Before moving the objects, all the processes executing in the

object are suspended, a template of the object is made, and the object's state

information and template are sent to the new host. The operating system at the

new workstation rebuilds the object by allocating space for the object, and copying

the state of the object into that space. The template is used in locating the pointers

in the state information, which are then replaced with the new addresses. Finally,

the processes are resumed on the destination. Emerald uses a forwarding address

[6] concept to locate objects transparently. The main drawback with Emerald is

that it is designed for homogeneous environments and local area networks, and is

not scalable to large distributed systems. Only immutable objects can be replicated

in Emerald, and the system does not support sharing of stateful objects.

The Guide system [7] allows objects to be migrated at administration time, i.e.,

when there are no methods that are active on the objects. It does not support

migration of nonquiescent and active objects. Objects in the Guide system are

named by global identi�ers which makes them known and sharable in the entire

system. An object identi�er encapsulates the location of the node on which it was

created, which makes an object's location e�cient if it is not migrated. Once an

object is migrated it leaves a forwarder at the source which keeps track of the

current location of the object. Shadows [8] is another system that allows mobility

of only quiescent objects. Objects move between object managers which manage

a collection of objects. Location transparency is achieved by a similar forwarding

mechanism.

None of the above migration mechanisms consider de�ning graphs of objects and

the issues involved in migrating these graphs. Sharing objects and object graphs
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is one of the primary requirements of a graphics application, and there is no work

which supports this sharing and addresses the related concurrency control issues

from the standpoint of a graphics application.

2.4 Object Model

Objects in a graphics application can be large-grain objects (e.g., renderer and

model-viewer) or �ne-grain objects (e.g., points and lines). The large-grain objects

are bound to a server process. In the rest of this thesis, when we talk about

large-grain objects, we mean that they are large objects which are bound to a

server process (and hence run in a separate address space). A graphics application,

typically consists of a few ( < 10 ) large-grain objects and a large ( > 10; 000 )

number of �ne-grain objects.

Two standard object models are widely used in the existing systems [9] - the

active object model and the passive object model.

In the active object model (Figure 2.7), several server processes are created for

and assigned to each object to handle its invocation requests. These processes are

terminated when the object dies. When a client makes an operation invocation, a

process in the corresponding server object performs the operation on the client's

behalf. The server object may invoke a method on another object, in which case,

a di�erent process is started on the latter object. The process issuing the request

waits for the result from the latter process. The number of server processes that are

assigned to each object may be either �xed (static variant of active object model), or

may be dynamically changed when requests arrive at the object (dynamic variant of

the active object model). Systems such as Amoeba [10] and CHORUS [11] support

the active object model.

In the passive object model (Figure. 2.8), the processes and objects are separate

entities. A process can execute in several objects during its lifetime. When a

process makes an invocation on another object, its execution in the object in which

it is currently executing is temporarily suspended. It continues its execution in the

new object. Emerald [5] and Clouds [12] use the passive object model.
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The active object model is suited when the system supports large-grain objects,

whereas the passive object model is appropriate when the system supports �ne-grain

objects. In a system that should support objects of all granularities, we need a

hybrid object model (Figure 2.9). In such a model, �ne-grain objects can reside

in the address space of other large-grain objects. The interaction between two

objects will depend on the nature of the two objects. If an object A needs to invoke

a method on object B, the invocation will follow the passive object model, if B

is a �ne-grain object, and active object model if B is a large-grain object. This

object model encompasses all kinds of objects and is the most suitable one for

graphics applications. The advantage of the passive object model is that there is

no restriction on the number of processes that can be bound to an object, and it

provides a convenient scheme for many objects to coexist and interact with each

other. Since most of the objects in a graphics application are �ne-grain objects,

under our hybrid object model, they interact using the passive object model, thus

inheriting all its advantages.
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CHAPTER 3

OBJECT SERVICES

Object Services (Figure 2.2) are a collection of services (interfaces and objects)

that provide basic functionality for using and implementing objects. Operations

provided by Object Services will serve as building blocks for Application Objects

and Common Facilities. Standards have been (and are being) proposed for many

Object Services. Two volumes of Common Object Services have been adopted by

OMG. The �rst volume (COSS-1) contains standards for Naming, Event Noti�-

cation, LifeCycle, and Persistent Object Services. The second volume (COSS-2)

describes the standards for Concurrency Control, Externalization, Relationships,

and Transactions Services. Standardization work is in progress for Security, Time,

Licensing, Properties, Query, Change Management, Collections, and Trader Ser-

vices.

In this chapter, we discuss the Naming, LifeCycle, and Externalization Services

and their implementations. These services form the necessary foundation for im-

plementing object migration. The next chapter shows how these three services can

be used in implementing object migration for CORBA objects.

3.1 Naming Service

Naming Service [13] helps in associating objects with names. Objects can

be published by making their names available through the Naming Service. By

subscribing to these objects, remote clients can obtain the references to the required

objects. Thus, Naming Service provides a convenient mechanism for clients and

implementations to exchange object references.

By standardizing the interfaces to the Naming Service, OMG has made it possi-

ble for all the clients to use the same methods for obtaining object references. The
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IDL declarations for the interfaces to Naming Service are given in the Appendix.

Methods are provided for binding, resolving, and unbinding names. All the names

are bound with respect to a context. A context de�nes the scope for a binding.

No two bindings can have the same name within a context. Contexts are objects

themselves, and so they can be bound to names using the Naming Service. This

results in a naming graph as shown in Figure 3.1. The naming graph is rooted

at a context known as the root context. To use the Naming Service, a server or a

client has to obtain the reference to this root context and invoke a Naming Service

operation on it. New contexts can be created by invoking the new context() or

bind new context() methods on a given context. Typically, servers publish their

objects in the Naming Service using the bind() operation, and clients use the

resolve() operation to subscribe to these objects before using them. Figures 3.2

and 3.3 demonstrate the use of Naming Service by a server and a client.

3.2 LifeCycle Service

LifeCycle Service [13] de�nes the interfaces that can be used by clients to invoke

lifecycle operations on the CORBA objects. Methods are de�ned to create, copy,

move, and remove CORBA objects. We have extended the LifeCycle Service to

include an operation to replicate objects. The modi�ed interfaces are given in the

Appendix.

Initial Naming Context

Factory-finder1 MathObject

MathFactory StreamFactory MathFactory

(Naming Context)

Factory-finder2

(Naming Context)

Figure 3.1: Naming graph
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// server's main

main(int argc, char **argv) {

// initialize the ORB and BOA

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

// Instantiate a math object

_im_math math_server;

// Obtain the reference to the root context in Naming Service

CosNaming::NamingContext_ptr root =

CosNaming::NamingContext::_narrow(

resolve_initial_references( "NameService" ) );

// publish the object under the name "MathObject"

CosNaming::Name n;

n.length(1);

n[0].id = (const char *) "MathObject";

n[0].kind = (const char *) "";

root->bind( n, &math_server );

// Tell the BOA that the object is active and ready

boa->obj_is_ready(&math_server);

// Tell the BOA to enter the event-loop

boa->impl_is_ready();

return 1;

}

Figure 3.2: Publishing the object in the naming service
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// Client's main

main(int argc, char **argv) {

// initialize the ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// Get the reference to the root context in Naming Service

CosNaming::NamingContext_ptr root =

CosNaming::NamingContext::_narrow(

resolve_initial_references( "NameService" ) );

// Use the naming service and subscribe to the "MathObject"

CosNaming::Name n;

n.length(1);

n[0].id = (const char *) "MathObject";

n[0].kind = (const char *) "";

math_ptr m = math::_narrow( root->resolve( n ) );

// use the math object to invoke methods on it

m->seta(3.1);

m->setb(4.3);

cout << m->add();

// release the references

CORBA::release(root);

CORBA::release(m);

return 1;

}

Figure 3.3: Subscribing to an object using naming service
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A client's model of object creation is de�ned using the notion of factories.

Factories are just like any other CORBA objects, and their interfaces are de�ned in

IDL. They are used to create other objects. Figure 3.4 shows an example of a math

factory. Factories can be located using factory-�nder objects. A factory-�nder is a

CORBA object that de�nes a scope of resource allocation. For instance, a factory-

�nder can represent a host, a group of machines, or any abstract notion of location.

Here, we use factory-�nders as analogous to hosts, i.e., each host has one and only

one factory-�nder associated with it. The factoryFinder interface de�ned in the

LifeCycle Service (Appendix) de�nes only the client's view of a factory-�nder. We

have implemented a Naming Context based factory-�nder which inherits from the

NamingContext interface of the Naming Service and the factoryFinder interface

of the LifeCycle Service (Figure 3.5).

A factory registers (publishes) itself at the factory-�nder running on the same

host. Subsequently, clients can contact the factory-�nder on the required host to

obtain the appropriate factory, and issue a creation request on that factory. Figure

3.6 shows this interaction.

The other lifecycle operations (move, copy, replicate, and remove) have to be

provided by the object implementation. Any object that wishes to support these

operations can inherit from the CosLifeCycle::LifeCycleObject interface as shown

in Figure 3.7, and provide implementations for these operations. To understand the

lifecycle operations, it is important to know how clients can invoke these operations

on the objects. Figure 3.8 shows a client program that invokes lifecycle operations

on the math object declared in Figure 3.7.

