ERROR BOUNDED APPROXIMATE
REPARAMETRIZATION OF
NON-UNIFORM RATIONAL

B-SPLINE CURVES

by

Mark D. Bloomenthal

A thesis submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
The University of Utah

August 1999

Copyright (© Mark D. Bloomenthal 1999

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Mark D. Bloomenthal

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Elaine Cohen

Frank Stenger

Peter Shirley

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Mark D. Bloomenthal in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Elaine Cohen
Chair, Supervisory Committee

Approved for the Major Department

Robert R. Kessler
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

In designing free-form curves and surfaces, the user of a geometric modeler generally
wishes to concentrate on shape. Geometric constructions using parametrically defined
representations, however, often lead to unwanted or surprising effects due to curve and
surface parametrizations. Reparametrizing curve or surface representations is an impor-
tant approach to minimizing these effects. Reparametrization also can be viewed as a
means for transforming curves and surfaces into representations that are better suited to
establishing important properties or exploring the design space.

This research explores the use of curve reparametrization in modeling tools for NURBS
(Non-Uniform Rational B-Spline) based CAD systems. There are many practical appli-
cations of such tools including establishing and exploring correspondence in geometry,
creating related speed profiles along motion curves for animation, specifying speeds along
tool paths, and identifying geometrically equivalent, or nearly equivalent, curve mappings.

Central to this work is the presentation of new error bounded algorithms for important
cases of NURBS curve reparametrization. These algorithms are developed from within a

general framework and address:

e approximate arc length parametrizations of curves,
e approximate inverses of NURBS functions, and

e reparametrizations that establish user specified tolerances as bounds on the Frechet

distance between parametric curves.

CONTENTS

ABSTRACT . .. iv

LIST OF FIGURES e viii

LIST OF TABLES e xiv

ACKNOWLEDGEMENTS e e XV
CHAPTERS

1. INTRODUCTION e e e e 1

1.1 Comtext . .ot 1

1.2 Reparametrization in CAD Design 2

1.3 Problem Statement 3

1.4 Research Objectives 6

1.5 Document Summary 7

2. MATHEMATICAL BACKGROUND 8

2.1 What is a Parametric Curve? 8

2.1.1 Distance Between Parametric Maps 8

2.1.2 Frechet Curvesttt 9

2.1.3 Regular CUIvesttt e 10

2.1.4 Piecewise Regular Curves i 11

2.2 NURBS CUIVES . .\ oottt et e e e e e e e e e e et e e 12

2.2.1 NURBS Curve Refinement 13

2.2.2 Algebraic Operationson NURBS 13

2.2.3 An Example: Bounding Equal-Parameter Distance 14

2.2.4 Composition of NURBS Curves 16

3. RELATED WORK e 17

3.1 Arc Length Parametrized Curves 17

3.2 Distance Between Parametric Curves 21

3.2.1 Frechet Distance i 21

3.2.2 Other Metricsottt e e 23

3.3 Texture Mapping and Grid Generation................. 23

3.4 Correspondence and Reparametrization 24

3.5 “Relabeling” of Discrete Interpolation Data 25

4. REPARAMETRIZATION ALGORITHMS 27

4.1 Framework. 27

4.1.1 Method 1 — A General Tterative Refinement Scheme 28

4.1.2 Approximation Operators M 30

4.1.3 MEtriCS . . it e 31

4.1.4 Refinement Schemes, 31
4.2 Approximate Arc Length Reparametrization 32
4.2.1 Bounding a Metric 32
4.2.2 Approximating Inverse Arc Length 33
4.2.3 The Approximations r' and Continuity of al(t) 33
4.3 Approximation of Inverse NURBS Functions 34
4.3.1 Bounding a Metric 34
4.3.2 The Approximations r' 35
4.4 Bounding Frechet Distance 36
4.4.1 Closest Point Pairings i 36
4.4.2 Boundinga Metric 38
4.4.3 Sample Points for r' 38
4.4.4 The Approximations r' 39
ALGORITHMIC EXTENSIONS i 41
5.1 Reparametrization by AXis 41
5.2 Extensions to Frechet Distance Algorithm 42
5.2.1 Contact Intervals Between Curves 42
5.2.1.1 General Change of Parameter. 43
5.2.1.2 Piecewise Linear Correspondence 45
5.2.2 Radial Reparametrization 45
5.3 An Extension to Method 1 47
5.4 Method 2 — An Alternative General Scheme. 49
5.4.1 Approximation Operators A, 54
5.4.2 Relationship Between Refinel and Refine2 54
5.4.3 Relationship Between Stand 78, 55
5.5 Knot Refinement for Improved Error Bounds 55
RESULT S 57
6.1 Arc Length Examples 57
6.2 Inverse Function Examples 57
6.2.1 Inverse Function Approximation............................. 61
6.2.2 Reparametrization by Axis 61
6.3 Frechet Distance Examples 61
6.3.1 Frechet Distance Algorithm 61
6.3.2 Radial Reparametrization 69
6.3.3 Contact Intervals. 69
APPLICATION EXAMPLES i 7
7.1 Automatic Topology Declarations, 7
7.2 Reconstructing 3D Curves From 2D Views 80
7.3 Arc Length Spacing and Density. 82
7.4 Curve Matching Via Point/Point
Specifications e 85

vi

8. CONCLUSIONS AND FUTURE RESEARCH

8.1 Summary................
8.2 Extensibility
8.3 Future Work

APPENDICES
A. COMPOSITION OF NURBS

B. MONOTONE APPROXIMATION OPERATORS

C. APPROXIMATING ARC LENGTH

REFERENCES

vii

1.1

1.2

1.3

14

4.1

4.2

4.3

5.1

5.2

LIST OF FIGURES

Ruled surface construction using curves with poor parametric correspon-
dence. The resulting planar surface has a degenerate region.

It may be difficult for a CAD system to recognize that different surfaces
agree geometrically along their edges. (a) Two surfaces meeting at edges
with nearly identical geometry but very different parametrizations. (b) Dots
indicate equal steps in the parametric domains of the edge curves.

Free form curve representations, though well suited to express shape, are
often not well suited for establishing other properties such as uniform geo-
metric spacing. Here equal steps in the parametric domain of a curve result
in the not very equally spaced points shown. For most representations,
equal spacing along curves must be approximated numerically.

Different sweep surfaces generated by blending square and circular cross
section curves. Left: sweep surface generated from the original curves.
Right: sweep surface generated after the cross section curves have been
reparametrized in order to create a different correspondence between them.

Closest point pairings are not necessarily unique since the closest point
relation is not always symmetric. The closest point on ¢; to A is B.
However, the closest pointoncoto BisP...........................

Closest point pairings. (a) More than one solution to the minimum distance
problem. All points from B; to B2 on ¢; are at a minimum distance
from point A on c;. (b) Point matches causing nonmonotonic parametric
correspondence. The sequence of parameter values on co associated with
the ordered set {Aj1, A2, Ag, Ay} is monotonic. The sequence of parameter
values on c¢; associated with the ordered set of closest matching points
{B1,B3,B2,B4} is not monotonic however.

Curves with very dissimilar unit tangent functions but a small Frechet
distance of € between them.

Cases covered and not covered by the basic assumption for contact inter-
vals. Dots indicate the location of signal values on the curves. The cases
illustrated in (a), (b), and (c) are covered by the assumption. Case (d) is
not covered since the contact interval does not begin and end at parametric
locations that are signal values on at least one of the curves.

Radial distance and radial closest point operators between two curves. The
radial distance between A on ¢; and B on ¢y is the angle 8 made by the

— —

vectors OA and OB at the origin O. The radially closest point on cs to
point A on ¢; is point P at the intersection of co with the half line starting
at O and going through A.

37

5.3

5.4

5.5

5.6
5.7

6.1

6.2

6.3

6.4

6.5

For star shaped curves, radial “contact intervals” begin and end at the start
or end points of at least one of the curves. S and E indicate, respectively,
the start and end points that define the contact interval in this example.
The central angle 8 here indicates the extent of the interval.

Schematic for Method 1. The iteration counter for the algorithm is denoted
by i. M is a monotone approximation operator to scalar valued data. “P?”
checks for convergence to the correct parametrization.

Schematic for Method 1 augmented with a separate iterative approximation
stage. The iteration counter for the second stage is denoted by k. A is
an approximation operator to vector valued data. “D?” checks equal-
parameter distance between ¢*(t) and c(r*’(t)) where i* denotes the final
iteration of the first stage of the algorithm.

Extended data table for use with Method 2.

Schematics for Methods 1 and 2. Here Method 1 has been augmented with
the extension of section 5.3. M is a monotone approximation operator to
scalar valued data whereas A is an approximation operator to vector valued
data. “P7?” checks for convergence to the correct parametrization. “D?”
checks equal-parameter distance between g*(t) and ¢(r*(t)) in Method 1 and
between g*(r—*(u)) and ¢(u) in Method 2.

Reparametrization by arc length of a NURBS curve with a speed discon-
tinuity: (a) original curve, (b) reparametrized curve. Dots represent equal
spacing in the parametric domains.

Quadratic spline change of parameter function used in the example of Fig-
Ure 6.1, . .

Graphs of speed functions for the example of Figure 6.1. Plots in (a) show er-
rors for applications of Method 1 using piecewise linear, C! piecewise linear
rational, and C! piecewise quadratic interpolation schemes. A tolerance of
0.1 was specified to the algorithm. Plots in (b) show errors for applications
of Method 2 using variation diminishing spline approximation and cubic
Hermite interpolation. Tolerance values €; and €2 where specified as 0.1 to
the algorithm. Plots in (a) and (b) result from estimation of arc length from
above (see Appendix C). All graphs are for runs of the algorithms using
additional knot refinement as discussed in section 5.5.

Graphs of speed functions for the example of Figure 6.1. Errors in (a)
and (b) result from executions of the algorithms identical to those used in

Figure 6.3 except that estimation of arc length is made from below (see
Appendix C). . .ot

Reparametrization by arc length of a NURBS curve consisting of a 120
degree arc of unit radius. The curve was reparametrized by Method 1
using the piecewise quadratic interpolation scheme with a tolerance of 0.1.
Dots indicate equal spacing in the parametric domain of the original curve.
Tick marks (“|”) indicate equal spacing in the parametric domain of the
reparametrized curve. Arrows (“A”) indicate equal spacing in the true arc
length parametrization.

ix

47

48

58

59

62

6.6

6.7

6.8
6.9

6.10
6.11

6.12

6.13

Graphs of speed functions for the example of Figure 6.5. Plots in (a) show er-
rors for applications of Method 1 using piecewise linear, C! piecewise linear
rational, and C! piecewise quadratic interpolation schemes. A tolerance of
0.1 was specified to the algorithm. Plots in (b) show errors for applications
of Method 2 using variation diminishing spline approximation and cubic
Hermite interpolation. Tolerance values €; and e where specified as 0.1 to
the algorithm. Plots in (a) and (b) result from estimation of arc length from
above (see Appendix C). All graphs are for runs of the algorithms using
additional knot refinement as discussed in section 5.5. 63

Graphs of speed functions for the example of Figure 6.5. Errors in (a)
and (b) result from executions of the algorithms identical to those used in
Figure 6.6 except that estimation of arc length is made from below (see
Appendix C). ..ot 64

Key to table headings. 65

Graph of a scalar valued NURBS function and approximate inverse. The
inverse function approximation (shown as a dotted line) was created by the
algorithm of section 4.3 using the C! piecewise linear rational interpola-
tion scheme with a tolerance of 0.01 measured according to the metric of
equation (4.1). ... 66

Error functions for approximations to the inverse of the function in Figure 6.9. 66

Example using the reparametrization by X axis algorithm of section 5.1.
(a) Ruled surface construction using curves with poor parametric correspon-
dence. (b) Surface generated after reparametrization of the curves along the
X axis. The extent of these curves along the X axis is 2.15 units. 67

Error functions for the bottom curve of Figure 6.11 after reparametrization
along the X axis using the algorithm of section 5.1. Errors are shown for
the use of Method 1 with piecewise linear, C' piecewise linear rational, and
C' piecewise quadratic interpolation schemes. An error tolerance of 0.01
was used for these approximations, measured according to the metric of
equation (4.1). . ..o 67

Example using the Frechet distance algorithm of section 4.4. (a) Two
approximations to the same curve but with different parametrizations. Rect-
angle indicates area enlarged in (b) and (c). (b) Correspondence in the
original parametrizations. (c) Correspondence after reparametrization to
establish a user defined tolerance on Frechet distance. 68

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

Two examples of the use of the radial reparametrization algorithm of sec-
tion 5.2.2. Figures (a) and (d) show the parametric correspondence between
the original curves. Dots indicate the start/end points on the curves.
Crosses (“4”) indicate the origin used for radial correspondence. Figures
(b) and (e) show the parametric correspondence between the curves once
start/end points of the curves have been aligned radially. This is accom-
plished in each case by a single ray/curve intersection operation to radially
project the start/end points of the inner curves onto the outer curves. This
is followed by subdivision of the outer curves at the points of projection.
Figures (c) and (f) show the results of running the radial reparametrization
algorithm on the curves in (b) and (e) respectively.

Error functions for the example of Figure 6.14(f). Error functions are shown
for the use of Method 1 with piecewise linear, C'! piecewise linear rational,
and C! piecewise quadratic interpolation schemes. An error tolerance of 1.0
degree was used for the approximations. The linear rational fitting technique
of section 4.4.4 was used for derivative estimation.

Change of parameter function used in reparametrizing the outer curve of
Figure 6.14(e) into the outer curve of Figure 6.14(f). Rectangle indicates
area enlarged in Figure 6.17.

Closeup of initial portions of the change of parameter functions used to
reparametrize the outer curve of Figure 6.14(e) into the outer curve of
Figure 6.14(f). Shown are piecewise linear, C' piecewise linear rational,
and C' piecewise quadratic change of parameter functions. (a) Shows the
results of using the projection method of section 4.4.4 to estimate derivatives
for the change of parameter functions in the linear rational and quadratic
cases. (b) Better results are obtained, for this example, by using the linear
rational fitting technique, also discussed in section 4.4.4.

Quadratic and cubic NURBS curves with a single contact interval. Dots
indicate the locations of signal values on the curves....................

The description of the contact interval for the curves of Figure 6.18. This
description consists of: the parametric interval on curve 1 and the cor-
responding interval on curve 2, a flag indicating that the curves in this
example are traced in the same direction on the contact interval, the change
of parameter function that relates the interval on curve 2 to the interval on
curve 1, and a flag indicating that the change of parameter in this example
is an exact representation. The printed representation of the change of
parameter function has been truncated in the description above.

Curves with three contact intervals. In one interval the curves are traced in
opposed directions. The straight line segment at the bottom is represented
as a cubic NURBS with nonlinear parametrization. The curves have been
offset slightly in this figure; they intersect in the actual example. Dots
indicate the locations of signal values on the curves....................

The X coordinate function for the straight line curve of Figure 6.20..

x1

70

71

71

6.22

6.23

6.24

7.1

7.2

7.3

7.4

7.5

7.6

7.7

The description of the contact intervals for the curves of Figure 6.20. Note
that the description for the first contact interval flags the curves as having
opposed directions.

Two circles which have been rotated relative to one another. The dots
represent the start/end points of each circle. The circles have been offset
slightly in this figure; they are coincident in the actual example. Results
for this case, given below, were obtained using the general algorithm of
section 5.2.1.1 and not the extension of section 5.2.1.2.

The description of the contact intervals for the curves of Figure 6.23. Two
contact intervals are found because of the “seam” (at the start/end points)
ineach curve. e

A capped cylinder made up of nine separate surfaces.

Topological information found by the find-adjacencies routine. Edge
adjacency information has been determined along the highlighted edges.
Different edge adjacencies are declared for the edge pieces demarcated by
the balls on these edges. Links are shown between adjacent edge pieces of
separate SUfaces.o vttt e

Example data for the reconstruction of 3D curves from 2D data. Dots on
the curves indicate their relative parametrization.

Same curves as in Figure 7.3 after reparametrization along the X axis. A
3D curve is reconstructed from the reparametrized 2D curves.

Structured space frame member showing rivet holes for the attachment
of skins along the top surface and weight reduction holes along the lower
surface. These holes are distributed evenly in arc length along the frame. . .