The implementation of an object should ensure that all the clients which have a

reference to the object should be able to invoke operations on the object, irrespective

interface mathFactory {

math create_object();

}

Figure 3.4: Math factory
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Naming Context based Factory-finder

CosNaming::NamingContext CosLifeCycle::FactoryFinder

Figure 3.5: Multiple interface inheritance for implementing factory-�nders

of the location of the object, and without any knowledge of migration. Notice that

the client in Figure 3.8 was able to invoke operations on the math object even after

it has been moved, without any other updates. The next chapter explains how

objects can support this behavior.

3.3 Externalization Service

In order to provide implementations for the lifecycle operations, objects need to

externalize their state. Externalization Service [14] de�nes the standard interfaces

for externalizing and internalizing an object's state. The Appendix describes a mod-

i�ed version of the standard IDL speci�cations for Externalization Service. Any ob-

ject that wishes to support externalization and internalization operations should in-

herit its interface from CosStream::Streamable, and provide implementations for

the two operations externalize to stream() and internalize from stream().

Streams contain an object's externalized state, and are created as required using a

Stream factory. The interfaces for streams and stream factories are also described

in the Appendix. Figure 3.9 shows how the math object de�ned in Figure 2.5 can

implement externalization operations using stream objects.

The LifeCycle Service and the Externalization Service help an object in support-

ing migration, while the Naming Service helps the clients in locating the factory-

�nders which are passed as arguments to the lifecycle operations. These mechanisms

are explained in detail in the next chapter.
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// Client's main

main(int argc, char **argv) {

// initialize the ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// Get the reference to the root context in Naming Service

CosNaming::NamingContext_ptr root =

CosNaming::NamingContext::_narrow(

resolve_initial_references( "NameService" ) );

// Use the naming service and subscribe to the FactoryFinder on

// centauri.cs.utah.edu

CosNaming::Name n;

n.length(1);

n[0].id = (const char *) "centauri.cs.utah.edu";

n[0].kind = (const char *) "";

NC_FactoryFinder_ptr nc_ff =

NC_FactoryFinder::_narrow( root->resolve( n ) );

// Get the math factory on centauri.cs.utah.edu

mathFactory_ptr mf =

mathFactory::_narrow( nc_ff->resolve("MathFactory") );

// Use the math factory to create a new object on

// centauri.cs.utah.edu

math_ptr m = mf->create_object();

// Use the math object

m->seta(3.1);

// release the object references

CORBA::release(root);

CORBA::release(mf);

CORBA::release(m);

return 1;

}

Figure 3.6: Using factory-�nders and factories to create objects
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interface math : CosLifeCycle::LifeCycleObject {

void seta(in double a);

void setb(in double b);

double add();

}

Figure 3.7: Math object with lifecycle operations

// Client's main

main(int argc, char **argv) {

// initialize

// ...

// create a math object, m, on centauri.cs.utah.edu

// ...

// get the factory finder on gemini.cs.utah.edu

NC_FactoryFinder_ptr gemini_ff = ...

// Now, move the math object to gemini.cs.utah.edu

m->move( gemini_ff );

// Create a replica of m on velo.cs.utah.edu

NC_FactoryFinder_ptr velo_ff = ...

math_ptr m_replica = m->replica( velo_ff );

// use the math objects as usual

cout << m_replica->add();

// release the object references

// ...

return 1;

}

Figure 3.8: Client invoking lifecycle operations on math object
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void _im_math::internalize_from_stream(

CosStream::Stream_ptr sourceStreamIO,

CosLifeCycle::FactoryFinder_ptr there)

throw (

CosLifeCycle::NoFactory,

CosStream::ObjectCreationError,

CosStream::StreamDataFormatError)

{

x = sourceStreamIO->read_double();

y = sourceStreamIO->read_double();

}

void _im_math::externalize_to_stream(

CosStream::Stream_ptr targetStreamIO)

{

targetStreamIO->write_double(x);

targetStreamIO->write_double(y);

}

Figure 3.9: Externalization operations implemented by the object



CHAPTER 4

IMPLEMENTING OBJECT MIGRATION

In this chapter, we discuss how objects can be made to support migration when

they receive the appropriate requests from the clients. This discussion is mainly

classi�ed into two sections. The �rst one explains how large-grain objects can

implement object migration. The second one talks about the �ne-grain objects.

Large-grain objects are declared in IDL, and are implemented as CORBA servers,

whereas �ne-grain objects are declared and de�ned in an object-oriented language

(C++, in our case), and remain in the address space of the client. Since these

objects are not declared in IDL, they cannot be directly recognized by the CORBA

ORB. The section on �ne-grain objects describes how one can solve this problem.

4.1 Large-grain Objects

The object services described in the previous chapter can be used to imple-

ment object migration for large-grain objects. Any object that wishes to sup-

port lifecycle operations should inherit from CosLifeCycle::LifeCycleObject

and CosStream::Streamable, and provide implementations for the methods in

these interfaces. The complete IDL speci�cation for a math object that supports

migration is shown in Figure 4.1.

Figure 4.2 shows how this object can be made to support the copy() operation.

As parameters to the copy operation, the math object receives the factory-�nder

that corresponds to the destination. The math object uses the factory-�nder to

locate a math factory at the destination. It then issues a create object() request

on the math factory and obtains a reference to the newly created math object. It

externalizes its own state into a stream object and allows the new math object to

internalize this state from the stream object.
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interface math : CosLifeCycle::LifeCycleObject,

CosStream::Streamable

{

void seta(in double a);

void setb(in double b);

double add();

}

Figure 4.1: Math object supporting migration

CosLifeCycle::LifeCycleObject_ptr _im_math::copy(

CosLifeCycle::FactoryFinder_ptr there,

const CosLifeCycle::Criteria& the_criteria)

{

// get a stream object

CosStream::Stream_ptr s = GetStream();

// externalize the state into the stream object

externalize_to_stream(s);

// use the factoryfinder to create a new object

mathFactory_ptr f = mathFactory::_narrow(

GetFactory("mathFactory",

NC_FactoryFinder::_narrow(there)));

math_ptr new_o = f->create_object();

// ask the new object to internalize the state

new_o->internalize_from_stream(s, NULL);

s->remove();

return new_o;

}

Figure 4.2: Implementation of the copy operation
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The implementation for replicate() is similar to that of copy() except that

the object needs to store certain information about its replicas. This information

can be used to bring the objects into synchronization when required. It should

also be noted that all the earlier replicas of the math object need to be informed

about the newly created replica. This can be done by the add replica() operation

provided in the LifeCycle Service (Appendix).

Moving an object involves copying the object to the destination, and deleting

the current object. All the clients having a reference to the target object should

be able to use the object even after migration. This can be done in ORBeline,

using the rebind-enable feature. With this feature, when a client detects that the

target object no longer exists, it takes the help of ORBeline to bind to a new

object having the same ORBeline name. ORBeline names are names that can be

assigned to objects at the time of creation. We exploit this feature of ORBeline and

implement the move operation by creating a new object at the destination with the

same ORBeline name. Clients will be unaware of the rebind mechanism, and all

the calls will be directed to the new target (after rebind) without any forwarding

or residual dependency. Once the state has been transferred from the source object

to the target object, the source can terminate itself. The ORB will automatically

route the pending requests at the source object to the new location.

Objects also need to provide an implementation for externalize to stream()

and internalize from stream() operations, as described in the last chapter, for

the above operations to work successfully. For the case of single objects which do

not depend on any other objects (which do not have pointers to other objects),

providing implementations for the externalization operations is straight forward.

The case when objects can contain pointers to other objects (resulting in a graph

of objects) is discussed in the next chapter.

All the services described in the previous chapter are implemented as distinct

CORBA servers. These servers need to be running on all the machines which

participate as the source or destination of any migration operation.
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4.2 Fine-grain Objects

Fine-grain objects pose special problems as they are not supported by CORBA.

CORBA can only recognize objects whose interfaces are declared in IDL. It would

not be feasible to declare all the �ne-grain object interfaces in IDL due to several

reasons. Firstly, all the existing C++ applications have to be restructured by

changing their C++ class declarations into IDL. It would be very di�cult to convert

a C++ class containing pointers to objects of other classes into corresponding

IDL. Further, there are no parallels in IDL for many features of C++ such as

implementation inheritance, pure virtual functions, and virtual inheritance. The

second and the more important reason is that by declaring an object's interface

in IDL, the object needs to be implemented as a CORBA server. This defeats

the primary purpose of having �ne-grain objects which are required to share the

address space of the application using them.

So, we need a mechanism in which �ne-grain objects can be created in the

application, but are still visible to the remote clients. If a remote client wants to

invoke any operations on these objects, it can �rst migrate them into its own address

space before using them. Such a model has the bene�ts of �ne-grain interaction

within a client while still allowing the objects to be distributed. We �rst present an

application's view of creation and use of these �ne-grain objects. Then, we describe

how �ne-grain objects can be made to support such behavior.

Figure 4.3 shows an application creating a �ne-grain object of type pt. The

C++ declaration for the class pt is also shown in the �gure. Notice that this class

inherits from fgObject<pt>. This is elaborated later. A pt object is constructed

using the normal C++ constructor mechanisms, which makes the created object

part of the address space of the application.

Remote applications need to be able to migrate (copy, replicate, or move) this

object into their address space. Since, the reference to this object is not visible

to remote applications, we need to have a representative object which is a CORBA

object, and which acts as the representative for the pt object. Remote applications

can now contact the representative to get the desired services. The fact that their
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// class pt is a normal C++ class

class pt : public fgObject<pt> {

public:

pt() {};

~pt() {};

double x;

double y;

};

main()

{

// Initialize the ORB

...

// Instantiate a pt object

pt *pt_obj = new pt;

pt_obj->x = 1.0;

pt_obj->y = 2.0;

// Publish the pt object under the name PTObject

pt_obj->publish(``PTObject'');

// do the rest of the stuff

...

}

Figure 4.3: Creation of �ne-grain objects
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services are being serviced by the representative is completely transparent to the

remote applications.

Every �ne-grain object has its own representative. The representative objects

come into picture only when an object needs to be migrated from one application

to another. Otherwise, the objects within an application interact in a �ne-grain

manner. An application that wishes to allow its objects to be migrated to a di�erent

application publishes its objects using the naming service. Publishing a �ne-grain

object involves publishing its representative in the Naming Service. Figure 4.4

shows a remote application subscribing to a �ne-grain object and migrating it into

its address space.

class pt : public fgObject<pt> {

public:

pt() {};

~pt() {};

double x;

double y;

};

main()

{

// Initialize the ORB

...

// subscribe to the PTObject

representative_ptr r = pt::subscribe(``PTObject'');

// move the remote object to this address space

pt *pt_obj = pt::_narrow(r->move());

cout << pt_obj->x << ', ' << pt_obj->y << endl;

// do the rest of the stuff

...

}

Figure 4.4: Moving a �ne-grain object
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4.2.1 Representative Objects

As explained earlier, representative objects help the remote applications access

�ne-grain objects from another application. An application requests the represen-

tative object to copy(), move(), or replicate() the associated �ne-grain object.

From then onwards, the application and the representative object cooperate to

create a new �ne-grain object in the requesting application, and to transfer the state

of the source �ne-grain object to the destination �ne-grain object. This interaction

is explained below:

1. An application subscribes (using subscribe()) to a representative object and

invokes the appropriate migration operation on it (move() in Figure 4.4).

2. The representative object sends a message to the source object to externalize

its latest state into a stream.

3. The application that initiated the migration, creates a new object in its ad-

dress space, and internalizes the above state into the new object. This is

accomplished by the narrow() operation in Figure 4.4.

In step-2 above, the representative object needs to contact the associated �ne-

grain object to invoke an externalization operation. This is accomplished by callback

objects. Each application is associated with one callback object. This callback

object can accept requests from the representative objects on behalf of the �ne-grain

objects in the application. All the �ne-grain objects in the application register at

the callback object at creation time. These steps are summarized below:

1. An application initializes a callback object that can accept requests on behalf

of all its �ne-grain objects. The callback object should be waiting for requests

from representatives, and hence it is started in a separate thread of execution

within the application as a normal CORBA server.

2. Any object that is created by the application should register itself with the

callback object. This involves assigning an unique name (unique within the
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application) to the object. Registration constitutes a promise by the callback

object that it will forward all the requests received from representative objects

to the appropriate �ne-grain objects.

3. For every object that is created by the application, a representative object is

also created (as discussed earlier). This can be done using a representative

object factory. The representative object should have su�cient information

(a reference to the callback object at which the associated �ne-grain object is

registered, and the unique name of the associated �ne-grain object) to be able

to send a message to the �ne-grain object when required. Sample interfaces for

a representative object and for a factory that creates these objects are shown

in Figure 4.5.

All these interactions are shown in Figure 4.6. When the object is deleted in an

application, it should be unregistered from the application's callback object, and

its representative object should be deleted. Figure 4.7 shows the IDL for a callback

object which is implemented as a CORBA server in each application. In addition

to the methods shown in Figure 4.7, a callback object should support methods to

register and unregister objects. Note that these methods need to be available only

within the application in which the callback object was created. Hence, they do

not appear in the IDL of the callback object. A skeleton implementation for the

callback object is shown in Figure 4.8. The initialization that every application

should go through, in terms of starting a callback object in a separate thread, is

shown in Figure 4.9. Since multiple threads can be accessing the �ne-grain objects

simultaneously, care should be taken to ensure proper coordination between threads.

This could be done using mutual exclusion variables.

In addition to the normal operations that should be supported, every object

should support the following operations:

� publish() - publish an object's representative in the Naming Service.
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interface representative {

// this is the reference to the callback event handler

attribute callback event_handler;

representative copy();

void move();

representative replicate()

void remove();

};

interface representativeFactory {

representative create_object();

};

Figure 4.5: IDL for representative objects and their factories

main client thread

(4) dispatch to the actual object

fine-grain objects

representative objects

Client with fine-grain objects

Factory for representative objects(1)

(2)

(3)

(4)

callback thread

(1) init_callback_thread()
(2) Lifecycle requests from remote clients
(3) send_message()

Figure 4.6: Representative and callback objects
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interface callback {

void send_message(in string obj_name, in string op_name,

inout CosStream::Stream s, inout Traversal t);

};

Figure 4.7: IDL for a callback object

class _im_callback : public _sk_callback

{

// private data members ...

public:

_im_callback();

~_im_callback();

// this method is exported to representative objects

void send_message(const char * obj_name,

const char * op_name,

CosStream::Stream_ptr& s,

Traversal_ptr& t);

// the following methods are used by the objects within the

// application to register and unregister at the callback object.

void register_object(void *obj_ptr, const char *obj_name);

void unregister_object(const char *obj_name);

};

Figure 4.8: Implementation of a callback object
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void *callback_thread(void *arg)

{

_im_callback fg_handler;

// Tell the BOA that the object is ready

boa->obj_is_ready(&fg_handler);

// Event loop

boa->impl_is_ready();

return NULL;

}

main(int argc, char **argv)

{

// Initialize the ORB

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// Initialize the BOA

CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

// start of a new thread for callback handler

thread_t tid;

if (thr_create(NULL, NULL, callback_thread, NULL, NULL, tid)) {

cerr << "Could not start a callback thread" << endl;

exit 1;

}

// do the rest of the stuff

...

};

Figure 4.9: Initialization of the callback object in an application.
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� subscribe() - subscribe to an object that was published earlier in the Naming

Service.

� unpublish() - remove the object from the Naming Service before deleting the

object.

� narrow() - create a new object and internalize the state into it from a stream

object.

These operations are common to every �ne-grain object that can be created by

the application. Hence, these operations are provided by a template class fgObject

which constitutes the base class of all other classes declared in the application. A

simpli�ed interface for class fgObject is shown in Figure 4.10.

All the objects discussed in this chapter were single objects without any pointers

to other objects. Objects in a graphics system do not exist in isolation. We waive

the restriction of isolated objects and see how graphs of objects can be made to

support migration, in the next chapter.

template <class T>

class fgObject

{

// private data members

public:

fgObject();

~fgObject();

void publish(const char *n);

void unpublish();

static representative_ptr subscribe(const char *name);

static T *_narrow(CORBA::Object_ptr obj);

static T *_create(int obj_count = 1, T *t_obj = NULL);

};

Figure 4.10: IDL for a callback object



CHAPTER 5

OBJECT GRAPHS AND GRANULARITY

CONTROL

Objects in a distributed system do not exist in isolation. In general, they will

be related to other objects, resulting in a graph of objects. These graphs introduce

special problems for migration. We consider the graph in Figure 5.1 as an example

for the following discussion. This graph is composed of objects of two types - A

and B. A1, A2, A3, and A4 are objects of type A, while B1 and B2 are objects of

type B. Every A object points to two other objects - one A object and one B object.

Every B object points to one A object. The leaves of the graph are an exception to

this rule, and they may contain NULL pointers.

� When an object in a graph is migrated, the objects that it points to should

also be migrated. In Figure 5.1, when object A1 is migrated, objects A2 and

B1 should also be migrated so that the two pointers of A1 point to valid

objects when they are dereferenced. This means that the entire graph has to

be reconstructed at the destination.

� Graphs in a graphics system are often composed of large number of objects.

It would not be feasible to migrate the entire graph in one step, as mentioned

above. In certain cases, it would be better to migrate only a portion of the

graph, leaving the rest of the graph at the source. The remaining portion could

be migrated as and when it is required at the destination. This introduces the

notion of migration policies which address the issues of granularity control over

migration of graphs.
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pointer to an object of type A

pointer to an object of type B

A4NULLNULL

NULL

A1

A2

A3

B1

B2

Figure 5.1: A graph of objects

� Objects can be shared in an object graph. For example, object A4 is shared by

objects B1 and B2. Special care should be taken to preserve the same sharing

semantics at the destination.

� Classes in C++ have many features such as simple or multiple inheritance,

and virtual inheritance. Further, memory for objects can be dynamically allo-

cated. These language-speci�c features pose special problems for implementing

migration of graphs of objects.