Effects of a warp operator on a curve after different knot refinement tech-
niques are applied. (a) The original curve. (b) The effects of the warp
operator with no additional knots. (c) The effects after the addition of
12 knots using a uniform knot density measure in the original parametric
space. (d) The effects of the warp after the addition of 12 knots using a knot
density measure with respect to arc length. (e) The effects of the warp after
the addition of over 1000 knots using a knot density measure with respect
to arc length. Curves (d) and (e) are hard to distinguish from one another
in this figure. The arrow indicates the center and direction of the warp. . ..

Candidate shape for a transition surface to be manufactured using a wire
EDM process. (a) This shape was modeled as a ruled surface generated from
two planar curves. (b) To form the shape, the correspondence between the
curves was established using the sparse point to point matching indicated
by the linked balls on the two curves.

xii

84

84

86

7.8

B.1

B.2

B.3

Radial reparametrization of one curve to match another. The reparametriza-
tion was accomplished using sparse point to point matches on the two curves.
These matched points were generated by a procedure written in a geometric
modeler’s command language. Figures (a) through (f) show, respectively,
the results obtained using one to six point to point matches, indicated by
the corresponding dots on the curves. Crosses (“+”) indicate the origin
used for radial correspondence.

Data layout for both the linear rational and quadratic interpolation schemes.
The symbol “A” indicates the placement of singleton knots; “A3” indicates
triple knots at the ends for the quadratic scheme. For the linear rational
scheme the end knots would be double.

Diagram of the constraints for the linear rational and quadratic interpolation
SCheIIeS. « . .

Modification of the interpolation schemes for lowered continuity at an in-

terpolation point. “A?” indicates the placement of a double knot. “v;!” and

“;"” indicate left and right derivative values respectively.

xiii

87

98

6.1
6.2
6.3
6.4
6.5
6.6
6.7

LIST OF TABLES

Results for arc length example of Figure 6.1 58
Results for arc length example of Figure 6.5 60
Results for the inverse function approximation example of Figure 6.9 62
Results for reparametrization by X axis example of Figure 6.11 64
Results for Frechet distance example of Figure 6.13 65
Results for radial reparametrization example of Figure 6.14(f) 72
Results for contact interval examples 76

ACKNOWLEDGEMENTS

I would like to thank the members of my committee, Elaine Cohen, Frank Stenger,
and Peter Shirley, for their invaluable help. Special thanks to the chair of my committee,
Elaine Cohen, for her insight and continued insistence on the high level view. Thanks to
Rich Riesenfeld and Elaine Cohen for giving me the time to finish this work; to the staff
members of the Alphal research group, Russ Fish, David Johnson, and Tom Thompson,
for their ideas and for maintaining the software environment; to staff members and
graduate students, past and present, who have been part of the Alphal research group.
Thanks also to the graduate studies committee for keeping the pressure on; to Bruce
Gooch and Richard Coffey for their help with my defense; to Colleen Hoopes for her kind
and continued help with the paper work. Thanks to Jules Bloomenthal for proofreading

and words of wisdom.

CHAPTER 1

INTRODUCTION

1.1 Context

Many geometric modeling systems use parametric functions to represent free-form
curves and surfaces. Formally these functions are maps from a portion of the real line,
or real plane, into R? or R3.

In designing and modifying curves and surfaces, users of geometric modeling sys-
tems generally are concerned with shape, not function maps. Unfortunately, geometric
constructions based on parametric representations often lead to unwanted or surprising
artifacts due to the particular mappings used in representing given curves or surfaces.

The parametrization of a particular curve or surface is often hidden from the user,
but nonetheless affects the specification and outcome of operations the user applies. A
correspondence between points on different curves used in a geometric construction, for
example, may seem intuitive or obvious to the user, but that correspondence might not
be reflected in the underlying representations nor in the end result of the construction.

Operations internal to the modeling system may suffer parametrization artifacts as
well. It may be important for a modeling system to recognize that two curve or surface
mappings actually represent the same locus of points. Such a matching, though obvious to
human eyes, might not be simple to establish automatically. Grid and sample generation
are other examples. Modeling systems are often required to sample data on curve and
surface maps. Such sampling is usually affected by curve and surface parametrization.

There are a number of possible techniques for avoiding or minimizing parametrization

artifacts including:

e Indirectly affecting the parametrization of a curve or surface by using a different

modeling technique for its construction.

e The use of intrinsic properties of curves and surfaces such as curve arc length or

curve and surface curvatures. Problems can then be formulated in terms of these

intrinsic properties rather than in terms of parameter values.

e Inversion of the curve or surface mappings in an attempt to formulate problems

directly in terms of spatial properties rather than parametric values.
e The use of nonparametric forms such as implicit or algebraic surfaces.

e Reparametrizing curves or surfaces by applying change of parameter functions to

the parametric maps used to represent them.

The last approach is a particularly important one for treating parametrization related
problems in modelers using parametric representations. This thesis focuses on NURBS
curve reparametrization and its integration into high level tools for design from within

the context of NURBS based CAD systems.

1.2 Reparametrization in CAD Design

Within the context of a CAD system, parametrization artifacts can be viewed as
shortcomings of the representation, giving rise to problems needing solution. Figure 1.1
depicts the generation of a ruled surface from two curves. The result is degenerate due
to an improper parametric correspondence between the curves. The nonuniqueness of
representations gives rise to other examples. It may be difficult for a CAD system to
recognize that two different curve representations give rise to the same, or nearly the same,
geometry. This may present difficulties when constructing valid boundary representations
for solids in a CAD system. Such cases arise when different surfaces agree geometrically
along their edges but have unlike parametrization (see Figure 1.2).

Reparametrization operations can be viewed from other perspectives, however. These
operations can transform curve and surface representations from one space into another
space better suited for establishing or determining properties of interest. The typical
situation in a CAD environment occurs when a specific representation is well suited for
the expression of some aspect of shape, but not well suited for establishing some other
property of importance to the user, such as correspondence or uniform spacing of features
(see Figure 1.3).

Reparametrization operators may also be thought of as opportunities to explore the
design space. Different correspondences between cross sections of an extruded or swept

surface, for example, give rise to different surface shapes generated from the same curve

Figure 1.1. Ruled surface construction using curves with poor parametric correspon-
dence. The resulting planar surface has a degenerate region.

geometry (see Figure 1.4). The interplay between curve shape, correspondence of curves,

and resulting surface shape may be quite subtle in examples of this nature.

1.3 Problem Statement

Operations for exploring the space of reparametrizations are often lacking or limited
in CAD systems, even though there are many important applications that can benefit
from such operations. In order to be useful these operations must be integrated into the
CAD environment as practical design tools.

This research will focus on the reparametrization of NURBS curves from within
the context of a NURBS based CAD system. Specifically this thesis will focus on
reparametrizations of the form c(r(t)) where ¢ is a NURBS curve and r may or may
not be a NURBS curve.

There are many practical applications of this general problem including: establishing
and exploring correspondences in geometry, creating related speed profiles along motion
curves for animation, specifying speeds along tool paths, and identifying geometrically
equivalent, or nearly equivalent, curve mappings.

In these applications practical issues arise regarding the integration of reparametriza-
tion operations into the CAD system as usable design tools. Operations need to be
specified in ways that make sense to the user and not as the specification of obtuse
formulae. Results must be predictable, take a usable form, and be capable of control by

the user.

Figure 1.2. It may be difficult for a CAD system to recognize that different surfaces
agree geometrically along their edges. (a) Two surfaces meeting at edges with nearly
identical geometry but very different parametrizations. (b) Dots indicate equal steps in
the parametric domains of the edge curves.

Figure 1.3. Free form curve representations, though well suited to express shape, are
often not well suited for establishing other properties such as uniform geometric spacing.
Here equal steps in the parametric domain of a curve result in the not very equally spaced
points shown. For most representations, equal spacing along curves must be approximated
numerically.

Figure 1.4. Different sweep surfaces generated by blending square and circular cross
section curves. Left: sweep surface generated from the original curves. Right: sweep
surface generated after the cross section curves have been reparametrized in order to
create a different correspondence between them.

Problems also arise in the representation of the results of such reparametrizations.

These problems include:

closure - It is important to represent the results of operations in NURBS form in a
NURBS based modeling system so that operations in the system may be composed.
Reparametrizations of NURBS curves, however, are not in general closed under the
NURBS representation (c.f. section 4.2). This gives rise to the need to approximate

results in NURBS spaces. These spaces of approximation are initially unknown.

error bounds - Given that approximation may be required, the user should be able to
control the accuracy of the approximation. These controls should ideally take the

form of meaningful tolerances that are maintained by the operations.

data complexity - Reparametrization involves (the approximation of) function com-
position. Many NURBS schemes to do this raise the degree of the polynomials used
in the approximations. Increasing the accuracy of these approximations may also
increase the number of polynomial pieces in the result. It is important to consider

ways to manage this increased data complexity.

1.4 Research Objectives

This research addresses issues of the usefulness of NURBS curve reparametrization in
tools for CAD and of the incorporation of such tools into a CAD environment. Rather
than attempting an exhaustive survey, this work presents representative reparametriza-
tion operations and applications for CAD. These operations are incorporated into a set
of CAD modeling tools that help solve interesting problems in design. Approaches that
deal with approximation and data complexity issues in results are also developed.

Central to this work is the presentation of new error bounded algorithms for important
cases of NURBS curve reparametrization. These algorithms are developed from within a

general framework and address:

e approximate arc length parametrizations of curves,
e approximate inverses of NURBS functions, and

e reparametrizations that establish user specified tolerances as bounds on the Frechet

distance between parametric curves.

Reparametrizations of this nature usually can only be approximated by NURBS
curves. The algorithms developed here yield results as NURBS approximations either
to the composed curve c¢(r) or to the reparametrization function r. Users can specify

tolerances for these approximations which the algorithms automatically maintain.

1.5 Document Summary

Chapter 2 presents some of the mathematical background necessary for the develop-
ment of this thesis. This chapter concentrates on: distance metrics between parametric
mappings, general definitions of parametric curves, and the NURBS representation for
parametric curves. Chapter 3 is a summary of relevant work in the literature related
to this thesis. Chapter 4 develops new error bounded algorithms for NURBS curve
reparametrizations. These algorithms are developed from within a general framework.
The algorithms are extended in Chapter 5, while Chapter 6 gives examples of their
use. Chapter 7 gives examples of higher level applications and tools incorporating the

algorithms of Chapters 4 and 5.

CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter presents mathematical preliminaries that will be used throughout the
rest of this thesis. Section 2.1 gives formal definitions for the notion of parametric curve.
Section 2.2 gives the definition of the NURBS representation for parametric curves along

with important properties of this representation.

2.1 What is a Parametric Curve?

The notion of a curve is defined differently for different purposes and by different
authors. Individual functions that map from R into R™ are often referred to as parametric
curves. Parametric curves also are often defined as equivalence classes of such mappings.
In this view, individual mappings of an equivalence class are referred to as different
parametrizations of the same curve. This latter view is adopted here.

Two equivalence class definitions for parametric curves are given below. The definition
of Frechet curve is based on the distance between parametric mappings. The concepts of
distance used in this definition are important in their own right and will be used for the
development of CAD applications for reparametrization (c.f. section 4.4). The regular
curves of section 2.1.3 are a specialization of the Frechet curves in that all regular curves
are also Frechet curves. The definition of regular curve places restrictions on the types
of mapping functions under consideration. These restrictions have practical implications
for the development of algorithms. Section 2.1.4 discusses a useful extension to regular

curves.

2.1.1 Distance Between Parametric Maps
In this section we give two useful formulations for the distance between parametric
mappings. The equal-parameter distance is a commonly used metric which depends on
the parameterization of the curve mappings. The notion of Frechet distance between

curve mappings is independent of the mappings’ parameterizations.

Given two mappings, « : I — R"™ and 8 : I — R", the equal-parameter distance

between these mappings is defined as:

d(e, B) =" la(t) — B(t)|

for t € I and || || Euclidean distance in R™. Section 2.2.3 discusses methods for bounding
d(a, 3) by a NURBS function when both o and 3 are NURBS curves.
Given two mappings, a : I, — R" and 3 : I3 — R", the Frechet distance between

these mappings is defined as:
Floy8) = ¥ Jla(t) = B(h(1))]
where,
e tel, and
e h: I, — Igis a homeomorphism.

The Frechet distance is essentially the minimum equal-parameter distance between a
and possible reparametrizations of 3.

It is easily shown that F(«, 3) is a pseudo-metric satisfying:
1. F(a,b) = F(b,a)

2. F(a,b) >0

3. F(a,c) < F(a,b) + F(b,c)

4. a=b= F(a,b) =0

but failing to satisfy: F(a,b) =0=a =b.

2.1.2 Frechet Curves
The definition of Frechet curves is based on the Frechet distance between mappings.

For I', a class of curve mappings, and some c,d € I' the relation defined by:

cz)dz]-'(c,d):()

is an equivalence relation.

In accordance with [26] we define a Frechet curve as follows:

10
Given ¢ € T', the curve C specified by c is the equivalence class:
C={fel:F(f,c)=0}

A mapping contained in the equivalence class of a curve is said to be a parametrization
of that curve.
The Frechet distance between curves is defined as follows: let C and D be two curves

and let c€ C and d € D. Then
F(C,D) = F(e,d).

Note that the Frechet distance between curves is a true metric satisfying F(C, D) = 0 <
C=D

2.1.3 Regular Curves
Another, perhaps more familiar, definition of curve follows from the notion of a regular

parametric mapping [47].
A mapping, a(u) : I, - R", is said to be regular if:
e a(u) is C! on I, and
o d‘;—sf‘) # 0, Yuer,
A real valued function 6(t) : I; — I,, is called an allowable change of parameter if:
e 9(t)is C* on I}, and
o B 40, Yier,

It is straightforward to show that «(6(t)) is regular for a regular and 6 an allowable
change of parameter.

Given two regular curve mappings a(u) : I, - R" and ((t) : Iy - R", define the
relation: o = B to mean that there exists an allowable change of parameter 6(t) : I; — I,
such that 6(I;) = I, and B(t) = a(6(t)) Vier,-

The relation =% is an equivalence relation and a regular curve is defined to be an
equivalence class of regular curve mappings under . As with Frechet curves, a mapping

contained in the equivalence class of a regular curve is said to be a parametrization of

11

that curve. Note that the definition of regular curve is a specialization of the definition

of Frechet curve.
Some important properties of regular curves are [47, 54]:
e A regular curve mapping remains regular under an allowable change of parameter.
e All parametrizations of a regular curve are locally invertible.

e Regular curves are rectifiable over compact intervals of a given parametrization and

hence have an arc length parametrization.

e Regular curves have well-defined tangent lines at all points.

2.1.4 Piecewise Regular Curves
Limiting consideration only to regular curves is too restrictive for CAD applications
where intentional unit tangent and parametric derivative discontinuities are sometimes
desired.

A mapping, a(u) : I, - R", is piecewise regular if:

e a(u) is C* on I, except at a finite number of points on I, where it is constrained

to be only C?, and

da(u)

® “du

#0, Yyer,- (At points on I, where a(u) is only C?, left and right derivatives

must exist and be different from zero.)
A real valued function 6(t) : I; — I, is a piecewise allowable change of parameter if:

e 9(t) is C' on I; except at a finite number of points on I; where it is constrained to

be only C°, and
e 4(t) is strictly monotonic on I

Piecewise regular curves are defined in a manner analogous to regular curves and
have properties similar to properties of regular curves. There may be, however, a finite
number of points in the domain of a piecewise regular curve where tangent lines are not
well defined.

Throughout this work it is assumed that all curves are piecewise regular and that all

change of parameter functions are piecewise allowable as defined above.

12

2.2 NURBS Curves

NURBS curve and surface formulations have become fairly standard representation
schemes in current CAD systems. This section presents the NURBS curve definition
along with some of its important properties.

A univariate B-spline is a series of parametrically defined polynomial pieces joined
end to end, with certain smoothness (continuity) constraints at the places where the
polynomial pieces are joined. Rational pieces must be used to allow exact representations
for circles and circular arcs [66]. The term NURBS (Non-Uniform Rational B-Spline)
is used to encompass both the polynomial and rational cases.

NURBS are expressed using a particular set of basis functions for the piecewise
polynomials known as the B-spline basis. There are many advantages to the use of
this basis, including computational stability and geometric locality (see [35] and [19]).