This chapter discusses some of the solutions to these problems, and explains how

we have implemented migration of object graphs. This chapter also introduces the

notion of smart pointers which would help in an e�cient implementation of all the

problems discussed above. We �rst start with a very simple model for implementing

migration for graphs of objects. In addition to providing more insight into the

issues involved, this model provides a basis for extending the model, in subsequent

sections.
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5.1 Simple Model for Migration of Graphs

Figure 5.2 shows the declarations for the classes A and B mentioned in Figure

5.1. We assume that each pointer in these classes is either a NULL pointer or

points to a single object, that may be dynamically allocated. In particular, these

pointers to do not point to an array of objects. We also assume that objects are

not shared within a graph. The code in Figure 5.3 shows an implementation for

the externalization and internalization operations on the objects of these classes.

Having de�ned the externalization and internalization operations in this fashion,

the way in which clients migrate the object graph is exactly similar to the model

discussed in Figures 4.3 and 4.4 of the last chapter. Applications subscribe to an

object (within the graph) that was published earlier by a di�erent application in the

Naming Service, and initiate a migration operation on it. The implementation of the

migration operation initializes the externalization operation on the object (through

representative and callback objects). This would result in the entire subgraph

rooted at that object to be externalized into the stream. At the destination the

object graph is reconstructed by the internalization operation. Thus, we notice that

a proper de�nition of the externalize to stream and internalize from stream

operations results in a support for simple object graph migration without any

further modi�cations to the rest of the system. In the next section, we take a

look at the migration policies that control the granularity of migration.

5.2 Migration Policies

In some cases it would be preferable to migrate the entire graph of objects at one

time. For instance, when we are rendering a model graph, it would be advisable to

migrate the entire model graph to the rendering application, since all the objects

in the graph would be used by the application immediately. However, in some

cases, it is not necessary to migrate the entire graph to the destination. Consider

an application that requires access to only a subgraph of the entire model graph.

Such situations arise very frequently in design environments where users work on

parts of the model instead of working on the entire model. In these cases, we just
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class B;

class A : public fgObject<A>

{

public:

A *ap;

B *bp;

A();

~A();

virtual void externalize_to_stream(CosStream::Stream_ptr s);

virtual void internalize_from_stream(CosStream::Stream_ptr s);

};

class B : public fgObject<B>

{

public:

A *ap;

B();

~B();

virtual void externalize_to_stream(CosStream::Stream_ptr s);

virtual void internalize_from_stream(CosStream::Stream_ptr s);

};

Figure 5.2: Classes A and B
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void A::externalize_to_stream(CosStream::Stream_ptr s)

{

if (ap == NULL)

s->write_long(0);

else {

s->write_long(1);

ap->externalize_to_stream(s);

}

// similarly for bp ...

}

void A::internalize_from_stream(CosStream::Stream_ptr s)

{

int code = s->read_long();

if (code == 0)

ap = NULL;

else {

ap = new A;

ap->internalize_from_stream(s);

}

// similarly for bp ...

}

// similarly for class B

// ...

Figure 5.3: Simple externalization and internalization operations for graphs
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need to migrate the required subgraph. The rest of the graph can be migrated

only when required (perhaps to merge the part with the rest of the model). The

necessary granularity control that is required in migrating subgraphs within a graph

is speci�ed by migration policies.

Two simple migration policies are shallow migration and deep migration. Under

the shallow migration policy, only one object is migrated at a time. The other

objects that it refers to are migrated only when they are required (when the

corresponding pointers are dereferenced). Under the deep migration policy, all the

objects that can be reached from the root object (the object on which the migration

operation was invoked) are migrated immediately. The code shown in Figure 5.3

implements a deep migration policy. In most of the graphics applications, a need

arises for a range of migration policies between these two extremes. The richer the

range, the more control we have on the granularity of migration. The rest of this

section discusses some of possibilities that we have provided in our implementation

to enrich the range.

5.2.1 Depth of Migration

One can migrate all the objects that can be reached from the root within a

certain depth. For example, if we invoke a migration operation on A1 in Figure 5.1

with a depth of 2, the objects A1, A2, and B1 will be migrated. When the pointers

in these objects are dereferenced at the destination, another set of objects within

a depth of 2 from those objects will be migrated. For instance, if the pointer to

B2 was dereferenced in object A2, objects B2 and A4 will be migrated into the

destination. Figure 5.4 demonstrates this policy.

This migration policy can be used to simulate the e�ects of neighborhood of an

object within a graph. A neighborhood of an object comprises of all the objects

that are either dependent on the object or are prerequisites for the construction of

the object, up to a certain depth. Neighborhood is a powerful granularity control

paradigm that is often used in the design of models in Alpha 1.
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Figure 5.4: Migration policy based on depth

5.2.2 Class Boundaries

Sometimes the application demands that object of particular types be migrated

whereas objects of other types be left at the source. For example, a rendering

application might render the model only up to the level of detail of polygons.

Other objects such as points and lines may not be rendered by the application. In

this case, all the objects in the model graph can be migrated until we hit upon a

line object or a point object. The subgraph that is rooted at the point and line

objects need not be migrated.

Considering our earlier example, if we set a class boundary of migration at

objects of class B, objects A1, A2, and A3 will be migrated initially. The rest of

the graph will be migrated when it is required. Figure 5.5 shows this behavior.

A variant of this policy is the di�usion model, in which each class is associated

with a migration power between 0 and 1. The migration is initiated with an initial

power of 1. When an object of a class is migrated, the initial power decreases by the

power of class. When the initial power decreases to a value of 0, the migrates stops.

Figure 5.6 demonstrates this policy with a power of 0.6 associated with objects of

class A and a power of 0.3 associated with objects of class B.
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Figure 5.5: Migration policy based on class boundaries
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Figure 5.6: Migration policy based on di�usion model
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5.3 Smart Pointers

Having considered di�erent migration policies, we now discuss a method called

smart pointers for implementing these policies. Smart pointers will also be useful

in solving some problems associated with language-dependent features, as will be

described in the last section of this chapter.

Smart pointers are special objects for which the dereferencing operator (->

operator) is overloaded [15]. The overloaded operator performs the extra func-

tionality required to migrate the necessary objects into the address space of the

destination, before returning a pointer to the required object. Figure 5.7 shows a

simple implementation for the smart pointer.

In addition to the -> operator, other dereferencing operators such as * (star) and

[] (array indexing) should also be overloaded. To ensure the full functionality of

a normal pointer, other operations such as pointer comparison, pointer arithmetic,

and certain type cast operators need to be de�ned for smart pointers.

Each smart pointer keeps track of the actual pointer to the object, if the object

template<class T>

class smartPointer

{

// some private data

public:

// ...

T *operator->();

T& operator*();

T& operator[](int i);

// overloaded operations

smartPointer<T>& operator= (T *t_ptr);

operator T *();

int operator== (T *t_ptr);

int operator!= (T *t_ptr);

...

};

Figure 5.7: Smart pointers
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is within the address space of the application. If it is not in the application's

address space, it stores su�cient information to be able to migrate the object from

the source, when one of the dereferencing operations is invoked on it. With the

introduction of the smart pointers, all the classes have to be redeclared by replacing

the normal pointers with smart pointers. A modi�ed version of the classes A and B

is shown in Figure 5.8.

class B;

class A : public fgObject<A>

{

public:

smartPointer<A> ap;

smartPointer<B> bp;

A();

~A();

virtual void externalize_to_stream(CosStream::Stream_ptr s,

Traversal_ptr t);

virtual void internalize_from_stream(CosStream::Stream_ptr s,

Traversal_ptr t);

};

class B : public fgObject<B>

{

public:

smartPointer<A> ap;

B();

~B();

virtual void externalize_to_stream(CosStream::Stream_ptr s,

Traversal_ptr t);

virtual void internalize_from_stream(CosStream::Stream_ptr s,

Traversal_ptr t);

};

Figure 5.8: Classes A and B with smart pointers
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Before showing how to implement the externalization operations that incor-

porate migration policies, we introduce traversal objects which are useful in con-

trolling (setting and changing) these migration policies. A traversal object keeps

track of the current migration policy and supports methods to change these set-

tings. The IDL for a traversal object is shown in Figure 5.9. The overloaded

migration type() methods can be used to query and set the migration policy.

The propagation power attribute is used in implementing class boundaries and

di�usion model explained in section 5.2. The traversal object is passed as a

parameter to all the externalization and internalization requests (see Figure 5.8).

To implement the migration policies, the methods externalize to stream()

and internalize from stream() have to be changed as shown in Figures 5.10 and

5.11. Before externalizing a smart pointer, a check is �rst made to see if the pointer

is a NULL pointer. If it is not, the object pointed to by the pointer is externalized, if

the migration policy permits it. In the case of Figure 5.10, the object pointed to by

ap is externalized if the migration policy is deep or if there is enough power (di�usion

power of the class) to migrate the object. If both these conditions fail, the object

is not externalized. Instead, the reference to its representative object is written out

to the stream. The internalization routine can store this reference (Figure 5.11),

and use it to invoke another migration operation when the corresponding smart

pointer is dereferenced.

interface Traversal {

enum MigrationMode {move, copy, replicate};

enum MigrationType {shallow, deep, type_specific};

attribute MigrationMode migration_mode;

attribute double propagation_power;

attribute MigrationType migration_type;

oneway void remove();

};

Figure 5.9: Traversal objects



69

void A::externalize_to_stream(

CosStream::Stream_ptr s, Traversal_ptr t)

{

Traversal::MigrationType _migration_type = t->migration_type();

double _remaining_power = t->propagation_power();

if (ap == NULL)

s->write_long(0);

else if (((_migration_type == Traversal::deep) ||

((_migration_type == Traversal::type_specific) &&

(_remaining_power >= a::_g_power)))) {

s->write_long(1);

t->propagation_power(_remaining_power - ap->_g_power);

ap->externalize_to_stream(s, t);

}

else {

s->write_long(2);

// write the reference for the representative object

// This will be stored by the smart pointer at the destination

// and will be used to migrate the object when required

s->write_object(ap._fp);

}

// similarly for bp ...