A NURBS curve mapping in three dimensional space, of order m over the knot vector

T, is denoted as:

> WiEi By 1 (t)
> WiBim 7 (t)

v(t) = (2.1)
where the knot vector 7T is a nondecreasing sequence of at least 2m real values, the E; €
R3, the w; are positive real numbers, and {Bim,r(t)}; are the B-spline basis functions of
order m over knot vector 7.

We can consider this rational form as the projection to R* of a polynomial B-spline
in R* with control points: {w;(E;, 1)};.

It is common practice to refer to the NURBS form above as a NURBS curve. We will
use this term to mean a NURBS representation for a curve mapping.

The curve mapping above is a convex combination of the points E; for all values of
t. Hence, for a given interval the curve lies in the convex hull of the points actually
blended (i.e., that have associated nonzero basis functions) on that interval. This convex
hull property for NURBS curves is often used to localize a NURBS curve quickly or for a
fast check for possible intersections of NURBS curves. This property can also be used to
establish both upper and lower bounds for scalar valued NURBS curves.

An order m and knot vector T together define a linear space of B-splines denoted here

by Sm,r (see [19]).

13

2.2.1 NURBS Curve Refinement

Given any NURBS curve defined with a particular knot vector, 7, the same mapping
can be represented using a different knot vector, 7/, if 7/ is a refined partition of 7. The
process by which a NURBS curve is represented over a refined knot vector is known as
B-spline refinement.

B-spline refinement has the very important property of convergence of the curve’s
control polygon to the curve. As more values are added to a knot vector and a curve
refined, the control polygon for the curve approaches the actual curve in the parametric
area where the new knot vector values are added. By refining a curve over its entire
parametric domain, the control polygon can be made arbitrarily close to the curve
everywhere [14].

There exist very efficient and elegant algorithms for the refinement of NURBS curves

[12]. Points on NURBS curves can be evaluated by using special cases of these algorithms.

2.2.2 Algebraic Operations on NURBS
The univariate NURBS representation forms an algebra in the following sense. If N is
the class of all univariate NURBS functions defined on an interval Iy, and if f(t),g(t) € N
and A € R then:

ft)+gt) e N, \f(t) e N, and f(t)g(t) € N.

References [23] and [55] discuss the NURBS representations for addition and multipli-
cation of NURBS functions. Here we provide a brief summary of important characteristics
of these representations.

For f(t) = ¥, PiBi(t) we have Af(t) = X; AP, By(t).

For addition of polynomial splines, we assume that f(t) and g(¢) are NURBS functions
defined over a common interval I;. Without loss of generality, we assume also that f(t)
and g(t) have the same order and are defined over the same set of B-spline basis functions.
This can always be accomplished by using B-spline degree raising [13], positive affine

transformations of knot vectors, and B-spline refinement [12].

If f(t) = X2 PiBi(t) and g = 32; Q;B;(t) then

&) +g(t) =D (P + Qi)Bi(t).

1

14

The addition of rational functions requires the use of NURBS function multiplication

(t)

t
:pl—(t)andgzzq’:—(t)

q1(t)

since for f

p1(t)g2(t) + p2()qr ()
q1(t)g2(t)

Determining a NURBS representation for the product f(¢)g(¢) can be accomplished in

f(t) +9(t) =

several ways; e.g., using spline or Bezier function multiplication, or by solving a NURBS
interpolation problem (see [29, 55, 23]).

The NURBS representation is also closed under the derivative operator. The derivative
of a polynomial NURBS curve of order m is itself a polynomial NURBS curve of order
m — 1. For derivatives of rational NURBS curves we must use the quotient rule which
tends to raise the order of the result. The derivative of a rational NURBS curve f(¢)/g(t),
where f is order m and g is order n, is a rational NURBS curve ¢(¢)/r(t) where ¢ is order

m-+n — 2 and r is order 2n — 1.

2.2.3 An Example: Bounding Equal-Parameter Distance
In this section we illustrate the use of NURBS curve properties by developing bounds
on the equal-parameter distance between NURBS curves (see section 2.1.1). The tech-
niques developed here are used by the reparametrization algorithms of Chapters 4 and 5.
Given two NURBS curves with a common parametric domain ¢;(t),ca(t) : Iy — R™

we seek to bound:
lex(t) — ez ()]
over subintervals of I; where || || denotes Euclidean distance.

Without loss of generality assume that ¢; and ¢y are of the same polynomial order and
defined over the same knot vector (see section 2.2.2). The difference v(t) = c1(¢) — ca(t)
can then be formed as a NURBS curve reducing the problem to bounding ||v(¢)|| for v a
NURBS curve. Note that ||v(¢)|| is not in general a NURBS function given v(¢) a NURBS.

Let:

e {tj};=0,..n be the distinct values in the knot vector for v(¢),
. index(t) =j:te I]’ = [tj,tj+1), for t € I,

e {vj,}r be the B-spline (vector) coefficients of v(t) that are blended on I; (i.e.,
for which the corresponding basis functions have positive support on I;) for j =

0,...,n—1, and

15
¢ C; be the convex hull of the {v;, }.

Since v(t) must lie in convex hull C; on interval I;, the function ||v()|| can be no greater
on I; than the distance from the origin to the furthest point in C;. This maximum distance
will occur at a vertex of C; and hence for U; ="5 [|vj,, || we have |lv(t)[| < Uj, Vier, for j =
0,..,n—1.

Similarly ||v(t)|| can be no less on I; than the distance from the origin to the nearest
point in convex hull C;. If the origin is contained in C; then we can state only the obvious
bound of zero. Otherwise the minimum distance from the origin to a point in C; occurs
either at a vertex, edge, or side of C;. This minimum distance can be computed efficiently
using methods discussed in [33], [46], and [9]. Bounding box techniques also can be used
to bound this minimum from below (see [39] pages 514-525).

Denote by L; the minimum distance to C; for j = 0,...,n — 1. Then,

U(t) = Uindex(t)
L(t) = Lindex(t)

are piecewise constant functions on I; which bound ||v(¢)|| from above and below respec-
tively.

To improve these bounds v(t) can be refined and ||v(¢)|| bound on the finer partition
of I; represented by the distinct knots of the refined knot vector for v(t).

The above development also holds for the case ¢1(t),c2(t) : I} — R.

It was noted above that |[v(¢)|| is not, in general, a NURBS function given v(t) a
NURBS. However |v(t)||> = < v(t), v(t) > is a NURBS whenever v(t) is a NURBS
since it is the product of two NURBS functions. Another approach to bounding ||v(¢)]]
over intervals of its domain, therefore, is to establish L(¢) < ||v(¢)||> < U(t) for positive
piecewise constant L(t) and U(t), from which \/L(t) < |lv(t)| < /U(t) follows. The
advantage of this technique is that bounds are always established over scalar valued
functions. This obviates the need to compute, or bound, the minimum distance to convex
hulls for vector valued v(t) when lower bounds are sought. The disadvantage of this
technique is that the dot product function in NURBS form can be relatively expensive

to compute.

16

2.2.4 Composition of NURBS Curves

Consider mapping c(u) : I, — R"™ and piecewise allowable change of parameter r(t) :
Iy — I, with r(I;) = I,,. If both ¢ and r are polynomial on their respective domains, then
it is obvious that ¢(r(¢)) is polynomial on I;. Similarly, if both ¢ and r are NURBS, it
can be shown that ¢(r(t)) is a NURBS.

Consider the case where r is a polynomial spline, and ¢ is either a polynomial or
rational spline. If r is order [and ¢ is order m, then ¢(r(t)) will be order (I—1)(m—1)+1.
If 7 has a knot at ¢; of multiplicity p, then ¢(r(t)) is constrained to be only C*P~1 at
t; (it actually may have higher order continuity there however). If ¢ has a knot at u; of
multiplicity g, then ¢(r(¢)) is constrained to be only C™ 71 at r—!(u;).

From these considerations, we see that c¢(r(t)) is a polynomial or rational spline in
the spline space So—(;_1)(m—-1)+1,, Where knot vector o is given by the algorithm of
Appendix A.

Composition with linear rational functions merits special mention because of the low
order and smoothness of such functions [32] (see also Appendix B). Lee and Lucian [43]
give an explicit formulation for the composition ¢(r(t)) where ¢ is NURBS and r is a
linear rational function.

For further information see the introduction to NURBS function composition in [58].

CHAPTER 3

RELATED WORK

This thesis is concerned with the appropriateness of curve parametrizations to establish
desirable properties. The need to change the parametrization or sampling of NURBS
curves to establish specific properties has certainly been recognized in the literature. Of
particular importance in this work are arc length parametrizations, to establish speed
or equal spacing properties along a curve, and geometric correspondences established by
the relative parametrizations of curves. There is related work in the literature to both of
these general problems.

This chapter summarizes the previous work most directly related to the reparametriza-

tion algorithms presented in this thesis.

3.1 Arc Length Parametrized Curves

Because of the importance of the problem there has been significant work related to
approximating arc length functions for parametric curves and sampling parametric curves
at equal spacings in arc length.

Farouki and Sakkalis show in [30] that it is impossible to parametrize any real curve,
other than a piecewise straight line, by rational functions of its arc length. A sketch of
a proof of this fact is given also in [37] for quadratic and cubic B-spline curves. There
are a number of methods, however, to extract arc length approximations for parametric
curves at discrete points in the curve domain. It is easily shown that lengths of the sides
of the control polygon of a NURBS curve can be used to form an upper bound on the arc
length of the curve at discrete points where the polygon interpolates the curve. This can
be used in combination with NURBS curve refinement and inscribed polygons (from
NURBS curve point evaluations) to form both upper and lower bounds to the arc length
function at discrete points on the curve.

Fritsch and Nielson [31] form a piecewise linear approximation, r(t), to the inverse

arc length function generated from a specified number of evaluations equally spaced in

18

the domain of a parametric curve ¢(u). They then perform discrete evaluations of ¢(r(t))
(i.e., a curve form for ¢(r(t)) is not computed) to produce approximately equally spaced
points on the curve. The authors use this technique in the context of the computation
of a metric for curve/curve comparison. In [18] and [7] similar techniques are used to
approximate the arc length and inverse arc length functions for curves in the context of
sweep surface construction.

Numerical integration techniques can be used to estimate arc lengths at discrete values
in the curve domain. In [62] Newton-Raphson iteration in combination with Romberg
quadrature is used to approximate discrete evaluation of the inverse arc length function
for parametric curves. No error bounds are given though the authors state that a relative
error test is done when applying Romberg integration (although the authors do not state
what this test is). In [36] adaptive Guassian quadrature is used to create a lookup
table of approximate arc length function values over the domain of a parametric curve.
Newton-Raphson iteration in combination with nonadaptive Guassian quadrature is then
used to approximate discrete evaluation of the inverse arc length function for the curve.
No true error bounds are given for their technique though the user may control relative
error by the specification of a tolerance value used to control the adaptive quadrature.

Some approaches try to make the parametrization of interpolants closer to an arc
length parametrization by enforcing unit derivative lengths at discrete points in the
domain. In [70] a global G? parametric interpolation scheme is used which enforces
unit derivative length at data interpolation points. This technique uses an iterative algo-
rithm to minimize an energy functional subject to the interpolation and unit derivative
constraints. The context for this technique is the interpolation of discrete data points
rather than the reparametrization of curves.

Wang and Yang [67] present a technique to interpolate discrete data points using
quintic splines. Their application is the conversion of parametric curves to a more nearly
arc length form. Data from the original curve are sampled. A piecewise scheme is then
used to form a C? cubic curve that interpolates sampled points at the ends of each
parametric segment. Finally a quintic spline is created that interpolates position, first
derivative, and second derivative values of the cubic curve at segment end points with the
first derivatives set to unit length. The length of each segment’s parametric interval is
adjusted so that a unit length derivative also results at the midpoint of the interval. An

iterative scheme is used to solve this last, nonlinear, problem. This interpolation scheme

19

typically alters the shape of the original curve; however Wang and Yang suggest that
careful sampling of the original curve can minimize alterations to its shape (they assume
that total curvature between samples is small and of comparable size). No attempt is
made to establish error bounds either in terms of arc length parametrization or deviation
from the shape of the original sampled curve. More recently Srinivasan and Ge [65] have
extended these results to rational curves representing both translational and rotational
motions.

In [38] discrete data points for rational spline motion are interpolated using a local
cubic C! scheme. The context for this interpolation is real time control of industrial
robots. A procedural reparametrization is applied to the interpolant in order to achieve a,
desired speed profile; which is assumed constant on each segment between interpolation
points, with linear changes of speed between such points. This reparametrization is
accomplished using an algorithm that tracks the motion curve and updates the robot
controls after constant time steps. The motion is either sped up or slowed down based on
local estimates of the current speed. The parameter value on the curve interpolant, giving
the position at the next time interval, is estimated from current position and desired
speed using a small number of iterations of Regula falsi. This technique is concerned
with real-time motion control and not with the actual expression of the reparametrized
trajectory as a parametric curve.

Elber [24] presents error bounded algorithms to approximate both normalized uni-
variate vector fields and arc length functions for NURBS curves. Given a NURBS vector
field V (¢t) the dot product f(¢) = < V(¢),V(¢) > is computed as a NURBS curve. An
approximation m(t) ~ 1/4/f(t) is then iteratively computed from samples on f(t). The
dot product < m(t)f(t),m(t)f(t) > is formed in each iteration as a NURBS curve and
its coefficients are checked for variation from unity. After the algorithm terminates,
the NURBS function m(t)V (t) represents an approximate normalized vector field. A
similar algorithm is used to compute an approximation for the arc length function of a
NURBS curve. Given NURBS curve c(t), the function f(t) = < c/(t),c/(t) > = ||c'(¢)||?
is computed as a NURBS curve. The function ||c'(t)|| = \/f(t) is then approximated
as a NURBS curve m(t) from samples on f(¢) in a manner similar to the algorithm
for normalized vector field approximation. The NURBS function s(t) = [m(t) is then
computed in closed form producing a NURBS approximation for the arc length function

on ¢(t). The results of both of these algorithms are bounded by a user specified tolerance

20

on the variation of speed from unity. A NURBS approximation to inverse arc length is
not computed and no algorithm for reparametrization by arc length is given. Instead
root finding techniques are used on s(t) for discrete point approximation of the inverse
arc length function.

Blanc and Schlick [6] use quadratic rationals as change of parameter functions to
improve the parametrization of NURBS curves. In particular they consider the use of
these functions to improve the parametrization of quadratic NURBS representations of
circular arcs. By exploiting the symmetry of the standard Bezier or NURBS formulation
for arcs, and by preserving the parametric domain [0, 1] of this formulation, the quadratic
rational change of parameter functions are reduced to a one parameter family. The
composition of a quadratic NURBS arc with such a change of parameter is then a
quartic NURBS curve. They give a definition for chordal deviation of the standard
parametrization of circular arcs from a constant speed parametrization. A heuristic is
used to reduce the maximum value of this deviation. The reparametrization the authors
use for circular arcs depends on the particulars of the behavior of the parametrization of
the standard representation for these arcs. The authors do not give a generalization of
their technique to approximate arc length parametrizations for more general curves.

The thrust in [28] is the reparametrization of polynomial curve segments to create
nearly constant speed curves. The author adopts a “measure of closeness” to constant
speed, and then analytically minimizes this measure subject to the use of a linear rational
(Mobius) reparametrization. This accomplishes an adjustment in the parametrization of
the curve that does not increase its order nor change its domain. On a single parametric
span, this technique is limited in the adjustment of speed that can be made; one part
of the curve is sped up, and one part slowed down. The author states that extending
the specific minimization technique used to the reparametrization of rational curves is
difficult.

Casciola and Morigi [10] create approximate arc length parametrized NURBS curves by
using linear rational and C'! piecewise linear rational change of parameter functions. On
each parametric interval of the NURBS curve, they approximate the arc length function
by a linear rational function. An iterative optimization technique is used to produce an
error from the actual arc length function that equi-oscillates. The inverse of the linear
rational arc length function approximation is then composed with the NURBS curve to

effect the reparametrization.

21

An adaptive piecewise scheme is used for the reparametrization of the curve. They
state two evaluation criteria for this adaptive scheme: ¢ the maximum deviation from
unit speed over the curve, and p the ratio of the maximum to minimum arc lengths for
curve segments in a regular partition of the domain of the approximate inverse arc length
function. If on a parametric interval the criterion chosen is not met, the interval is split
and the approximate inverse arc length function recomputed over the subdivided interval.

The optimization method they use to create an arc length approximation over a given
parametric interval assumes detailed knowledge of the error function relative to the actual
arc length function over that interval. The evaluation criterion p also requires accurate
knowledge of the arc length function whereas evaluation criterion ¢ requires accurate
knowledge of the speed function on the curve. The authors do not state how the arc
length or speed functions are approximated in these contexts and what properties these
approximations have. True error bounds are not given for these algorithms. Error results
are shown, however, presumably compiled from fine sampling of the curve to produce

accurate approximate arc length and finely sampled speed functions.

3.2 Distance Between Parametric Curves
3.2.1 Frechet Distance

This thesis presents algorithms to bound the Frechet distance between curves as
defined in sections 2.1.1 and 2.1.2. This definition is consistent with the reparametrization
of one curve to match the other in equal-parameter distance.

Given two curve mappings ci(u) : I, = [us,ue] = R"™ and ca(v) : I, = [vs,ve] = R"
the surface s : I, x I, = R given by s(u,v) = |lc1(u) — c2(v)]| is a height field giving the
distance between points on the curves for each point in the space I, x I,. For a given
€ > 0 the level set of the surface s(u,v) = € encloses regions of I,, X I, where the height
field is less than e. These regions have been termed the free space in [2]. The question of
whether the Frechet distance between c¢;(u) and ca(v) is less than € reduces to whether
there exists a continuous and monotone curve in the free space of I, x I, from (us,vs) to
(te, ve).

The Frechet distance between curves can be computed analytically in the case that
c1(u) and c2(v) are both polygonal curves (i.e., piecewise linear). Alt and Godau [2, 34]
give algorithms for determining the Frechet distance between polygonal curves assuming

the two curves have linear parametrizations and unit length parametric intervals for each

22

segment. Assuming P and @ are two such curves, each consisting of a single segment,
they show that the free space for a given € is convex and in fact consists of a (possibly
degenerate) ellipse intersected with the unit square. For P and @ polygonal curves with
arbitrary numbers of segments, and defined on [0, p] and [0, ¢] respectively, the free space
for a given € > 0 is composed of unit square sized cells in [0, p] x [0, q], each intersected
with an ellipse. To determine whether F(p,q) < € they use an algorithm of O(pq) that
determines whether a continuous monotone curve from (0,0) to (p,q) can be contained
in the free space. This algorithm depends on the convexity of the free space within
individual unit area cells of [0, p] x [0, g].

To actually compute the Frechet distance, they observe that a minimal € occurs only
under certain conditions as the free space graph grows with increasing €. They relate
these conditions to critical values that can be determined readily from the geometry of
the two curves. They then use the previous algorithm to determine which is the smallest
critical value that bounds the Frechet distance.

Elber in [24] observes that for ¢;(u) and ca(v) NURBS curves, the surface §(u,v) =
ler(uw) — e2(v) |12 = < e1(u) — e2(v), e1(u) — ca(v) > can be represented as a NURBS. He
further observes that determining the free space for these curves given an € > 0 is then
reduced to finding the zero set of §(u,v) — €2. He also discusses using the surface §(u,v)
to find intersection, closest, and furthest points of the two curves.

Section 4.4 presents a method for bounding Frechet distance between curves. This
method uses closest point matches on the two curves as a heuristic for finding a change
of parameter function that demonstrates a bound on Frechet distance. Closest point
matches have also been used in computer vision research. Zhang [71] gives an algorithm
to match polygonal curves by using closest point matches on the curves. The curve
matching is done in the context of motion estimates for autonomous vehicle navigation
with the curves coming from successive frames of captured video or range sensor data.
The algorithm iteratively matches points in the first frame with their closest points on
the curves in the second frame. This is done by first applying a motion estimate to
the points on the curves of the first frame. Points that can not be matched or matches
with distances outside an adaptively established deviation are discarded. An objective
function is minimized based on the point matches in order to determine a suitable rigid
motion between the frames. This motion estimate is then applied to points in the first

frame and the algorithm iterates. In [72] these techniques are extended to matching

23

surfaces between successive frames. Similar work has also been done in [5]. The primary
application of these algorithms is an understanding of rigid body motion in computer
vision. The authors do not apply these techniques to the reparametrization of curves or

surfaces.

3.2.2 Other Metrics

The Frechet distance between curves is stated in terms of a min/max constraint. Its
advantage is that it gives a measure of similarity between two curves over the entire path of
both curves. Other metrics between parametrically defined curves are possible of course.
Emery in [25] details an algorithm for the computation of the Hausdorff distance [56]
between planar polygonal curves. This algorithm is applied to the creation of piecewise
linear approximations to more general curves with bounded curvature. The Hausdorff
metric between curves, however, considers the curves as point sets without regard to
their parametrization. Curves that have a small Hausdorff distance are guaranteed never
to stray far from one another, but they may trace out their paths in very different
manners. A small Frechet distance between curves, on the other hand, indicates that
a minimum distance can be maintained while tracing the curves simultaneously; a notion
that considers curves as parametric entities.

Regular parametric curves are guaranteed to have arc length parametrizations. This
notion can be used to form a metric between curves. In [31] a distance metric is defined

as:
sup

d(a(u),b(v)) =+ [la(t) — B()]]

for o and 3 approximate normalized arc length parametrizations of a and b respectively.
The arc length parametrization is approximated as referenced in section 3.1 above. This

metric and the Frechet distance can yield substantially different results.

3.3 Texture Mapping and Grid Generation
Texture mapping and grid generation both can be thought of as forms of reparametriza-
tion.
Texture mapping is used to enhance geometric models with detail that is too fine to
specify explicitly. Concern in texture mapping schemes often centers on the minimization
of metric distortion to the texture as it is mapped to the geometry of the model [4, 51, 45].

Other issues, such as the distribution of texture memory with respect to the importance

24

of texture detail can be considered also [63]. Texture mapping requires functions that
map from the parameter space of a surface into texture space; this allows acquisition
of texture values for given locations in the parametric domain. These maps are often,
though not always, one to one. When invertible, the inverse maps can be thought of
as reparametrization functions for parametric surfaces. Texture mapping, however, is
seldom concerned with the explicit representation of the composed surface form in the
representational scheme of the modeler.

Grid generation involves imposing a coordinate grid on a curve or surface represen-
tation. Applications include simulations, as in the field of computational fluid dynamics
(CFD), and the adequate display of curves and surfaces by polygons. The properties
desired for these grids are very application dependent. Study of turbulent flow, for
example, may require fine spacing of grid lines adjacent to boundary layers of the model.
In [64], methods are given for forming and remapping grids on NURBS surfaces for CFD
analysis. Remapping surface grids provides compatibility for different types of surface
analysis techniques. In [42] the desired property is that a uniform grid in the parametric
domain of a curve or surface yield a grid of points in R? with close spacing in areas of high
curvature and sparse spacing in ares of low curvature. A discretization of the problem is
solved numerically. The author in [53] formulates a general statement of an initial value
problem for grid generation on curves and surfaces given a user specified distribution
function. This initial value problem is then solved numerically. As with texture mapping,
the concern in grid generation is generally not with the explicit representation of a

reparametrized curve or surface using the representational scheme of the modeler.

3.4 Correspondence and Reparametrization

Correspondence in geometry involves finding matches, or associations, between shapes.
Establishing correspondences between geometry is an important subproblem in computer
vision, surface reconstruction from medical imagery, and image or shape metamorphosis
for computer graphics. Correspondence between shapes also plays an important role in
much geometric design; both for esthetic and functional reasons.

Reparametrization could be an important tool for expressing correspondence in CAD
systems that use parametric representations. A reparametrization establishes a correspon-
dence between a shape and itself and can be used to establish correspondences between

different, but related, shapes. Two examples, drawn from the shape metamorphosis

25

literature, are given below to illustrate the relationship between correspondence and
reparametrization problems.

Shape metamorphosis for computer graphics has received much attention in recent
years. The technique involves the warping, or deformation, of one shape to match another.
The effect produced depends greatly on the nature of the correspondence established
between these shapes. This correspondence is specified explicitly using matching points
or feature lines [3, 44], by automatic techniques that seek to minimize some functional
established between images or shapes [61, 15|, or by a combination of explicit and
automatic techniques [16].

Sederberg et al. in [61] discuss physically based metamorphosis for polygonal shapes.
The correspondence problem is solved by minimizing functions that simulate the work
done in bending and stretching one shape to match the other. This correspondence,
which is specified by inserting and reordering vertices subject to certain restrictions, is
effectively a reparametrization of the polygonal chain that specifies one of the shapes.

In [15] correspondence between free form NURBS curves is determined by adapting
minimization of continuous functionals to discrete data. Applications include shape
metamorphosis and avoiding degeneracies in surface constructions. A change of parameter
function is fit to a set of discrete point matches between two different curves and one of

the curves is then reparametrized to effect the correspondence.

3.5 “Relabeling” of Discrete Interpolation Data

A methodology employed in curve interpolation involves assigning and/or reassigning
parametric values to discrete geometric points of interpolation. This technique is often
referred to as curve reparametrization in the literature; it will be referred to as data
relabeling here. The notion of curve reparametrization as developed in this thesis involves
the direct composition of curve functions, i.e., ¢(r(t)), or the approximation of these
compositions. Thus an infinite number of geometric points become “relabeled” with new
parameter values.

Any further relationship between the concepts of data relabeling in interpolation
schemes and curve function composition depends on the context in which the interpolation
schemes are developed. Typical uses for curve interpolation methods are: 1) ab initio
design, 2) the maintenance of given geometric constraints, and 3) the approximation of a

point sampled curve by another curve that has desired properties lacking in the original.

26

In cases 1) and 2), relabeling data points with new parametric values is typically done to
effect changes in the curve shape (this is often combined with some optimization scheme
to enforce a measure of “fairness” to the interpolant’s shape).

Examples of case 3) are approximation for smoothness, data compaction, or curve
reparametrization. This last use is obviously related to the work in this thesis. Here the
desire is to maintain shape if possible. Examples of interpolation schemes of this nature

have already been cited in section 3.1 above.

CHAPTER 4

REPARAMETRIZATION ALGORITHMS

This chapter develops new algorithms for the reparametrization of NURBS curves.
The next section presents a general framework that gives a unified approach for devel-
oping these algorithms. Sections 4.2 through 4.4 specialize this framework to individual

reparametrization algorithms used to:

e approximate arc length parametrizations of curves,
e approximate inverses of NURBS functions, and

e generate reparametrizations that establish user specified tolerances as bounds on

the Frechet distance between parametric curves.

4.1 Framework

This section presents a framework for new algorithms that approximate important
cases of NURBS curve reparametrizations.

The central problem for these algorithms is to approximate f(t) = ¢(r(t)) by a NURBS
curve where ¢ is a NURBS curve. Throughout this section it is assumed that r is not a
NURBS. The techniques developed here can be used, however, if r is a NURBS and we
wish to approximate r in the context of ¢(r(¢)) (or wish to approximate ¢(r(t)) itself) by

a NURBS curve of lower polynomial order.

The algorithms in this framework:
e exhibit error bounds,

e exploit known invariants about the composition ¢(r(t)) to determine when conver-

gence to an accurate result has been achieved,

e have a means of iteratively acquiring more data on r, or a converging approximation

to 7, and

28

e can represent their results either as approximations to r or approximations to c(r(t)).

Error bounds should be expressed in meaningful metrics for each algorithm. An error
bound for an arc length reparametrization, for example, can be expressed as a fractional
variation in speed. The user may then specify an allowable tolerance for this variation.
For establishing bounds on the distance between curve mappings the Frechet distance
is used as the error metric. The user then specifies a distance in Euclidean space as an
allowable tolerance.

Even when it may be difficult to bound error with an intuitive metric, it is usually
possible to use a metric that allows the user to specify tolerance values that control
convergence of the approximation in a predictable manner.

Given an error metric, the algorithms in this framework compute NURBS functions
from which bounds on the error in an approximation are determined. These error bounds
are formed over intervals of the domain of the approximation by using the properties of

NURBS curves discussed in section 2.2.

4.1.1 Method 1 — A General Iterative Refinement Scheme

Directly approximating ¢(r(t)) from sampled data typically results in approximations
that do not have the exact geometric shape of the original curve c¢. Algorithms using
such approaches must check that their approximations converge to both the correct
parametrization and the correct shape.

This presents a problem in that checks for errors in approximations to curves are
most readily done using equal-parameter distance measures (see section 2.2.3) which are
useful for measuring the distance between curves of like parametrization. The algorithms
wanted here, however, may change both shape and parametrization.

An approach for resolving this issue is to use NURBS/NURBS function composition
to converge to the correct parametrization without affecting geometry.

Denote by &' = S, the ith approximating polynomial, or rational, spline space
given by the ith knot vector 7% and fixed order m. The ingredients for the general scheme

are:
e An initial spline space, 8%, for approximating r.

¢ A monotone approximation operator M|r, S¢], which approximates its first argument

by a NURBS in the space S¢. Choices for this approximation operator are discussed

29

in section 4.1.2.

e A metric, or pseudo metric, d(a’, f), that measures the distance between the ith
approximation a’ and f = c(r(t)). It is important that we be able to bound this
distance by a function b*(t) that can be represented by a NURBS. Some general
choices for d are discussed in section 4.1.3. Techniques for bounding d will be

discussed in sections 4.2.1, 4.3.1, and 4.4.2.

e A refinement scheme refine(r,b'(t)). Given error bound b‘(t) and fixed order m
this scheme will produce the knot vector ;41 which determines the approximating
spline space for the next iteration of the algorithm. Some general characteristics of

these refinement schemes are discussed in section 4.1.4.
The general scheme is as follows:

Input:
c(u) : I, - R™ a piecewise regular NURBS curve map,
r(t) : Iy — I, a piecewise allowable change of parameter with r(I;) = I,,,
m the order of approximating functions for r,
70 the knot vector for the initial approximation of r, and

€ > 0 an error tolerance measure.

Output:

Approximations for f(t) = ¢(r(t)) or r(t).
Algorithm:

1.i=0

2. ri(t) = M[r, S|

3. form a® = c(r¥(t)) as a NURBS curve.

4. find a NURBS function b(t) which bounds d(a?, c¢(r(t))).

max

5. if "t b%(t) > € then
7+ = refine(7%,b(t)), i =i+ 1, go to 2.

6. else return 7¢(¢) or a(t).

30

Of key importance is the development of approximation operators, refinement schemes,
and error metrics that cause the approximations formed in the algorithm to converge to

the correct result. These issues are discussed in the next several sections.

4.1.2 Approximation Operators M

This section discusses the monotone approximation operator M|[r, S¢] of Method 1.
This operator is used to approximate reparametrization function » by a NURBS curve in
the space S°.

Generally this operator will use discrete data resulting from point-wise evaluation, or
point-wise approximation, of . The data may include both function and derivative values.
It is assumed the data reflect strictly monotonic functions (without loss of generality,
assume these functions to be strictly increasing).

As an example consider approximations to the arc length parametrization. For NURBS

curve c(u) : I, = [us,ue] — R® we have r = s~ where s = s(u) = f;‘fI" ||%c(u)||du

1 can only be

is the arc length function. In general, function values for s, and hence s~
approximated using numerical integration techniques (examples of such techniques are
given in Appendix C). Derivative values for s~!, however, can be computed directly from
c.

Since we assume that all curves are piecewise regular and all change of parameter
functions are piecewise allowable (see section 2.1.4), the data must be approximated or
interpolated by a function that preserves monotonicity. Interpolation and approximation
schemes that preserve convexity present in the data as well, may help to increase the rate
of convergence of Method 1.

The Schoenberg variation diminishing spline approximation [52] is a simple mono-
tonicity preserving scheme. This choice for M allows an approximation to r in any spline
space S°, defined on a suitable parametric interval, and requires only function values.
The continuity of this scheme depends on the knot vector 7; chosen for the space. For
polynomial order m and singleton knots in the interior of 7;, this scheme yields C™ 2
continuity. The major drawback of the variation diminishing spline approximation is its
slow convergence.