}

Figure 5.10: Externalization operation with migration policies



70

void A::internalize_from_stream(

CosStream::Stream_ptr s, Traversal_ptr t)

{

long _index = s->read_long();

if (_index == 0)

ap = NULL;

else if (_index == 1) {

if (ap == NULL)

ap = fgObject<a>::_create();

ap->internalize_from_stream(s, t);

}

else

// the object should be migrated later

ap._fp = fg::_narrow(s->read_object());

// similarly for bp ...

}

Figure 5.11: Internalization operation with migration policies

5.4 Shared Objects in a Graph

An object in a graph is said to be shared if there is more than one object that

refers to that object, or if it is part of a cycle within the graph. From the example

in Figure 5.1, objects A1 and A4 are shared. If we follow the pattern in Figures

5.10 and 5.11 to externalize an object, the shared objects will be externalized

multiple times. Special care should be taken if an object was already externalized

before writing it to the stream. This could be done once again using the traversal

object. Each traversal object keeps track of which objects were externalized into

the stream. It maintains a mapping between the object names (internal ORBeline

names) and unique index numbers that are assigned to those objects. One can query

the traversal object to �nd out whether an object was already externalized, and if

so, get its index number. Instead of writing the object multiple times to the stream,

the index number is written. At the destination, the application that initialized

the migration request keeps track of a mapping between the index numbers and

the pointers to the actual objects that were created within the application. These
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mappings can be used to reestablish the same sharing semantics that were present

at the source.

5.5 Language Dependent Features

Some of the complications in externalizing an object resulting from the features

of the C++ language are discussed in this section. In particular, we look at

the problems posed by dynamic memory allocation for objects, inheritance, and

multiple level of pointers to objects.

In C++, objects can be dynamically allocated using the new operator. Further,

a pointer to an object can be made to point to an array of objects using the new

[] operator. As a result, the number of objects that a pointer points to cannot

be known at compile time. Also, there is no standard way to �nd the number of

objects in the allocated array using a library routine in C++. This complicates the

generation of code for the externalization and internalization routines. Once again,

the notion of smart pointers helps in solving this problem. Since we have replaced

all the pointers in the C++ class declarations with smart pointers, we can make

the smart pointers keep track of the number of objects allocated dynamically. This

can be used to generate the appropriate code for externalization and internalization

routines. The changes required in the declaration of the smart pointers, the creation

routines used in dynamically creating arrays of objects (instead of new []), and

the enhancements to the externalization routines for the examples in this chapter,

are shown in Figure 5.12.

Classes in C++ can inherit from other classes. There are several 
avors of

inheritance in C++ including simple inheritance, multiple inheritance, and virtual

inheritance. To externalize an object whose class (say Y) is inherited from another

class (say X), we need to externalize the data members declared in both X and

Y. This rule applies to all the cases of simple and multiple inheritance, and is

demonstrated in Figure 5.13. It does not cause any harm to extend the same

strategy to virtual inheritance as long as the code to internalize an object is

compatible with the code to externalize it.
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// changes to smart pointers

template <class T>

class smartPointer {

int _size; // size of the array of objects

T *_ptr; // pointer to the array

// rest of the declaration is same as shown earlier.

};

template <class T>

class fgObject {

// ...

public:

// ...

// _create is equivalent to new [] in C++

smartPointer<T> _create(int num_objects);

};

// enhancements to externalization routine for class A

void A::externalize_to_stream(

CosStream::Stream_ptr s, Traversal_ptr t)

{

// ...

if (ap == NULL)

s->write_long(0);

else if (((_migration_type == Traversal::deep) ||

((_migration_type == Traversal::type_specific) &&

(_remaining_power >= a::_g_power)))) {

s->write_long(1);

// number of objects in the array

s->write_long(ap._size);

t->propagation_power(_remaining_power - ap->_g_power);

for (int i = 0; i < ap._size; i++)

ap[i].externalize_to_stream(s, t);

}

else {

// ...

}

// similarly for bp ...

}

Figure 5.12: Changes to incorporate arrays of objects
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class X

{

// data members in X

};

class Y : public X

{

// data members in Y

};

void X::externalize_to_stream(CosStream::Stream_ptr s,

Traversal_ptr t)

{

// code to externalize data members in X

}

void Y::externalize_to_stream(CosStream::Stream_ptr s,

Traversal_ptr t)

{

// first externalize the data members in X

X::externalize_to_stream();

// code to externalize data members in Y

}

Figure 5.13: Inheritance and externalization routines
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Finally, pointers need not be de�ned at a single level in C++. Figure 5.14 shows

the di�erent ways in which pointers can be de�ned in a C++ class. Smart pointers,

as de�ned earlier, need no further modi�cations to incorporate these cases. Figure

5.14 shows how smart pointers can be nested to solve this problem.

class test;

class different_pointers

{

test *p1;

test **p2;

test ***p3;

test *p4[10];

test **p5[10][20];

};

// the above class is equivalent to the following class

// using smart pointers

class different_pointers

{

smartPointer< test > p1;

smartPointer< smartPointer< test >> p2;

smartPointer< smartPointer< smartPointer < test >>> p3;

smartPointer< test > p4[10];

smartPointer< smartPointer< test >> p5[10][20];

};

Figure 5.14: Multiple levels of pointers and their smart pointer equivalents



CHAPTER 6

CONCURRENCY CONTROL

One of the ways for migrating an object, as described in Chapter 2, is replication.

The replicated object and the target object share the same logical identity. This

implies that when one of the replicas is modi�ed, it should be re
ected in the

other replicas as well. Replication of objects provides a simple and convenient

paradigm for the sharing of objects between di�erent applications. However, it also

introduces new problems in terms of concurrency control. Simultaneous accesses to

the replicas might result in inconsistent modi�cations on the same object. This

chapter addresses the concurrency control issues that arise from replication of

objects and the appropriate strategies to solve these problems from the stand point

of graphics applications.

6.1 Transaction Models

In order to maintain consistency of data in an application, certain application-

speci�c consistency requirements must be satis�ed. For example, in a banking

application performing a money transfer, the amount of money debited from an ac-

count should be equal to the amount of money credited in another. The application-

speci�c consistency requirement in this case is that the total sum of the money in

the associated accounts should be constant. The required consistency requirements

are satis�ed by grouping the series of instructions performing the money transfer

into a sequence called transaction. Assuming that the data manipulated by the ap-

plication resides in a database, users maintain consistency in the data by performing

transactions on the database. Transactions play three distinct and important roles

in maintaining the consistency of data [16]: (a) they are logical units that group

together operations comprising a complete task, (b) they are atomicity units whose
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execution preserves the consistency of the database, and (3) they are recovery units

that ensure that either all the steps enclosed within them are executed or none are.

Thus, by de�nition, a transaction takes a database from one consistent state to

another.

When multiple users execute transactions simultaneously on the database, we

need a concurrency control strategy that maintains the required consistency in-

spite of concurrent accesses. We can say that the database is in a consistent

state if the net e�ect on the database is identical to the case when each of the

transactions executed one after the other in any particular order. This additional

requirement in lieu of concurrent transactions is known as serializability. Most

of the concurrency control strategies revolve around the notion of serializability

in maintaining database consistency. For example, they would not allow any

transaction that might jeopardize the serializability requirement, or they might

rollback a transaction that violates the serializability requirement. It should be

noted that serializability is not a necessary condition for ensuring consistency of

concurrent transactions. A schedule of transactions might not be serializable, but

still satisfy application-speci�c consistency requirements.

Some of the standard concurrency control techniques include the locking pro-

tocols (two-phase locking being the most popular), timestamp ordering, and opti-

mistic concurrency control schemes [16]. We assume that the reader is familiar with

the concepts in some of these concurrency control strategies. To clearly understand

the drawbacks of these schemes when applied to graphics applications, and for the

rest of the discussion in this chapter, we consider an example. Figure 6.1 shows

a simple model graph showing the design of a car. The components in the design

are shown as nodes in the graph. An arc from one node to another indicates a

dependency between the associated components. For example, there can be certain

design requirements and components that in
uence both the engine and the interior

of a car. The shape of the entire body might in turn depend on the size of the

engine and the space in the interior besides other factors. There can be di�erent

groups of people assigned to working on di�erent parts of the car. For instance,
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Body shape
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Figure 6.1: Concurrency control

one of the groups (say group A) may be assigned to work on designing the engine,

while the other group (group B) could be working on the interior design of the

car including seating and comfort. In such a design scenario, if the traditional

concurrency control scheme of two-phase locking is employed, group A needs to

lock the objects involved in the design of the engine. Since any modi�cations in

the parts that in
uence the engine would change the design of the engine, it should

also lock all the objects involved in the prerequisites of the engine components

(design specs, in Figure 6.1. This itself would prevent group B from proceeding

with their design since they need to lock the prerequisites of their components that

were already locked by group A. Thus all the concurrency in the design process is

lost. Besides, the standard concurrency control strategies are not appropriate for

design scenarios in CAD applications for several other reasons [17]:

Long Transactions: Operations on objects in design environments are often long-

lived. Blocking all the resources until a transaction commits would result in

substantial reduction in concurrency and collaboration.