The simplest shape preserving interpolant is a piecewise linear function. This scheme
trivially preserves both monotonicity and convexity in the data. Linear schemes also have

the virtue of preserving the order of polynomial functions under composition.

31

Shape preserving C! spline interpolation schemes are presented in [60] and [32],
overviews of which are given in Appendix B. The schemes, as given in [60] and [32],
produce C! interpolants; however this is not always appropriate if it is known a priori
that the reparametrization function is not C' everywhere. The interpolation schemes can
be augmented readily, however, to lower continuity at specified points in the interpolant’s
domain (see Appendix B). This lowering of continuity in the interpolant is critical to
constructing C! approximate arc length parametrizations from G! (but not C!) curves.
(See section 4.2 for details.)

The interpolant of [60] may fail to maintain shape conditions; however such failures
can be detected. This is especially important for detecting failures in monotonicity over
intervals of interpolation. One method for “correcting” such failures is to lower the
continuity at the endpoints of the errant interval (see Appendix B). Since this scheme
is embedded in an iterative algorithm, this failure condition can be flagged, and another
iteration of the outer algorithm initiated to collect more data on the interval in an attempt

to further correct the problem and maintain C* continuity.

4.1.3 Metrics
The choice of metric, or pseudo metric, d(f, g) for Method 1 depends on the application
domain. Some choices for d are given below. Their use in reparametrization algorithms

are discussed in sections 4.2 through 4.4.

1. IIf(t) — g(t)]|, equal-parameter distance between mappings.

2. F(f,g), Frechet distance.

3. 7% LI @ = lg" ()]l |, maximum difference of first derivative length functions.

4.1.4 Refinement Schemes

Refinement schemes for Method 1 should be viewed in a general sense since 7i*! may
not be a simple refined partition of 7.

For algorithms that use interpolation of sample points for operator M it may be more
natural to view the refinement scheme as generating a more refined or dense sampling of
the function r to be approximated. In cases where the change of parameter function r
is determined wholly, or in part, by ¢, the curve being reparametrized, this more refined

sampling of r may actually be generated by embedding NURBS curve ¢ in increasingly

32

refined spline spaces. (Examples of this technique are given in sections 4.2 through 4.4.)

*1 may then be determined by assignment of parameter values to

The new knot vector 7°
these sample points, by consideration of known discontinuities that should occur in a’ or
rt, and by the exact nature of operator M.

The next several sections give specializations of Method 1 for performing particular

reparametrizations.

4.2 Approximate Arc Length Reparametrization
Here Method 1 is specialized to reparametrize a NURBS curve c(u) by approximate
arc length. The resulting approximate arc length parametrization will be C! if c(u) is
G' and have a variation in speed bounded by a user specified tolerance. Given piecewise

regular NURBS curve c(u) : I, = [us, ue] — R?, the arc length function on c(u) is defined

o) = /uz:elu

The arc length parametrization is given by () = c(s 1(¢)) and is characterized by

as:

d
— d
ducwH y

||d3—sf)|| = 1; that is, an arc length parameterization has unit speed. This invariant will
be exploited to measure convergence of the sequence of approximations produced by the
algorithm.

It is known that arc length parametrizations of NURBS curves can themselves be
expressed as NURBS curves only for very restricted cases [30]. Hence representing the arc
length parametrization of a NURBS curve by a NURBS is, in general, an approximation
problem. The user specified tolerance for this approximation can be given as an allowed

variation in speed.

4.2.1 Bounding a Metric

Pseudo metric 3 of section 4.1.3 is used for d(f, g) which then specializes to

sup

d(a'(t),7(t)) ="t

d i d sup
=] -] |

d ;
—a'(t)|| -1
|zl 1]
for y(t) the arc length parametrization.
Since a(t) is a NURBS curve, %ai(t) can be represented as a NURBS curve (see

section 2.2.2). The techniques of section 2.2.3 can then be used to bound ‘ %ai(t)H from

both above and below on intervals of the parametric domain. Hence ‘ H %ai(t) H -1 ‘ can

be bounded over intervals of the domain to ensure that the speed of the approximations

33

a'(t) converge to within a user specified tolerance of unit speed everywhere in their

domains.

4.2.2 Approximating Inverse Arc Length

Function r¢(t) of Method 1 is computed from points Q' = {(“3’ t;)}j, approximations
of the arc length function for c¢(u) at discrete points in the curve’s domain. The points

= {(t 5])}] are then on an approximation to the inverse arc length function. The al-
gorithms of Appendix C give methods for computing sets of sample points for approximate
arc length functions. In one of these algorithms, lengths along the control polygon for
refined representations of the NURBS curve c(u) are used for arc length approximation.
Iterations of this algorithm can be incorporated into the iterations of Method 1.

To avoid oversampling, data should be acquired for the arc length approximation only
where needed. If the error bound for ¢(r*(t)) on an interval I = [tz 5 “ 1) C It exceeds
the specified tolerance then sampling for the arc length function in the next iteration is
increased in an interval I = [u;, u; +1) € I,. More generally, if the error bound for ¢(r'(t))
on an interval [a, b] C I; exceeds the specified tolerance, then sampling for the arc length

function is increased on the interval [r*(a),r¢(b)] C I, in the next iteration.

4.2.3 The Approximations r' and Continuity of ai(t)

There are a number of possibilities for approximating the inverse arc length function
given sample points R’. This section describes the use of the C! interpolants of [60]
and [32] (see Appendix B). Use of such interpolants allows the construction of C!
approximations a’(t) = ¢(r(t)) from G curves c(u).

Data supplied to these schemes must be in the form {(¢;,u;,D;)}; where the u;
represent function values, the D; represent first derivative values, and the t; are the
locations in the parametric domain where the given values are to be achieved. The
{(tj,u;)}; correspond to the R above. The derivative values D; can be computed from

in accordance

the speed function on the original curve c(u) with D; du | ul

with the inverse function theorem for derivatives Note that because of the interpolation
d de(
de(r’ (1)) — ‘) i =1

Thus at each interpolation point t;- the speed of c(() becomes unlty.

constraints,

|t tZ

The interpolation schemes of [60] and [32] produce C? spline interpolants to the inverse
arc length data. The arc length function, however, will be only C° at points where the

speed function for c(u) is discontinuous. Hence the inverse arc length function will be

34

only C? at the associated points. The interpolation schemes can be augmented readily
to insert knots of multiplicity two at corresponding points in the interpolant’s domain,
constraining the resulting interpolants to be only C° there (see Appendix B). The
augmented algorithm requires both left and right hand derivative information at such
points. These data can be supplied from left and right speed values on c(u). Again,
because of the interpolation conditions, the left and right speed values for the composed
function c(ri(t)) will be 1.0 at these points. Thus if c(u) is a G! curve, c(r*(t)) will be
C* for all i provided that each set Q° includes all points in the domain of ¢(u) where the

curve is only C°.

4.3 Approximation of Inverse NURBS Functions

This section specializes Method 1 to an algorithm for approximating inverses of scalar
valued NURBS functions. As mentioned before, it is important to note that this is an
approximation problem since for ¢(u) : I, — R a NURBS function, ¢ !(t) is usually not
a NURBS.

The series of functions r* of Method 1 become approximations to ¢ !, and the invariant
used to determine the convergence of the algorithm is that a’(t) = c(r¢(t)) should converge
to the identity function. The user specified tolerance can be given as an allowable distance

of a’(t) from the identity, or, alternatively, an allowable distance of r(t) from c¢~1(t).

4.3.1 Bounding a Metric
Two metrics are proposed for measuring error for this algorithm. For f(t) = c(c™!(t)) =

t the two metrics under consideration are:

d(a'(t), f(t) ="t |e(ri(t)) —t| = ¢ |E(t)], (4.1)
and
d(ri(t),cH(t)) ="t |ri(t) — cTHE)| ="¢ le(t)]- (4.2)

For NURBS functions ¢ and r?, error function E(t) can be represented as a NURBS
(see section 2.2) and therefore can be bounded over intervals of its parametric domain.
For a given interval Iy of the parametric domain for the NURBS representation of E(t)
let {E; }1 be the B-spline coefficients for E(t) for which the corresponding basis functions
have positive support on Io. Then & |Ex| > E(t) Yie,-

35

Bounds on error function e(t) can be related to bounds on E(t) as follows: Assume
c(u) is a strictly monotonic increasing function. For a given interval [ug,up] C I, let
ta = c(uq), ty = c(up), and I = [uq, up] U [r(ta), r*(tp)]. Let c(u) be continuous on I and

differentiable in the interior of . Then
|E(t)|/M < |e(t)] < |E(t)|/m (4.3)

min max
for YV € [ta,tp] wWith m = uel %c(u) and M = uel %c(u). Since c is a NURBS function
%c(u) can be formed as a NURBS and its value bounded over intervals of the parametric
domain.

To show relation (4.3) we have from the mean value theorem for derivatives:

c(r'(t)) — e(c™(t) = d%c(u) (r'(t) — (1))
= B(t) = %c(u) el

= |B()] = ~-c(w)

le(t)]

uo

d .
= le(t)| = |E(t)|/ %c(u) for some ug €

uo

from which relation (4.3) follows.

4.3.2 The Approximations r!

The algorithm computes function r¢ from sample points Q' = {(u;, tz- = c(u;))}]
on NURBS function ¢(u). The points R! = {(t;-, u;)}] are then on the function ¢ 1(¢).
Bounds on the error function E(t) (or e(t)) over intervals of the domain, can be used to
control where new sample points are evaluated in each iteration in a manner similar to
that given in section 4.2.2. If the error bound for E(t) on an interval I = [t;-, t§-+1] CL
exceeds the specified tolerance, sampling of ¢(u) in the next iteration is increased in an
interval I = [u;, “3 +1) € I,. More generally, if the error bound for E(t) on an interval
[a, b] C I exceeds the specified tolerance, then sampling of ¢(u) is increased on the interval
[ri(a),r!(b)] C I, in the next iteration.

In order to use the shape preserving quadratic or linear rational approximation schemes
described in Appendix B, derivative information is required at each sample point. This
information can be acquired easily by application of the inverse function theorem for

derivatives. For sample point (t;, “3) the derivative value for r! is set to 1/ %c(u?). Thus

36

at each interpolation point t;- the derivative of the composed function c(ri(t)) becomes
unity.
Again, as in section 4.2.3, the continuity of the approximations r¢ should be lowered

at those points corresponding to lowered continuity of ¢(u).

4.4 Bounding Frechet Distance

This section specializes Method 1 for the computation of bounds on the distance
between parametric mappings. This algorithm will attempt to establish a user specified
tolerance € as an upper bound on the Frechet distance between two NURBS curves. The
two curves, ¢i(t) : I} = [ts,te] = R"™ and ca(u) : I, = [us,ue] — R", are assumed to
match at their end points; i.e., ||c1(ts) — ca2(us)|| < € and ||eq(te) — c2(ue)|| < e.

The algorithm reparametrizes cs, using a sequence of piecewise allowable changes of
parameter ¢, in an attempt to match ¢;. From consideration of the definition of Frechet
distance, one approach would be to construct a sequence of functions * such that

Tim *® ey () — 2 (1) = Fler,e2). (4.4)
The algorithm uses a heuristic to construct a sequence r* that, although not guaranteed
to have property (4.4), can be used to establish € as a bound on F(ec1, c2) in many cases
where it is a bound. The heuristic is that ¢y should be reparametrized so that pairs
of closest points on the two curves have the same parameter value. The rationale for
this heuristic is that it holds for different parametrizations of the same Frechet curve and
generalizes to many cases involving pairs of distinct Frechet curves. Note also that closest
point matching guarantees finding a point in the free space for the Frechet problem (see

section 3.2.1) at a given parameter value, if such points exist.

4.4.1 Closest Point Pairings

Our heuristic involves using pairs of closest points between two curves. Figure 4.1
indicates that such pairings are not necessarily unique. If B = ¢;(¢p) is the closest point
on c¢; to A = ca(ug), the closest point on ¢z to B is not guaranteed to be A. The closest
point pairings for this algorithm will be defined always to result from performing the
minimization operation over nonempty intervals of ¢y; i.e., curve ¢; is always searched for
a closest point to an individual point on cs.

Figures 4.2(a) and (b) indicate that this restriction can give rise to problems also.

Figure 4.2(a) indicates that closest point pairings are still not necessarily unique since

37

Figure 4.1. Closest point pairings are not necessarily unique since the closest point
relation is not always symmetric. The closest point on ¢; to A is B. However, the closest
point on cs to B is P.

(a) (b)

Figure 4.2. Closest point pairings. (a) More than one solution to the minimum distance
problem. All points from B4 to Bs on ¢; are at a minimum distance from point A on cs.
(b) Point matches causing nonmonotonic parametric correspondence. The sequence of
parameter values on ¢z associated with the ordered set {A1, A2, A3, A4} is monotonic.
The sequence of parameter values on ¢y associated with the ordered set of closest matching
points {B1, B3, B2,B4} is not monotonic however.

38

more than one point can be the solution for the minimization problem. Figure 4.2(b)
indicates that closest point pairings can give rise to nonmonotonic change of parameter
functions. Solving the minimization problem over the entire domain of ¢; each time may
cause parameter matchings that “back up.”

One approach to solving these difficulties in many cases is to use local solutions to
the minimization problem. Hence searches on c¢; are performed over restricted intervals
of its domain. If ¢;(t;) is already paired with ca(u;) and ci(tj41) is already paired with
c2(uj41), then in finding a match for a point ca(u) with u € (uj,u;11), the search on ¢;
is restricted to the interval (t;,¢;41). See section 4.4.3 below for more details. Note that
restricting the search space for minimum point distance searches has the positive side
effect of decreasing the computation necessary for these searches.

The algorithm makes use of the operation “find closest point on curve to point.” See

[41, 40] for recent work in this area.

4.4.2 Bounding a Metric
Metric 1 of section 4.1.3 is used for d(f,g). Thus

d(er(t), e2(r' () ="¢" Jlea(t) — ea(r'(B))I] = Flew(t), ea(r'(2))-

Establishing a bound for this choice of distance metric d is accomplished using the

techniques of section 2.2.3.

4.4.3 Sample Points for r'

The algorithm computes function ! using sample points resulting from pairs of closest
points on the two curves. For each iteration i of the algorithm, a list of sample points
Q' = {(t;,u;)}] is maintained, sorted by increasing t;, where t;- € I; V; and u; eI, Vv;.
These tuples have the property that for each j, c; (t;) is that point on ¢; which is found
to be closest to cz(uz-) using a restricted closest point search on ¢; (as described below).
We now discuss how to create the sets Q¢ from which r* : I; — I, is computed.

For I; = [ts,te] and I, = [us, ue], set Q° to {(ts,us), (te,ue)}. For i > 0, data should
;,u;) and
(ti11,uj41) be tuples in @' such that the error bound for d(ci(t),c2(r'(t)) on [t}, 1] 4]

be acquired for r* only where most needed; one approach is as follows: Let (¢

exceeds the specified tolerance. Let 4 = (u; + u§-+1)/2. In forming Q**! the tuple (£,)
is added to the set Q¢ where c;(#) is the closest point on c¢; to cp(@), with the closest

point search on ¢; restricted to (t;-, ; 4+1)- If the resulting t is too close to either end of

39

interval [t;-, t;- 41], move t slightly towards the interior of the interval in order to maintain
monotonicity.

This algorithm has two stopping criteria. If ||ci(f) — c2(@)|| > ¢, the algorithm
terminates and reports a failure to establish ¢ as a bound on the Frechet distance in
one of two subconditions. Curve c; is searched over its entire domain for the point closest
to c(4) and cy is searched over its entire domain for the point closest to ¢;(f). If either
of these closest point distances are greater than e then we know that F(cy,c2) > e.
Otherwise we can say only that the algorithm failed to establish € as a bound. The
algorithm terminates successfully if d(ci, co(r?)) is bounded by a value less than the user
specified tolerance.