User Control: Unlike the sequence of actions in traditional database applications

(such as banking and airline applications), the actions in graphics applications



78

are more interactive in nature. The conventional transaction model does not

support any user intervention within a transaction. The only way a transaction

could be tested for consistency is by executing the transaction and checking

the state of the database. If there is any consistency violation, the entire

transaction has to be rolled back. With long transactions, this would mean

that the user has to sacri�ce all the amount of work. As opposed to rejecting

the entire transaction, the user might want to make a set of changes to his

design to bring the model back to the state where it does not violate the

consistency requirements. Thus there is a need to provide more user control

on the transaction.

Synergistic Cooperation: One of the most common facets of a design setting

is the collaboration between the designers. In a collaborative environment,

designers would like to work on shared objects, exchange objects, and even

modify parts of the same object simultaneously. None of these levels in collab-

oration could be achieved by any serial schedule. Thus insisting on serializable

concurrency control might prevent the desirable forms of cooperation between

designers.

The underlying problem with existing concurrency control strategies is that they

are all based on the strong notion of serializability. To ensure serializability, most of

the concurrency control protocols abstract the application behavior into two classes

of operations - read an object from the database, and write an object to the database.

Without any further knowledge of the application semantics, all the applications can

be made to follow the serializability constraint (and thus consistency), by preventing

read-write and write-write con
icts. Thus, equating the notions of consistency with

serializability causes a signi�cant loss of concurrency in graphics applications. In

the next section we propose some looser versions of concurrency control that help

in maintaining consistency of data in a graphics application that is characterized

by long transactions in addition to the requirements on user control and synergistic

cooperation.
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6.2 Concurrency Control Strategies

To design concurrency control strategies for CAD transactions, it would be

helpful to have a good understanding of the development and design patterns

that are common in these applications. Developers of a large project often divide

themselves into small groups which work on speci�c components of the project.

The interaction behavior between members of the same group will be di�erent

from the interaction between the groups. This results in a hierarchical organization

of the entire project and reduces the problem of maintaining consistency into two

sub problems: a 
exible concurrency control scheme to allow cooperation between

members of the same team, and a global policy that ensures correct serialization

of the e�orts of all the groups. This paradigm, which is referred to as the group

paradigm in literature, is shown in Figure 6.2. Normally, each group will also

be associated with a local repository to store the objects constructed or modi�ed

within the group, as opposed to a global repository which consists of all the �nalized

objects. Since there will be less overlap among the e�orts of di�erent groups, we can

enforce a strict two-phase locking policy to control the concurrency at the top most

level (global repository). The same policy will not be applicable between members

of the same group for the reasons discussed in the previous section. The example

in Figure 6.2 shows a two-level hierarchy. This could easily be extended to more

than two levels. We �rst describe the two-phase locking at the top-most level, and

then we look at schemes based on version management that support cooperation

while maintaining consistency at the lower levels.

Referring to our example in Figure 6.1, the project of designing a car could be

divided into two groups, one to handle the design of the engine, and the other to

handle the interior design. We make a simplifying assumption that the complete

shape of the car is determined by the designs of these two groups and some other

factors which are constants. The global repository stores the entire model, whereas

the local repositories are used to store the model for the engine and the model for

the interior structure of the car. Most of the design updates will occur on the local

repositories. Once a group decides that it has successfully �nished a version of
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Figure 6.2: Group paradigm

the design, it can checkin the model into the global repository. Since this checkin

process is not a long transaction, the group that needs to checkin is free to lock

the model in the global repository for the duration of the checkin. The other

groups in the project can see the work of a particular group only when it checks

in its model into the global repository. This is not a concern since the groups were

originally designed to work in isolation. Once the checkin process is complete, the

dependencies can be propagated in the entire model resulting in an updated version

of the car in the global repository.

The problem of concurrency control at the level of local repositories is non trivial.

The concurrency control scheme should support long transactions, user control,

and synergistic cooperation. We start with a simple version management system

to maintain consistency in the local repositories. Then we discuss the drawbacks

of this scheme and propose extensions to support the required features.

Version management [18] is the term used to describe the set of organizational

concepts and operational mechanisms for arranging engineering design data into

hierarchical aggregates that change over time. The basic principle in a version

management system is to control access to the shared objects so that only one

developer can modify an object at any time. A standard approach that is widely
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implemented by the version control tools such as the Source Code Control System

(SCCS) and the Revision Control System (RCS) is the checkout/checkin mecha-

nism. Under this approach, each data object is considered to be a collection of

di�erent versions. Each version represents the state of the object at some point of

time in the history of its development. Once a version of an object is created, it

becomes immutable, which means that it cannot be changed. Instead, a new version

can be created after explicitly reserving the object. The reservation makes a copy

of the original object and gives the owner of the copy exclusive rights on the copy

so that he or she can modify it and deposit as a new version.

Two or more users can work on the same object only by creating multiple parallel

versions of the object, creating branches in version history. In the presence of graphs

of objects, a version of an object consists of all the objects that can be reached from

that object in the graph. For the rest of the discussion, we extend our example of

Figure 6.1 by expanding the engine of the car into a hypothetical model shown in

Figure 6.3. When a designer X checks out object C from the engine model, the

entire subgraph rooted at object C is checked out - in this case, objects C and

D. Once these objects are modi�ed, they can be checked in as new versions C 1

and D 1. Let us assume that another designer Y has decided to checkout object C

while designer X is working on his or her objects. The modi�cations made by Y

will be deposited as another parallel version D 2, once Y checks in his updates. The

engine model in the local repository looks like the one shown in Figure 6.4 after

the updates from X and Y. The trees within the ellipses show the version histories

for objects C and D.

From the representation of Figure 6.4, it would not be possible be tell which

versions of di�erent objects are consistent with each other. Hence, there is a

need to group sets of versions consistent with each other into con�gurations. This

would enable designers to reconstruct a version of the entire model. Three valid

con�gurations exist for the representation of Figure 6.4. They are shown in Figure

6.5.

Having described the basics of the version management system, we now describe
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Figure 6.5: Con�gurations in version management
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its e�ectiveness in supporting the features required for transactions in graphics

applications.

6.2.1 Long Transactions

Designers who need access to the same object must either wait until the new

version is deposited or reserve another version if that exists. Since the deposited

versions are locked only for a limited amount of time (until they are copied into

a new version), designers can almost always �nd a version of the object that can

be checked out. Designers execute long transactions on their checked out copies

before checking them back to the repository and depositing new versions. Thus,

this model supports long transactions to some extent. However, when a designer

needs to wait on a particular checked out version of an object, he has to wait until

the object is deposited back into the repository. This would decrease concurrency

and collaboration, and is discussed in detail in section 6.2.3.

6.2.2 User Control

No rollbacks are ever required in this model, since updates to objects are always

deposited as new versions. However, user control is still required when two versions

of the same object have to be merged. To demonstrate this, consider the example

in Figure 6.4. After the updates by designers X and Y are checked in, they might

decide that the �nal version of the engine model should contain part of the updates

made by X, and part of the updates made by Y. So, objects D 1 and D 2 have to

be merged with each other accordingly. The process of merging can be facilitated

by a merge editor that displays both the objects D 1 and D 2 visually (if they can

be displayed) or textually (by dumping the state of the object). One could then

modify or create another object with the necessary state and deposit it back into

the repository. The engine model after the merging process is shown Figure 6.6.

Version management can thus be easily extended to support more user control.
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Figure 6.6: Merging of di�erent versions

6.2.3 Synergistic Cooperation

The main drawback with the version management system is its lack of support

for collaboration among di�erent designers. Designers can work on only parallel

versions of the model at a time. However, we can extend the version management

system with a set of lock modes that could be used to improve cooperation among

di�erent designers. The extended model supports three di�erent lock modes on a

version of an object: (a) read only, which makes a version available only for reading,

(b) shared derivation, which allows the owner to both read the version and derive a

new version from it, while allowing parallel reads of the same version and derivation

of di�erent new versions by other users, and (d) exclusive lock, which allows the

owner to read, modify, and derive a version and allows no parallel operations on

the locked version.