Note that {t;“}j is a refined partition of {t;}] and similarly {uj-“}j is a refined

partition of {u; }-

4.4.4 The Approximations r!
The algorithm can use sample points Q! to yield piecewise linear approximations r°.
In order to use the C! schemes described in Appendix B, however, derivative information
is required at each sample point. Two approaches for deriving this information are given
below.
Assume c1,co piecewise regular, and r : I; — I, a piecewise allowable change of

parameter with %r(t) > 0,V i.e., a sense preserving change of parameter. If ¢i(t) =

a(r(t)), Ve € i them fer(t) = ea(w)|| | r(®) = r(t) = Iger)I/ Ifiea(w)] 11

This consideration leads to the following technique for approximating %ri(t) at a point
t; Given the sample point (t;-, “3) for some j, evaluate V; = %cl (tz) and Vp = d%cz(u;-)
and then approximate %ri(té-) by taking the ratio of the length of V; to the length of the
projection of V5 onto Vi. Thus:

d ; 1% A%
—Tl(t;-)"’ “ 1“ _< 1, V1 >

dt N<V1,V2>/||V1||_<V1,V2>.

If the unit tangent functions for ¢; and cy are similar, then this is apt to yield a good
approximation. However, it is possible for two curves to have a small Frechet distance
between them and yet have very dissimilar unit tangent functions (see Figure 4.3). If the
unit tangents V1 /||V1|| and Va/||V2]| are dissimilar then a different method should be used
for determining the derivative approximations.

One approach is to approximate derivative information based on the sample points

Q" alone. For example, a linear rational function can be fit to three successive points,

40

N N LN
SN N N\

Figure 4.3. Curves with very dissimilar unit tangent functions but a small Frechet
distance of € between them.

(t§'717“§71)7 (t;,uz-), (t§-+1,uj-+1), and the derivative of this function at tj- used for the
derivative of r* there. End points would be handled in a similar fashion. The use of a
linear rational function for this purpose guarantees that derivative values will be consistent
with monotonic functions given monotonic data (see [32]). For the case Q° either a third
sample point is required interior to the interval, or a linear function is used for the first

approximation 0.

CHAPTER 5

ALGORITHMIC EXTENSIONS

This chapter develops extensions to the algorithms of Chapter 4. Section 5.1 presents
an extension to the algorithm for approximating inverses of spline functions. Section 5.2
develops extensions to the Frechet distance algorithm of section 4.4. Section 5.3 gives an
extension to Method 1, the general scheme developed in section 4.1.1. Section 5.4 gives
an alternative to Method 1. Section 5.5 discusses a technique that can be used to tighten

error bounds computed by the algorithms.

5.1 Reparametrization by Axis

This section extends the algorithm of section 4.3 to parametrizations of NURBS curves
along arbitrary linear axes in space. By this is meant that equal steps in the parametric
domain yield equal steps along the curve’s perpendicular projection onto a specified linear
axis. Using the affine invariance property of NURBS curves, it can be assumed, without
loss of generality, that curve c(u) = (2(u),y(u), 2(u)) : I, — R3 is to be parametrized
along the X axis. It is further assumed that z(u) is a strictly monotonic increasing
function, although this algorithm can be generalized to piecewise monotonic coordinate
functions.

The goal is to approximate the function f(t) = (z(z~1(t)), y(z~1(t)), z(z~1(t))) =
(t,y(zL(t)),z(z"1(t))) by a NURBS curve given c(u) a NURBS. This approximation
can be formed as a’(t) = (z(r*(t)), y(r(t)), z(r*(t))). The functions ri(t), approximations
to x71(t), are computed by the algorithm of section 4.3 using the metric of equation (4.1).

If the r(t) are computed with the aid of a C! interpolation scheme, as suggested in
section 4.3, then the resulting approximations a‘(t) will be continuous, with X coordinate
functions that are continuously differentiable, provided each set Q* includes all points in

the domain of c(u) where the curve’s X coordinate function is only C? (see section 4.3).

42

5.2 Extensions to Frechet Distance Algorithm
This section presents two extensions to the Frechet distance algorithm of section 4.4.
The first addresses the problem of finding contact intervals between two curve mappings.
The second modifies the Frechet algorithm of section 4.4 to yield an algorithm that

produces relative radial reparametrizations of curve mappings.

5.2.1 Contact Intervals Between Curves
The algorithm of section 4.4 tries to construct a function that demonstrates a user
specified tolerance as a bound on the Frechet distance between curve mappings. A useful
and practical extension addresses the following problem: given two curve mappings c;
and co, find and describe all contact intervals between the curves that the mappings
represent.
As used here, the term contact interval means an interval over which the two curves

have a Frechet distance less than a specified tolerance. Such an interval can be designated

by:
e A parametric interval on curve 1.
e The corresponding interval on curve 2.

e A change of parameter function that reparametrizes one curve into the other over
this interval, i.e., that establishes the specified tolerance as a bound on the Frechet

distance over the interval.

To aid in the statement of this algorithm we define the signal values of a NURBS
curve to be the set of parameter values corresponding to either the start or end of the
curve, or to an internal knot with multiplicity m — 1 for m the polynomial order of the
curve. In short, the signal values of a NURBS curve are those parameter values where
the curve is constrained to be only C°. There are a finite, and generally small, number
of such points on a NURBS curve.

This algorithm assumes that contact intervals between curves begin and end at para-
metric locations that are signal values on at least one (but not necessarily both) of
the curves. Large classes of curves designed using a CAD system, and intended to be in
contact along part of their domains, meet this criterion. Figure 5.1 indicates cases covered

by this assumption. This assumption makes finding all potential contact intervals a

43

O

(¢) (d)

Figure 5.1. Cases covered and not covered by the basic assumption for contact intervals.
Dots indicate the location of signal values on the curves. The cases illustrated in (a), (b),
and (c) are covered by the assumption. Case (d) is not covered since the contact interval
does not begin and end at parametric locations that are signal values on at least one of
the curves.

discrete problem with a straightforward solution.

The algorithm uses the operator find-closest-pt-tol(crv, pt, tol). Thecurve
argument, crv, is searched for the closest point to the geometric point argument pt. If
the closest point found is within distance tol of pt then the parametric location on crv
corresponding to this closest point is returned. Otherwise an indication that no such

matching point exists is returned.

5.2.1.1 General Change of Parameter

This section develops the algorithm for finding contact intervals between curve map-
pings when intervals may be related by general change of parameter functions. A special
case for mappings related exactly by piecewise linear or piecewise linear rational change

of parameter functions is given in the next section.

Input:
c1 and ¢y piecewise regular NURBS curve maps.

€ a user specified tolerance given as a Euclidean space distance.

44

Output:

A list of contact interval entries. Each entry consists of a parametric interval on
c1, the corresponding interval on cp, and the change of parameter function that

reparameterizes cy into c; over this common interval.

Algorithm:

1. Create a sorted list of the signal values for ¢; and a sorted list of the signal

values for cs.

2. Partition the domain of ¢; using a sorted list of parametric locations. Each entry
in this list contains a parameter value in the domain of c¢;, a flag indicating
whether this location has been matched by a point on ¢z, and the matching
parameter value on ¢y if a match was found. The list is sorted by increasing

parameter value on ¢; and is formed as follows:

(a) Add an entry for each signal value on ¢;. For each of these entries use
the find-closest-pt-tol operator to find a matching point on co, if one
exists. If no match is found, mark the entry as unmatched. If a matching
point is found, set the co parameter value in the entry to the parametric
location of the matching point. If the matching point is at a signal value
on ¢y, remove it from the list of co signal values.

(b) For each remaining unmatched signal on ¢ use the find-closest-pt-tol
operator to find a matching point on ¢y, if one exists. If a matching point is
found, insert an entry into the list that partitions the domain of ¢; indicating
the parametric location on c¢; and corresponding location on cy. The new

entry is inserted into the sorted list using the parameter value on c;.

At the end of this process the domain of ¢; has been partitioned into subin-
tervals. The parametric locations forming this partition are marked as either
matched or not matched on c3. A subinterval that has both of its end points

marked as matched denotes a potential contact interval.

3. Check each potential contact interval using the Frechet distance algorithm of
section 4.4. If the intervals match, add an entry to the list of contact intervals

to be returned.

4. Coalesce entries for matching intervals adjacent in the parameter space of c¢;.

45

5.2.1.2 Piecewise Linear Correspondence

Many practical cases arise in CAD environments which involve curve mappings re-
lated exactly by piecewise linear or piecewise linear rational changes of parameter with
relatively few pieces. A typical case occurs when surfaces share part of their boundary
edges. This shared boundary often results from the same initial curve geometry that has
been incorporated into the two surfaces in ways such that the parameterizations of the
geometry no longer match but are related by linear or linear rational functions.

A simple modification to the algorithm of section 5.2.1.1 can be used to determine if
one of these special case relationships exists between two curves. The algorithm follows
the same steps as in section 5.2.1.1, except that instead of using the Frechet distance
algorithm of section 4.4, each potential contact interval is tested to see if the curves differ
only by a simple linear change of parameter over the interval. The linear function for an
interval being tested is defined by the matching pair of parameter values (one from the
domain of ¢; and one from the domain of cs) at each end of the interval. The change
of parameter function for adjacent matching intervals thus becomes a piecewise linear
function.

For rational curve mappings, one can test for a linear rational change of parameter
relationship over each potential contact interval. The linear rational function for an
interval can be determined uniquely only if additional information is known on the

interval, such as the values for an additional correspondence pair.

5.2.2 Radial Reparametrization

The Frechet distance algorithm of section 4.4 uses a distance metric and convergence
criterion based on the Euclidean distance between points. Other metrics and convergence
criteria could be employed instead. As an example we modify the Frechet distance algo-
rithm by using a distance metric and convergence criterion based on the “radial distance”
between points. This results in an algorithm that forms relative radial reparametrizations
of curves.

Figure 5.2 illustrates the situation under consideration. Assume that planar, piecewise
regular curves c;(t) : Iy — R? and cy(u) : I, — R? are “star-shaped” with respect to a
central point. Without loss of generality assume this point to be the origin O. Curve
¢y will be reparametrized in order to establish a radial correspondence with c¢i. This
correspondence is characterized by a change of parameter function, r(¢) : I; — I,,, such

that the line through ¢ (¢) and c2(r(t)) also goes through O for all ¢, and such that both

46

Figure 5.2. Radial distance and radial closest point operators between two curves. The
—>
radial distance between A on c¢; and B on ¢y is the angle 8 made by the vectors OA and

—)
OB at the origin O. The radially closest point on ¢y to point A on ¢; is point P at the
intersection of co with the half line starting at O and going through A.

curves move from the points ¢;(t) and c2(r(t)) into the same half space as defined by this
line.

Given point A on ¢; and point B on ¢y, the “radial distance” between these points is
given by the angle between vectors (ﬁ and O—ﬁ, which we denote by Zo(A,B). Given
point A on cp, the radially closest point on cs is the point P at the intersection of co with
the half line starting at O and going through A. Thus the “find closest point on curve
to point” operator of section 4.4.1 is a ray/curve intersection operation in this metric.

The algorithm of section 4.4 used the metric “t* ||c1 () — c2(r?(¢))]|, for || || Euclidean
distance, to establish convergence and determine where more sample points for 7!, the

approximation to r, should be generated. Here we use the pseudo metric

d(ci(t), e2(r' (1)) ="4 Lo(er(t), e2(r' (1)) (5.1)

The user specifies a tolerance, 8, as the maximum allowable radial distance between

c1(t) and ca(r¥(t)). The pseudo metric of equation (5.1) can be bounded by:

. < a1lt) a(ri(t) >
<al®),alt) >< o), b)) >

= P gin? (10(01() (())))

< sin®(9).

47

For NURBS curves c1, co, and r?, the expression whose norm is taken in equation (5.2)
is a NURBS function and hence its length can be bounded over intervals of its parametric
domain (see section 2.2).

Substituting radial distance, the radial “find closest point on curve” operation, and the
convergence criterion of equation (5.2) into the algorithm of section 4.4 yields an algorithm
that produces a relative radial reparametrization of one curve to match another.

This algorithm can be embedded into the algorithm of section 5.2.1.1 yielding an
algorithm that finds “radial contact intervals.” For the star shaped curves assumed here,
the signal values of section 5.2.1 need only include the start and end points of the curves

(see Figure 5.3).

5.3 An Extension to Method 1

Method 1 of section 4.1.1 uses function composition to converge a sequence of approxi-
mations to a desired parametrization (see Figure 5.4). This general scheme has drawbacks

which include:

e The function composition used may raise the polynomial degree of the result.

e For a given NURBS curve c(u), choices for the polynomial degree of the result, a‘(t),

are restricted to multiples of the polynomial degree of c(u).

e The smoothness of the result is tied directly to the smoothness of the approximations

Figure 5.3. For star shaped curves, radial “contact intervals” begin and end at the start
or end points of at least one of the curves. S and E indicate, respectively, the start and
end points that define the contact interval in this example. The central angle 6 here
indicates the extent of the interval.

48

1=1+1
‘ |

c(u) 25 ri(t) —s c(ri(t)) — P?

Figure 5.4. Schematic for Method 1. The iteration counter for the algorithm is denoted
by i. M is a monotone approximation operator to scalar valued data. “P?” checks for
convergence to the correct parametrization.

r¢(t). Smoother results may require a higher polynomial degree for r’(t).

A stage could be added to the algorithm which uses approximation techniques, in
combination with equal-parameter distance measures, to allow the final approximation
for ¢(r(t)) to be of any desired polynomial order.

Let a(t) = c¢(r"(t)) be a NURBS representation for the function composition where
i* denotes the final iteration of Method 1. An interpolation or approximation operator
could be used to approximate a(t) from sampled data, yielding NURBS curve g(¢) in
a spline space of any desired polynomial order. Equal-parameter distance d(t) =%
llg(t) — a(t)|| can then be bounded over intervals of the domain using the techniques of
section 2.2.3. Intervals of the domain where d(¢) is outside a user specified Euclidean space
tolerance, €, can then be resampled and the interpolation or approximation operator
applied again. This new stage iterates until the approximation g(¢) is within the user
defined tolerance of a(t). Candidate interpolation and approximation techniques include
those discussed below in section 5.4.1. Figure 5.5 diagrams Method 1 as augmented with
this final approximation stage. Other data and degree reduction techniques could be used
to accomplish this same goal [48, 49, 69, 68, 22, 57, 8].

One problem with this technique is that for general approximation or interpolation

operator A, the approximation that results at the end of the second stage may no longer be

1=1+1 k=k+1
* | |

c(u) 2 ri(t) — e(ri(t)) — P? 25 gk (t) — D?

Figure 5.5. Schematic for Method 1 augmented with a separate iterative approximation
stage. The iteration counter for the second stage is denoted by k. A is an approximation
operator to vector valued data. “D?” checks equal-parameter distance between g*(t) and
¢(r*(t)) where i* denotes the final iteration of the first stage of the algorithm.

49

sufficiently converged to the desired parametrization. Consider the arc length algorithm
of section 4.2 as one example. The pseudo metric for this algorithm insures uniform
convergence to unit speed within a specified tolerance. A curve g(t), however, can be
within a Euclidean distance €3 of a(t) everywhere, but have a speed arbitrarily far removed

from unity at points in its domain.

5.4 Method 2 — An Alternative General Scheme
This section develops an alternative to the general scheme of section 4.1.1. The new
method directly approximates ¢(r(t)) in spline spaces of any desired polynomial order and
forms an alternative framework for the algorithms of Chapter 4 and sections 5.1 and 5.2.
This new algorithm has advantages over the schemes of sections 4.1.1 and 5.3 in a number
of situations, which will be discussed below.

Two observations motivate the development of this new method:

1. Method 1 acquires data to approximate r(t) iteratively. The algorithms presented
for the arc length and inverse function reparametrization cases use point-wise eval-
uation, or point-wise approximation, of 7~1(u) to create tables indexed by values in

the domain of ¢(u):

u_domain derived from r—*
i Y i d iy
Uj tjv at’ (tj)

with t;- = ril(u;) and %ri(té) = 1/%7‘4(1@). (A slight abuse of notation appears

here: 7~¢ denotes the ith approximation to the inverse function denoted as r~1.)

This information is then used to form NURBS approximation r¢(t) ~ r(t) and

subsequently NURBS curve c(ri(t)) = c(r(t)).

Extended versions of these tables could be created instead as shown in Figure 5.6.
Here c(r’(t;)) = c(u;) and %c(ri(té-)) = %c(u;)/%r_z(u;)

The “t domain” and “composed function” columns could be used to approximate

composed function u domain t domain
(), Getri@) < W S

Figure 5.6. Extended data table for use with Method 2.

50

c(r(t)) directly. The problem with such a technique (as noted in section 4.1.1) is
that the geometry of the approximating curve, in general, will no longer be identical

to c(u).

2. Finding a solution to this last problem can be approached as follows: given NURBS
curve g(t) = ¢(r(t)) we wish to bound the Frechet distance between g(¢) and c(u)
by a user specified tolerance. This could be established by:

sup

t [lg(t) —e(r@®)] <e, (5.3)

or equivalently:
sup

‘ Hg(r_l(u)) - c(u)H <e. (5.4)

provided that r(t) : I; — I,, is a piecewise allowable change of parameter (and hence

a homeomorphism).

The problem now becomes how to establish one of these inequalities given our
assumption that r(¢) is not a NURBS (and hence we may not be able to establish
bounds for the left hand sides of (5.3) and (5.4) directly). In cases where r !(u)
is a NURBS, such as in the reparametrization along linear axis algorithm, the
techniques of section 2.2.3 allow us to use (5.4) directly. Otherwise useful bounds
on the Frechet distance can be established with the aid of a convergent sequence of

NURBS functions that approximate either 7(¢) or r~1(u) in (5.3) or (5.4).

These two observations lead to a new method for approximating the reparametrization
of NURBS curves.

Let S = S, denote the ith approximating polynomial spline space given by ith knot
vector o' and fixed order I. These spaces are used to formulate the spline approximations
r~¢u) = r~l(u).

Let 7¢ = T i denote the ith approximating polynomial, or rational, spline space
given by ith knot vector 7¢ and fixed order m. These spaces are used to formulate the
spline approximations gi(t) ~ f(t) = ¢(r(t)).

The ingredients for this new scheme are:

e An initial spline space, 7°, in which to approximate c(r(t)).

51

e An approximation operator A[f, 7?], which approximates its first argument by a
NURBS in the space 7. Note that this operator is used to approximate parametric

functions. Choices for this operator are discussed in section 5.4.1.

e A means of deriving a spline space S* from space T*. Section 5.4.3 discusses the

relationship between these spaces.

e A monotone approximation operator M[r~! 8], which approximates its first argu-
ment by a NURBS in the space Si. Note that this operator is used to approximate

scalar functions. (See section 4.1.2.)

e A metric, or pseudo metric, d(g%, f), that measures the distance between the ith

approximation g¢ and f = ¢(r(t)) as in section 4.1.3.

e Refinement schemes refinel(7?,b(t)) and refine2(7?, 3*(u)) . The scheme refinel
is similar to the refinement schemes of section 4.1.4. The scheme refine2 takes a
function B(u) with the same domain as c¢(u). These schemes will be discussed in

section 5.4.2.
The new scheme is as follows:

Input:
c(u) : I, > R™ a piecewise regular NURBS curve map,
r(t) : Iy — I, a piecewise allowable change of parameter with r(I;) = I,,,
m the order of approximating functions for ¢(r(t)),
[the order of approximating functions for r~1(u),
7% the knot vector for the initial approximation of ¢(r(t)), and

€1,€2 > 0 error tolerance measures.

Output:

Approximations for f(t) = c(r(t)) or (u).
Algorithm:

1.¢:=0

52

2. g'(t) = A[f(t), T']
3. find a NURBS function b(¢) which bounds d(g*, f(t)).
4. if "F bi(t) > € then
71 = refinel (7%, b%(t)), i =14+ 1, go to 2.
5. derive S' from T°.
6. r—¢(u) = M[r~1, 8%
7. form ¢*(u) = ¢*(r~*(u)) as a NURBS curve.
8. find a NURBS function ((u) which bounds ||¢*(u) — c(u)]|.
9. if "8 B¢ (u) > € then
71 = refine2(r¢, B (u)), i =14+ 1, go to 2.

10. return g(t) or r—(u).

Figure 5.7 compares Methods 1 and 2. Method 1 uses function composition to guar-
antee that the geometry of the reparametrized curve does not change in the algorithm’s
first stage. Method 2 uses parametric approximation to generate approximations for

c(r(t)). In general both the parametrization and shape of the curve will change. A test

1=1+1 k=k+1
| |

!
c(u) 25 ri(t) —s c(ri(t)) — P? 25 gF(t) — D?

(a) Method 1

t=1+1

y T |

c(u) 25 r=i(u) -2 gi(t) — P? —s ¢i(r~i(u)) — D?

(b) Method 2

Figure 5.7. Schematics for Methods 1 and 2. Here Method 1 has been augmented
with the extension of section 5.3. M is a monotone approximation operator to scalar
valued data whereas A is an approximation operator to vector valued data. “P?” checks
for convergence to the correct parametrization. “D?” checks equal-parameter distance
between ¢¥(t) and ¢(r*(t)) in Method 1 and between ¢*(r—*(u)) and ¢(u) in Method 2.

53

is first performed to make sure that the approximation is close enough to the correct
parametrization. Since the metric used in this test may not take shape into account, a
subsequent test is used to ensure that the shape of the result is within a specified Frechet
distance of the original curve c(u).

Method 2 has advantages over Method 1 which include (refer to Figure 5.7):

e Decoupling the data complexity (order and number of control points) and smooth-
ness of the result g?(t), from the complexity and smoothness of the NURBS function

composition form, is done early, rather than late, in the algorithm.

e The formation of 7~¢(u) may be more straightforward than the formation of r¢(t).

(See, for example, section 5.1.)

e The results of Method 2 satisfy both parametrization and shape tolerances simulta-
neously. This is not necessarily the case with the results of the extended version of

Method 1.

e Method 2 can have an advantage over Method 1 in handling cases where curve
c(u) is outside the allowed tolerance (for the desired parametrization) on only a
relatively small interval of the domain. Use of Method 1 can cause a penalty in data
complexity which affects the curve representation over its entire domain. Method 2,

on the other hand, need only affect the representation on the interval in error.

e In Method 2, test “P?”, for convergence to the correct parametrization, can be done

on g*(t), typically of lower order than c(ri(t)).

e The approximation g¢’(t) can be converted to the polynomial case, when c(u) is

rational, early in the algorithm.

e NURBS function composition and test “D?”, for equal-parameter distance, may be

performed less often in Method 2.

Method 1 may be more useful, however, if either an approximation to r is wanted, or

if the polynomial order of the approximation for r is 2 (degree 1).

54

5.4.1 Approximation Operators A

This section discusses the approximation operator A[f, 7¢] of Method 2. This operator
is used to approximate parametric functions by NURBS curves in space 7°.

As with the monotone approximation operators discussed in section 4.1.2, this oper-
ator will generally use discrete data resulting from point-wise evaluation, or point-wise
approximation. Unlike the monotone operators of section 4.1.2 this operator will be used
to approximate parametric functions.

The Schoenberg variation diminishing spline approximation, discussed in section 4.1.2
for use as a monotone approximation operator, can be used for approximation operator
A as well.

The quasi-interpolant of deBoor and Fix [20] provides another choice for A. It
has optimal convergence properties but, for polynomial order m, requires function and
derivative evaluation through order m — 1. This scheme is useful, however, in cases where
these derivatives are available. Other spline quasi-interpolant schemes trade-off more
function evaluations for fewer, and lower order, derivative evaluations [50].

Approximation operator A could also employ interpolation to discrete parametric
data. C! cubic Hermite spline interpolation, requiring both function and first derivative
data, is an example of such a scheme. Many other interpolation schemes are possible.
For introductions to techniques see [58] and [27].

As in the case of the monotone operators of section 4.1.2, it is important to lower
the continuity of the approximation operator .4 when it is known a priori that function

c(r(t)) is not C! everywhere.

5.4.2 Relationship Between Refinel and Refine2
As with the refinement schemes of section 4.1.4 it may be more natural to view refinel
and refine2 as ways of generating a more refined or dense sampling of the function f =
c(r(t)) to be approximated. This sampling can proceed from the selection of values in the
domain of c(u) as illustrated by Figure 5.6. Without loss of generality assume that r(¢)
is a monotone increasing function. The table of Figure 5.6 may be sorted by increasing

value of u; resulting in entries that are also sorted by increasing value of ¢;.
A very simple relationship exists between the two refinement schemes. Refinel takes
an error function, b'(t), in the domain of ¢(r(t)) whereas refine2 takes an error function,
B*(u), in the domain of c(u). For refinel if b(t) exceeds the specified tolerance for a data

interval [t;,¢;+1] in the table of Figure 5.6, then the sampling in the next iteration should

55

be increased in the interval [u;, u;11] (a new data point can be inserted at the midpoint
of this interval for example). For refine2 if B(u) exceeds the specified tolerance for a
data interval [u;, u;11], then the sampling in the next iteration should be increased in this

interval.

5.4.3 Relationship Between S' and 7

Spline space 7" is used to approximate the parametric function f = c¢(r(t)) using
approximation operator A, whereas spline space S’ is used to approximate the scalar
valued monotonic function r~!(u) using the monotone approximation operator M.

In general there may be little relationship between these spline spaces. In practice,
however, these spaces can be related by the data used for approximation and the partic-
ulars of the approximation schemes used for M and A. Data from the same table can be
used to approximate both ! and ¢(r(t)) for example. Referring to Figure 5.6, the data
in the “u domain” and “t domain” columns are used to approximate r—! and data from
the “¢ domain” and “composed function” columns used to approximate ¢(r(t)). Spline
space T can be generated from the set {t;}, along with particulars of the approximation
scheme A, and consideration of known discontinuities of ¢(r(¢)). Similarly, spline space
S' can be generated from the set {u;}, particulars of the approximation scheme M, and

consideration of the known discontinuities of =1 (u).

5.5 Knot Refinement for Improved Error Bounds

The algorithms of this thesis make extensive use of the techniques of section 2.2.3 for
bounding the length of NURBS functions; bounds on the length of a NURBS function,
over an interval of its parametric domain, are based on the convex hull of the control
points actually blended on that interval. Bounds on function length are then used as
bounds on approximation errors in the algorithms. Functions used in this manner depend
on the nature of the algorithm and include: derivatives of NURBS curves for the arc
length algorithm of section 4.2, differences of scalar or vector valued NURBS functions
for the inverse function and Frechet distance algorithms of sections 4.3 and 4.4, and the
NURBS function bounded in equation 5.2 for the radial reparametrization algorithm of
section 5.2.2.

Error overestimation can cause the algorithms to produce results with true errors
smaller, and data complexity higher, than is actually necessary. Tighter error bounds

can help alleviate this problem. These can be achieved by applying knot refinement (see

56

section 2.2.1) to the NURBS function used to estimate error prior to bounding its length.

This refinement can be accomplished as follows:

1. Insert knots to isolate error estimates to individual data intervals (intervals between
parametric locations where data are collected). One way to do this is by inserting
knots of multiplicity one less than the order (o — 1) at the ends of these intervals
in the NURBS function used for error estimation, where o is the polynomial order
of this function. The multiple knots ensure that, for the NURBS function whose
length is bounded, blending of control points over successive data intervals have only
a single control point in common. Thus the effects of control points internal to the
ends of a given interval can only affect that portion of the function interior to that

interval.

2. Insert additional, evenly spaced, knots of multiplicity one into the interior of the
data intervals to help tighten error bounds further. The current implementation
allows the user to specify the number of additional knots per data interval. Using
the minimum distance to convex hull techniques of [33] and [9] (see section 2.2.3),
most of the examples run on the algorithms require only two or three additional
knots in the interior of data intervals, with minimal, or no, further decrease in data

complexity resulting from the use of more knots.

CHAPTER 6

RESULTS

This chapter gives example results from experiments with the algorithms of Chapters 4

and 5. Chapter 7 gives higher level applications of these algorithms.

6.1 Arc Length Examples

This section presents results from experiments with the arc length algorithm of sec-
tion 4.2. Figure 6.1 shows a NURBS curve reparametrized by approximate arc length
using this algorithm. Superimposed on the curve are points equally spaced in the curve’s
parametric domain. Figure 6.2 shows the quadratic change of parameter function used
to reparametrize this curve. Note that the change of parameter function is only C° at a
point corresponding to a speed discontinuity on the original G! curve. Figures 6.3 and 6.4
plot speed functions for this example.

Figure 6.5 shows a NURBS circular arc after application of the algorithm of section 4.2.
Dots represent points equally spaced in the domain of the original parametrization, tick
marks points equally spaced in the domain of the approximate arc length parametrization.
Figures 6.6 and 6.7 plot speed functions for this example.

Tables 6.1 and 6.2 give detailed results for executions of the arc length algorithm for

these examples. Headings for tables in this chapter are interpreted according to Figure 6.8.

6.2 Inverse Function Examples
This section presents examples using the inverse function algorithms of Chapters 4
and 5. Section 6.2.1 gives results for experiments with the approximation of inverse
NURBS functions using the algorithm of section 4.3. Section 6.2.2 gives results for

experiments with the reparametrization by axis algorithm of section 5.1.

58

(a) (b)

Figure 6.1. Reparametrization by arc length of a NURBS curve with a speed disconti-
nuity: (a) original curve, (b) reparametrized curve. Dots represent equal spacing in the
parametric domains.

Figure 6.2. Quadratic spline change of parameter function used in the example of
Figure 6.1.

Table 6.1. Results for arc length example of Figure 6.1
method ¢ €9 type iterations entries order* size* time

1 1 - linear 6 31 4 91 0.0183
1 1 - l.r. 3 6 4 31 0.0842
1 1 - quad 4 7 7 63 0.0254
2 1 1 vds. 43 26 4 28 0.1051
2 1 .1 chi. 3,2 9 4 19 0.0270
2 . .05 v.d.s. 5,3 33 4 35 0.1349
2 .05 .05 c.hi. 42 11 4 23 0.0339

#Qrder and size for reparametrized curve. Original curve order: 4, original curve size: 11.

59

11

— quad
A S Lr.
----------- linear
(a)

11
—— vds
——————— c.hi.

0.9

Figure 6.3. Graphs of speed functions for the example of Figure 6.1. Plots in (a) show
errors for applications of Method 1 using piecewise linear, C! piecewise linear rational,
and C! piecewise quadratic interpolation schemes. A tolerance of 0.1 was specified to
the algorithm. Plots in (b) show errors for applications of Method 2 using variation
diminishing spline approximation and cubic Hermite interpolation. Tolerance values €;
and ez where specified as 0.1 to the algorithm. Plots in (a) and (b) result from estimation
of arc length from above (see Appendix C). All graphs are for runs of the algorithms
using additional knot refinement as discussed in section 5.5.

11
—— quad
——————— L.r.
----------- linear
(a)
11
— vds
——————— c.hi.
/\
I\
I
[
" - Vi ! \ SN
1 = = \\,"4 — =7 "' p— -~
!
A/
(4]
V1
\VI
0.9

(b)

60

Figure 6.4. Graphs of speed functions for the example of Figure 6.1. Errors in (a) and
(b) result from executions of the algorithms identical to those used in Figure 6.3 except

that estimation of arc length is made from below (see Appendix C).

Table 6.2. Results for arc length example of Figure 6.5
method € € type iterations entries order* size* time

1 1 - linear 4 7 3 13 0.0412
1 1 - Lr. 2 3 3 9 0.0232
1 1 - quad 2 3 5 14 0.0467
2 .1 1 v.ds. 4,1 7 3 8 0.1177
2 1 .1 chi. 2,1 3 4 6 0.0383
2 .05 .05 wv.d.s. 5,1 13 3 14 0.2259
2 .05 .05 c.hi. 2,1 3 4 6 0.0375

#Qrder and size for reparametrized curve. Original curve order: 3, original curve size: 3.

61

6.2.1 Inverse Function Approximation
Figure 6.9 shows the graph of a scalar valued NURBS function. The algorithm of
section 4.3 was used to approximate the inverse function, also shown in Figure 6.9. Error
functions for this example are plotted in Figure 6.10 using the metric of equation (4.1).

Table 6.3 gives detailed results for executions of the algorithm for this example.

6.2.2 Reparametrization by Axis
Figure 6.11(a) shows the result of a ruled surface construction. The curves’ parametriza-
tions lead to poor correspondences which result in surface degeneracies. Figure 6.11(b)
shows the ruled surface that results after the curves are reparametrized along the X axis
using the algorithm of section 5.1.
Error functions for this example are plotted in Figure 6.12, where error is measured
as distance of the X coordinate function from the identity; i.e., error metric (4.1).