The exclusive locks can be used to isolate the e�orts of independent developers

(as in the top-most level of the project hierarchy). If a designer requests a lock on

an object that is already locked in an incompatible mode, the lock is rejected and

initiator is informed of the rejection. This prevents deadlocks, which are caused

by blocking of transactions that wait for unavailable resources. The initiator could

be informed when the requested lock is available. Further, all the locks have to
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be acquired before any of them is released. However, an acquired lock can be

strengthened to a more powerful lock in the lock acquiring phase, and weakened

in the lock releasing phase. The read only lock is compatible with any lock mode,

and this lets a user to watch the progress of another designer without a�ecting the

designer's work. To be able to work on the same object, locks can be requested in

the shared derivation mode. To explain this, we return to our example in Figure

6.3 where designers X and Y need to modify object D simultaneously. X requests a

shared derivation lock on D, and Y requests a shared derivation lock on the version

checked out by X. Designer Y can now watch all the updates done by X on D 1. At

the same time, Y can derive a new version of object D, called D 2, and perform his

updates accordingly on D 2. Since, Y is already aware of the updates as and when

they are made by X, the process of merging D 1 and D 2 will be either trivial or

very simple.

The mechanism described here supports collaboration of work to a small extent.

Synergistic cooperation where users can freely exchange objects, or where many

users can simultaneously work on the same object, remains unsolved.



CHAPTER 7

ALPHA 1 APPLICATIONS

So far, we have discussed the features of our object migration system and

explained how we have implemented it. In this chapter, we demonstrate the

feasibility and ease of using the system to incorporate object migration in ex-

isting applications. The experiments in this chapter also help us to empirically

demonstrate the functional correctness of our system.

Alpha 1 is an integrated graphics, modeling, design and manufacturing package

based on B-splines. The Alpha 1 group is actively engaged in fundamental and

applied research in developing methods for representing, specifying, manipulat-

ing, and visualizing geometric models, including assemblies and mechanisms, on

a computer, as well as associated process planning, and manufacturing issues for

both traditional (milling, turning, CMM, EDM), and innovative (layer technology)

manufacturing processes. The rest of this chapter describes some of the existing

facets of Alpha 1, and how they can be modi�ed to bene�t from the advances in

distributed systems and object migration.

Alpha 1, as it exists today, is comprised of numerous independent applications

such as a renderer, a model constructor (c-shape-edit), and a model viewer

(motif3d). All these applications themselves use object-oriented design and are

implemented in C++. The c-shape-edit is the central core of the entire Alpha 1

system which provides a programming language interface for constructing models

of any complexity. It supports many operations for constructing di�erent kinds

of objects ranging from points, polygons, curves, and surfaces to assemblies and

features such as pockets and holes. All these objects are arranged in an inheritance

hierarchy to allow reuse and polymorphic behavior. A part of the current inheri-

tance hierarchy for the �ne-grain objects in Alpha 1 in shown in Figure 7.1. All the
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Figure 7.1: Hierarchy of objects in Alpha 1

objects inherit from a common object type. Examples of these classes are given

later in this chapter.

The independent applications of Alpha 1 interact by saving their output to a

�le where other programs can access it. For example, the model constructor could

save the model to a .a1 �le, which can then be used by the renderer to render the

model. Nicholas Rahn has provided object-oriented wrappers to these independent

applications, so that each of them can make member function invocations on the

other objects [19]. In this setting, the large-grain objects in Alpha 1 such as the

model constructor, model viewer, and renderer will be running as CORBA servers,

and any object is free to invoke methods on these objects. In the next section

we describe this model in a greater detail, and explain how these CORBA objects

can be extended to support object migration using our system of object migration.

Then, we describe some of our attempts in converting the huge collection of �ne-

grain objects into objects that can freely migrate between applications.

7.1 Large-grain Objects in Alpha 1

There are distributed CORBA implementations for four large-grain objects in

Alpha 1 - the model repository, the renderer, the model viewer, and the model

constructor. The interfaces for a renderer object and a model repository object

are shown in Figure 7.2. The renderer object supports one method which accepts
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interface renderer

{

oneway void render_to_file( in a1_object a1obj,

in string file_name );

};

interface model_rep

{

a1_object query( in string model_name );

void add_model( in string model_name, in a1_object a1obj );

void remove( in string model_name );

a1_object read_file( in string file_name );

};

Figure 7.2: Large-grain objects in Alpha 1

an Alpha 1 model and renders the model to a speci�ed �le. The model repository

supports methods for storing, retrieving, and removing Alpha 1 models in or from

a repository. The objects can be running as CORBA servers which accept requests

from any Alpha 1 application. We have extended the current Alpha 1 system

by implementing object migration for these large-grain objects. In addition to

providing an object-oriented interface, these large-grain objects can now migrate on

the network between nodes, which results in all the bene�ts mentioned in Chapter

2.

The methodology for adding migration capabilities to these objects is exactly

similar to that described in Chapter 4. Each of the interfaces is made to inherit

from CosLifeCycle::LifeCycleObject and CosStream::Streamable, as shown

in Figure 7.3. The implementation for these objects should then provide the

de�nitions for all the methods required to externalize or internalize an object, and

the lifecycle operations including move, copy, and replicate. The tools in our object

migration system make the task of providing these implementations very simple.

A complier called lggen takes the interfaces (Figure 7.3), and generates the code

for all the lifecycle operations. Once the data members in the implementation class

have been speci�ed, the same compiler does a second pass on the implementation
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interface renderer : CosLifeCycle::LifeCycleObject,

CosStream::Streamable

{

oneway void render_to_file( in a1_object a1obj,

in string file_name );

};

Figure 7.3: Large-grain objects with lifecycle operations

class declaration, and generates the code for the externalization and internalization

operations. A simpli�ed version of the implementation for the renderer object, and

the code that is generated by our compiler is shown in Figure 7.4.

7.2 Fine-grain Objects in Alpha 1

Alpha 1 supports nearly 500 object types that are used in the modeling and

design of various geometric and mechanical parts. To demonstrate the usability of

our object migration system, we have provided object migration support to a small

subset of these object types. Two of the types that are widely used in Alpha 1

are the surface object type (srf obj) and the curve object type (crv obj). These

object types were extended to support migration capabilities. A simpli�ed version

of the class declaration for srf obj is shown in Figure 7.5. Notice that the data

members in a surface object include matrix objects (for storing the control mesh

and knot vectors of the surface), shell objects (a pointer to the parent shell that

contains this surface), and other objects such as the trimming objects and tear

objects (which are used in characterizing certain special properties of the surface).

All these objects should also be made to support object migration. Further, the

surface object type inherits from an attribute object type (attr obj) which inherits

from list object type (list obj), which in turn inherits from (object type) as

shown in Figure 7.1. This implies that all the base class objects should also be

made to support object migration.

The methodology for adding migration support to these �ne-grain objects is

also exactly similar to the one mentioned in Chapters 4 and 5. The base class



91

class _im_render :

public _sk_render,

public _sk_CosLifeCycle::_sk_LifeCycleObject,

public _sk_CosStream::_sk_Streamable

{

private:

// private data members...

public:

// Lifecycle operations...

CosLifeCycle::LifeCycleObject_ptr copy(

CosLifeCycle::FactoryFinder_ptr there,

const CosLifeCycle::Criteria& the_criteria);

void remove();

void move(CosLifeCycle::FactoryFinder_ptr there,

const CosLifeCycle::Criteria& the_criteria);

CosLifeCycle::LifeCycleObject_ptr replicate(

CosLifeCycle::FactoryFinder_ptr there,

const CosLifeCycle::Criteria& the_criteria);

// Externalization and Internalization operations...

void internalize_from_stream(

CosStream::Stream_ptr sourceStreamIO,

CosLifeCycle::FactoryFinder_ptr there);

void externalize_to_stream(

CosStream::Stream_ptr targetStreamIO);

};

Figure 7.4: Code generated by lggen
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typedef matrix_obj mat_1d_obj;

typedef matrix_obj mat_2d_obj;

class srf_obj : public attr_obj

{

// private data members

trimming_loop_obj *trim_;

mat_3d_obj *s_mesh_;

tear_info_obj *t_info_;

shell_obj *shell_;

mat_1d_obj *s_kv_[2];

int s_order_[2];

ec_type s_type_[2];

public:

// member functions...

};

Figure 7.5: Surface object type in Alpha 1

of the hierarchy is made to inherit from fgObject, and the externalization and

internalization operations are de�ned for each object type. This process is simpli�ed

by one of our tools called fggen. fggen is a compiler which takes a normal

C++ class declaration and converts all the pointers in it systematically into smart

pointers. It also automatically generates the code for externalizing and internalizing

objects of that type, while considering all the issues mentioned in Chapter 6 such

as object sharing within the graph and migration policies.

In order to test our object migration system, we have implemented simple

Alpha 1 applications which generate some curves and surfaces. One of these appli-

cations is shown in Figure 7.6. The generated surfaces (or curves) are then migrated

into another application shown in Figure 7.7. The surface objects are then compared

by dumping them to Alpha 1 streams and viewing them using model viewers.
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#include <alpha_1.h>

int main( int argc, char **argv )

{

// initialization

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

thread_t tid;

fg_handler = init_callback_thread(boa, &tid, &mutex);

if (!tid)

exit(1);

// create a simple surface

pt_obj pobj;

vec_obj vobj(1, 2, 3);

crv_obj *cobj = create_unit_circle();

srf_obj *sobj = srf_of_revolution( pobj, vobj, cobj );

sobj->publish(``SRFOBJ'');

sobj->dp_obj();

// wait

getchar();

}

Figure 7.6: Creation of a surface
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#include <alpha_1.h>

int main( int argc, char **argv )

{

// initialization

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

thread_t tid;

fg_handler = init_callback_thread(boa, &tid, &mutex);

if (!tid)

exit(1);

// migrate the surface

representative_ptr r = srf_obj::subscribe(``SRFOBJ'');

srf_obj *sobj = srf_obj::_narrow(r->move());

sobj->dp_obj();

}

Figure 7.7: Migration of the surface object



CHAPTER 8

CONCLUSIONS

Having identi�ed distributed computing as the computing paradigm of the fu-

ture, we have discussed how distributed object-oriented platforms such as CORBA

help in abstracting the complexities of distributing an application from the applica-

tion semantics. CORBA has its foundation in many earlier distributed systems and

platforms such as OSF DCE. The founders of CORBA were successful in compiling

all the features necessary to create distributed applications, in the form of object

services and common facilities.

We noticed that graphics applications cannot bene�t directly from these ad-

vances due to several factors. The primary requirement for graphics applications,

which was not well supported by CORBA, was the object model. Graphics appli-

cations demand an environment where �ne-grain objects (which normally reside

in the address space of the application that creates them) can migrate freely

between applications. In order to meet this requirement we have added the support

for �ne-grain objects in CORBA by two additional object services in the form

of representative objects and callback objects. With this addition, objects can

now interact in a �ne-grain manner within an application while still supporting

their use by remote applications. Remote applications can migrate the �ne-grain

objects to their own address space before using them. This model requires the

creation of one representative object (which is a CORBA object) for every �ne-grain

object created. Though this would mean that there will be a large number of

representative objects, we have provided scalability in the creation of representative

objects through representative object factories. A certain number of representative

objects are created within a factory, and once the capacity of a factory is exceeded,

new factories are started. Further, these factories could be started anywhere on the
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network.

We have identi�ed the necessity for di�erent degrees of migration in a collabora-

tive environment. When users want to start working on a new version of an object,

they can use the copy operation. When they need to work on the same object

they can use the replicate operation. The move operation is used to completely

transfer objects from one application to another. For example, it can be used to

�nally checkin the object into a repository. These di�erent degrees of migration are

also required for the concurrency control schemes discussed in one of the chapters.

The three degrees of migration, together, provide a powerful set of primitives that

can be used to e�ectively manage collaboration in design.

Since objects do not exist in isolation we have provided the support for migrating

object graphs of arbitrary complexity. The common problems associated with

migrating object graphs, such as cycles within a graph and sharing of objects

in a graph, have been handled. To provide more control on the granularity of

migration within a graph, we have discussed several migration policies including

the shallow and deep migration policies, class boundaries, and di�usion model.

The di�usion model, being the most powerful of the discussed models, can be used

to simulate the other migration policies. With this granularity control, users can set

the exact behavior of migration before invoking a migration operation on a graph

of objects. In most of the cases, the right migration policy (which determines the

performance) depends on the speci�c application semantics, while in others it can

only be determined by repeated experiments.

To implement the migration policies and to solve certain language dependent

features in abstract data types, we have introduced the notion of smart pointers.

Smart pointers provided a very intuitive and elegant solution to all the problems

associated with graphs of objects.

Concurrency control plays a very important role in the presence of replication

of objects and object graphs. We have discussed the drawbacks of some of the

standard concurrency control schemes when applied to graphics applications, and

identi�ed that any concurrency control scheme for a graphics application should
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support long transactions, more user control, and synergistic cooperation. Then,

we proposed some techniques that are aimed at supporting these three features.

The drawbacks of the techniques were also discussed.

To substantiate our results, we have tried out some experiments on the Alpha 1

system. Though it would be impractical to convert all the existing object types

in the Alpha 1 system into migratable objects, we have identi�ed a small subset

of objects that would clearly demonstrate the feasibility of object migration in

the system. Further, the existing implementation of the Alpha 1 system is not

distributed in nature, partly for the reasons mentioned in Chapter 1, and partly

for the reason that it has evolved over the past 20 years when there was not much

interest in distributed systems. A major direction of growth in the current Alpha 1

system would be to make it more distributed so that there could be more support

for collaboration in design.

Though our object migration system supports migration of �ne-grain objects

and object graphs, we have not provided any support for passing objects by value

in remote method invocations. All the objects are passed by reference in CORBA,

and passing objects by value has some special bene�ts in terms of performance.

To pass an object by value, the object has to be migrated to the process where

the remote method is executed, and then migrated back to the caller. Thus call-

by-value can be supported as an extension to object migration. Further, other

aspects of distributed object management such as object persistence could also be

implemented as extensions to object migration. Object migration also opens up

new areas of research in collaborative design environments. One could design tools

which are very helpful for supporting collaboration, by taking advantage of object

migration.



APPENDIX

IDL FOR OBJECT SERVICES

/* Naming Service */

module CosNaming
{

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;
enum BindingType {nobject, ncontext};
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;

interface NamingContext {

enum NotFoundReason { missing_node, not_context, not_object};
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);
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void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
oneway void remove( )

raises(NotEmpty);
BindingList list();

};
};

/* LifeCycle Service */

module CosLifeCycle{

typedef CosNaming::Name Key;
typedef Object Factory;
typedef sequence <Factory> Factories;
typedef struct NVP {

CosNaming::Istring name;
any value;

} NameValuePair;
typedef sequence <NameValuePair> Criteria;
enum add_replica_mode {recursive, not_recursive};

exception NoFactory {
Key search_key;

};
exception NotCopyable { string reason; };
exception NotMovable { string reason; };
exception NotRemovable { string reason; };
exception NotReplicable { string reason; };
exception InvalidCriteria{

Criteria invalid_criteria;
};
exception CannotMeetCriteria {

Criteria unmet_criteria;
};

interface FactoryFinder {
Factories find_factories(in Key factory_key)

raises(NoFactory);
};

interface LifeCycleObject {
LifeCycleObject copy(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotCopyable, InvalidCriteria,

CannotMeetCriteria);
void move(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotMovable, InvalidCriteria,

CannotMeetCriteria);
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oneway void remove()
raises(NotRemovable);

// the following operations are provided for replication
LifeCycleObject replicate(in FactoryFinder there,

in Criteria the_criteria)
raises(NoFactory, NotReplicable, InvalidCriteria,

CannotMeetCriteria);
void add_replica(in LifeCycleObject obj,

in add_replica_mode mode);
void sync_in(in LifeCycleObject obj);
void sync_out();

};
};

/* FactoryFinder based on Naming Contexts */

interface NC_FactoryFinder :
CosNaming::NamingContext, CosLifeCycle::FactoryFinder {

/*
* This is a factory finder that is based on naming contexts
* in naming service. See page-72 of COSS-1 for more details.
*/

};

/* Externalization Service */

module CosStream {

exception ObjectCreationError{};
exception StreamDataFormatError{};

interface Streamable;

interface Stream {
void externalize(

in Streamable theObject);
Streamable internalize(

in Streamable theObject)
raises( StreamDataFormatError );

void flush();

void write_string(in string aString);
void write_char(in char aChar);
void write_octet(in octet anOctet);
void write_unsigned_long(

in unsigned long anUnsignedLong);
void write_unsigned_short(

in unsigned short anUnsignedShort);
void write_long(in long aLong);
void write_short(in short aShort);
void write_float(in float aFloat);
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void write_double(in double aDouble);
void write_boolean(in boolean aBoolean);
void write_object(in Object obj);

string read_string()
raises(StreamDataFormatError);

char read_char()
raises(StreamDataFormatError );

octet read_octet()
raises(StreamDataFormatError );

unsigned long read_unsigned_long()
raises(StreamDataFormatError );

unsigned short read_unsigned_short()
raises(StreamDataFormatError );

long read_long()
raises(StreamDataFormatError );

short read_short()
raises(StreamDataFormatError );

float read_float()
raises(StreamDataFormatError );

double read_double()
raises(StreamDataFormatError );

boolean read_boolean()
raises(StreamDataFormatError );

Object read_object()
raises(StreamDataFormatError );

oneway void remove();
};

interface StreamFactory {
Stream create_object();

};

interface Streamable {
void externalize_to_stream(

in Stream targetStreamIO);
void internalize_from_stream(

in Stream sourceStreamIO,
in CosLifeCycle::FactoryFinder there)
raises( CosLifeCycle::NoFactory,

ObjectCreationError,
StreamDataFormatError );

};
};

/* Representatives for Fine-grain objects */

module fine-grain {

interface representative {
attribute CosStream::Stream my_stream;
attribute callback event_handler;
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representative copy(inout Traversal t)
raises ( CosLifeCycle::NotCopyable );

void move(inout Traversal t)
raises ( CosLifeCycle::NotMovable );

representative replicate(inout Traversal t)
raises ( CosLifeCycle::NotReplicable );

void remove()
raises ( CosLifeCycle::NotRemovable );

void add_replica(in representative fg_obj,
in CosLifeCycle::add_replica_mode mode)

raises ( CosLifeCycle::NotReplicable );
void sync_in(in representative fg_obj);
void sync_out();

};

interface representativeFactory {
exception CapacityExceeded{ };

representative create_object()
raises ( CapacityExceeded );

};
};

/* Callback Objects */

interface callback {
void send_message(in string obj_name, in string op_name,

inout CosStream::Stream s,
inout Traversal t);

};
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