Table 6.4 gives data from several runs of the algorithm of section 5.1 for this example.

6.3 Frechet Distance Examples
This section gives examples using the Frechet distance algorithms of Chapters 4 and 5.
Section 6.3.1 gives results from experiments with the algorithm of section 4.4 for bounding
the Frechet distance between NURBS curves. Section 6.3.2 gives examples of the use of
the radial reparametrization algorithm of section 5.2.2. Finally, section 6.3.3 gives results
from experiments with the algorithm of section 5.2.1 for finding contact intervals between

NURBS curves.

6.3.1 Frechet Distance Algorithm

Figure 6.13 shows two NURBS curves that result from using Method 2 to approximate
reparametrizations of a third NURBS curve. Reparametrization by arc length was used
for one curve, reparametrization along the X axis used for the other. The algorithm
of section 4.4 was used to establish different tolerance values as bounds on the Frechet
distance between these two curves.

Figures 6.13(b) and (c) show closeups of the curves indicating their relative parametriza-
tions before and after the bounds were established. Table 6.5 gives detailed results for

running the algorithm on this example.

62

Figure 6.5. Reparametrization by arc length of a NURBS curve consisting of a 120
degree arc of unit radius. The curve was reparametrized by Method 1 using the piecewise
quadratic interpolation scheme with a tolerance of 0.1. Dots indicate equal spacing in the
parametric domain of the original curve. Tick marks (“|”) indicate equal spacing in the

parametric domain of the reparametrized curve. Arrows (“A”) indicate equal spacing in

the true arc length parametrization.

Table 6.3. Results for the inverse function approximation example of Figure 6.9

method € type iterations entries order® size® time
1 .5 linear 1 2 2 2 0.00074
1 b lL.r. 1 2 2 3 0.00673
1 .5 quad 1 2 3 4 0.00207
1 .1 linear 3 5 2 5 0.00301
1 1 lL.r. 3 4 2 7 0.03446
1 .1 quad 2 3 3 6 0.00548
1 .05 linear 4 7 2 7 0.00433
1 .05 Lr. 3 4 2 7 0.03416
1 .05 quad 2 3 3 6 0.00552
1 .01 linear) 14 2 14 0.00682
1 .01 Lr. 3 5 2 9 0.03926
1 .01 quad 3 5 3 10 0.01159

20rder and size for inverse function approximation. Original curve order: 4, original

curve size: 4.

63

11
— quad
——————— L.r.
----------- linear
0.9
(a)
11
—— vds
——————— c.h..

0.9

(b)

Figure 6.6. Graphs of speed functions for the example of Figure 6.5. Plots in (a) show
errors for applications of Method 1 using piecewise linear, C! piecewise linear rational,
and C! piecewise quadratic interpolation schemes. A tolerance of 0.1 was specified to
the algorithm. Plots in (b) show errors for applications of Method 2 using variation
diminishing spline approximation and cubic Hermite interpolation. Tolerance values €;
and ez where specified as 0.1 to the algorithm. Plots in (a) and (b) result from estimation
of arc length from above (see Appendix C). All graphs are for runs of the algorithms
using additional knot refinement as discussed in section 5.5.

11
— quad
——————— L.r.
----------- linear
0.9
(a)
11
—— vds
——————— c.hi.

09

(b)

64

Figure 6.7. Graphs of speed functions for the example of Figure 6.5. Errors in (a) and
(b) result from executions of the algorithms identical to those used in Figure 6.6 except

that estimation of arc length is made from below (see Appendix C).

Table 6.4. Results for reparametrization by X axis example of Figure 6.11

method ¢ € type iterations entries order® size® time
1 .01 - linear 3 14 4 40 0.0059
1 .01 - l.r. 1 7 4 37 0.0327
1 .01 - quad 1 7 7 62 0.0092
2 .01 .01 v.d.s. 14 36 4 38 0.1280
2 .01 .01 c.h.i. 1,2 11 4 22 0.0434
2 .005 .005 wv.d.s. 1,5 53 4 55 0.2119
2 .005 .005 c.h.i. 1,2 13 4 26 0.0460

aError metric given by equation (4.1).

POrder and size for reparametrized curve. Original curve order: 4, original curve size:

13.

65

method The general reparametrization scheme used:

1 Method 1 of section 4.1.1 (without the extension of section 5.3).
2 Method 2 of section 5.4.

€1 Tolerance for Method 1 or for the parametrization metric of Method 2.
€2 Euclidean space tolerance controlling the second stage of Method 2.
type Type of interpolation or approximation scheme used:

linear Piecewise linear interpolation for M of Method 1.
L.r. C! piecewise linear rational interpolation for M of Method 1.
quad C'! piecewise quadratic interpolation for M of Method 1.

v.d.s. COrder-1 yoiiation diminishing spline approximation for A of
Method 2 and C? piecewise quadratic interpolation for M of Method 2.

c.h.i. C! cubic Hermite spline interpolation for A of Method 2 and C*
piecewise quadratic interpolation for M of Method 2.

deriv type Type of derivative estimation for the Frechet distance algorithm.

1 Projection method of section 4.4.4.
2 Linear rational fitting method of section 4.4.4.

iterations Number of iterations for the algorithm. Results for Method 2
give comma separated counts for both the first and second stages of the
algorithm respectively.

entries Number of evaluation points used by the algorithm.
order Polynomial order of the result.
size Number of control points in the result.

time Execution time in seconds on an SGI Indigo 2, MIPS R10K, 195 MHZ,
64 kilobyte level one cache, 1 megabyte level two cache.

Figure 6.8. Key to table headings.

Table 6.5. Results for Frechet distance example of Figure 6.13

method € type deriv type® iterations entries order® size® time
1 .023 linear - 2 21 2 21 0.0593
1 023 lr. 1 2 21 2 41 0.2822
1 .023 quad 1 2 21 3 42 0.0935
1 023 lr. 2 2 21 2 41 0.2832
1 .023 quad 2 2 21 3 42 0.0911

2Type of derivative estimation: 1 projection, 2 fitting.
POrder and size for the change of parameter function used. The original curves of
Figure 6.13 are order 4 and size 20.

66

Figure 6.9. Graph of a scalar valued NURBS function and approximate inverse. The
inverse function approximation (shown as a dotted line) was created by the algorithm of
section 4.3 using the C' piecewise linear rational interpolation scheme with a tolerance
of 0.01 measured according to the metric of equation (4.1).

0.01

-0.01

Figure 6.10. Error functions for approximations to the inverse of the function in
Figure 6.9.

67

L

(a) (b)

Figure 6.11. Example using the reparametrization by X axis algorithm of section 5.1.
(a) Ruled surface construction using curves with poor parametric correspondence. (b)
Surface generated after reparametrization of the curves along the X axis. The extent of
these curves along the X axis is 2.15 units.

0.01

-0.01

Figure 6.12. Error functions for the bottom curve of Figure 6.11 after reparametrization
along the X axis using the algorithm of section 5.1. Errors are shown for the use of
Method 1 with piecewise linear, C' piecewise linear rational, and C' piecewise quadratic
interpolation schemes. An error tolerance of 0.01 was used for these approximations,
measured according to the metric of equation (4.1).

(b) (c)

Figure 6.13. Example using the Frechet distance algorithm of section 4.4. (a) Two ap-
proximations to the same curve but with different parametrizations. Rectangle indicates
area enlarged in (b) and (c). (b) Correspondence in the original parametrizations. (c)
Correspondence after reparametrization to establish a user defined tolerance on Frechet
distance.

69

6.3.2 Radial Reparametrization

Figure 6.14 shows examples of the use of the radial reparametrization algorithm of
section 5.2.2. Error plots are shown in Figure 6.15. Both tolerance values and error are
measured in radial distance which, as defined in section 5.2.2, is the central angle at the
origin between corresponding points on the two curves measured in degrees. Figure 6.16
plots the reparametrization function used in the example of Figure 6.14(f). Figure 6.17
shows the effects of applying different methods to estimate derivatives for the change of
parameter function. In this example, the linear rational fitting technique of section 4.4.4
yields better results than are obtained using the projection method, also described in
section 4.4.4.

Detailed results for these examples are given in Table 6.6.

6.3.3 Contact Intervals

Figures 6.18 through 6.24 show examples using the algorithm of section 5.2.1 for finding
contact intervals between NURBS curves. Figure 6.18 shows two curves with a single
contact interval. The resulting description of the contact interval is given in Figure 6.19.
Figure 6.20 shows two curves with three contact intervals. The straight line segment
at the bottom of this figure has a cubic, nonlinear, parametrization which is shown in
Figure 6.21. The straight line segments of the other curve are linearly parametrized.
Figure 6.22 gives the description of the contact intervals for this example. The curves are
opposed on one of the intervals and move in the same sense in the other two. Figure 6.23
shows two circles that have been rotated relative to one another. Because of the seams
in each curve there are two contact intervals, described in Figure 6.24.

Detailed results for the above examples are given in Table 6.7.

70

Figure 6.14. Two examples of the use of the radial reparametrization algorithm of
section 5.2.2. Figures (a) and (d) show the parametric correspondence between the
original curves. Dots indicate the start/end points on the curves. Crosses (“+”) indicate
the origin used for radial correspondence. Figures (b) and (e) show the parametric
correspondence between the curves once start/end points of the curves have been aligned
radially. This is accomplished in each case by a single ray/curve intersection operation
to radially project the start/end points of the inner curves onto the outer curves. This is
followed by subdivision of the outer curves at the points of projection. Figures (c) and
(f) show the results of running the radial reparametrization algorithm on the curves in
(b) and (e) respectively.

71

Figure 6.15. Error functions for the example of Figure 6.14(f). Error functions are
shown for the use of Method 1 with piecewise linear, C! piecewise linear rational, and
C' piecewise quadratic interpolation schemes. An error tolerance of 1.0 degree was used
for the approximations. The linear rational fitting technique of section 4.4.4 was used for
derivative estimation.

Figure 6.16. Change of parameter function used in reparametrizing the outer curve of
Figure 6.14(e) into the outer curve of Figure 6.14(f). Rectangle indicates area enlarged
in Figure 6.17.

72

(a) (b)

Figure 6.17. Closeup of initial portions of the change of parameter functions used to
reparametrize the outer curve of Figure 6.14(e) into the outer curve of Figure 6.14(f).
Shown are piecewise linear, C' piecewise linear rational, and C'! piecewise quadratic
change of parameter functions. (a) Shows the results of using the projection method of
section 4.4.4 to estimate derivatives for the change of parameter functions in the linear
rational and quadratic cases. (b) Better results are obtained, for this example, by using
the linear rational fitting technique, also discussed in section 4.4.4.

Table 6.6. Results for radial reparametrization example of Figure 6.14(f)
method €* type deriv type® iterations entries order® size® time

1 1.0 linear - 3 25 3 49 0.197
1 1.0 Lr. 1 4 31 3 121 1.228
1 1.0 quad 1 4 29 5 174 1.979
1 1.0 Lr. 2 3 18 3 69 0.556
1 1.0 quad 2 3 19 5 114 1.032

2Error tolerance in degrees.
PType of derivative estimation: 1 projection, 2 fitting.

¢Order and size for the reparametrized curve. Original curve order: 3, original curve size:
14.

73

Figure 6.18. Quadratic and cubic NURBS curves with a single contact interval. Dots
indicate the locations of signal values on the curves.

contact interval 1:
curve 1 int = [1.000000, 3.000000]
curve 2 int = [2.000000, 4.000000]
opposed = FALSE
approximation = FALSE
reparam function = <scalar curve object: ...>

Figure 6.19. The description of the contact interval for the curves of Figure 6.18.
This description consists of: the parametric interval on curve 1 and the corresponding
interval on curve 2, a flag indicating that the curves in this example are traced in the
same direction on the contact interval, the change of parameter function that relates the
interval on curve 2 to the interval on curve 1, and a flag indicating that the change of
parameter in this example is an exact representation. The printed representation of the
change of parameter function has been truncated in the description above.

Figure 6.20. Curves with three contact intervals. In one interval the curves are traced
in opposed directions. The straight line segment at the bottom is represented as a cubic
NURBS with nonlinear parametrization. The curves have been offset slightly in this
figure; they intersect in the actual example. Dots indicate the locations of signal values
on the curves.

74

Figure 6.21. The X coordinate function for the straight line curve of Figure 6.20.

contact interval 1:
curve 1 int = [0.000000, 1.000000]
curve 2 int = [0.045818, 0.103739]
opposed = TRUE
approximation = TRUE
reparam function = <scalar curve object: ...>

contact interval 2:
curve 1 int = [8.000000, 9.000000]
curve 2 int = [0.291601, 0.699110]
opposed = FALSE
approximation = TRUE
reparam function = <scalar curve object: ...>

contact interval 3:
curve 1 int = [16.000000, 17.000000]
curve 2 int = [0.893092, 0.944999]
opposed = FALSE
approximation = TRUE
reparam function = <scalar curve object: ...>

Figure 6.22. The description of the contact intervals for the curves of Figure 6.20.
Note that the description for the first contact interval flags the curves as having opposed
directions.

75

Figure 6.23. Two circles which have been rotated relative to one another. The dots
represent the start/end points of each circle. The circles have been offset slightly in this
figure; they are coincident in the actual example. Results for this case, given below,
were obtained using the general algorithm of section 5.2.1.1 and not the extension of
section 5.2.1.2.

contact interval 1:
curve 1 int = [0.000000, 3.605610]
curve 2 int = [0.394392, 4.000000]
opposed = FALSE
approximation = TRUE
reparam function = <scalar curve object: ...>

contact interval 2:
curve 1 int = [3.605610, 4.000000]
curve 2 int = [0.000000, 0.394392]
opposed = FALSE
approximation = TRUE
reparam function = <scalar curve object: ...>

Figure 6.24. The description of the contact intervals for the curves of Figure 6.23. Two
contact intervals are found because of the “seam” (at the start/end points) in each curve.

Table 6.7. Results for contact interval examples

example method € type time

fig 6.18 1 .05 linear 0.0090
fig 6.18 1 .05 lr. 0.0095
fig 6.18 1 .05 quad 0.0096
fig 6.18 1 .01 linear 0.0109
fig 6.18 1 .01 lr. 0.0106
fig 6.18 1 .01 quad 0.0095
fig 6.20 1 .05 linear 0.0410
fig 6.20 1 .05 Llr. 0.0484
fig 6.20 1 .05 quad 0.0352
fig 6.20 1 .01 linear 0.0565
fig 6.20 1 .01 lr. 0.1393
fig 6.20 1 .01 quad 0.0694
fig 6.23 1 .05 linear 0.1691
fig 6.23 1 .05 lr. 0.1999
fig 6.23 1 .05 quad 0.1994
fig 6.23 1 .01 linear 0.4548
fig 6.23 1 .01 lr. 0.4006
fig 6.23 1 .01 quad 0.4662

CHAPTER 7

APPLICATION EXAMPLES

This chapter presents some example applications of the algorithms of Chapters 4 and 5.
Section 7.1 uses the contact intervals algorithm of section 5.2.1 to determine topological
information at surface boundary edges. Section 7.2 uses the reparametrization by axis
algorithm of section 5.1 to reconstruct three dimensional curves from two dimensional
orthographic views. Section 7.3 discusses applications of the arc length reparametrization
algorithm of section 4.2 to achieve uniform spacing, or density, of features with respect
to arc length. Finally, section 7.4 gives further uses for the approximation operators of

section 4.1.2 for establishing correspondences between curves.

7.1 Automatic Topology Declarations

This section discusses an algorithm that uses the curve/curve correspondence infor-
mation found by the algorithm of section 5.2.1 to automatically determine all surface
boundary edge adjacencies within a group of surfaces.

One use for such an algorithm is to automatically determine topology information
when forming the boundary representation of solids in a modeling system. Surface/surface
intersection and Boolean operations in CAD systems may require that adjacencies be
declared between the separate surfaces that make up the boundary of a solid and that
share some portion of their surface boundary edges. This adjacency information may
require the location and extent of the shared common boundary, as well as the change
of parameter function that allows mapping from one parametric domain into the other
when crossing the shared boundary.

Below is an algorithm that determines edge adjacency information between surfaces.
The restriction of section 5.2.1 regarding where contact intervals may begin and end is
assumed by this algorithm (see section 5.2.1 for details).

The basic structure of the find-adjacencies routine below is an O(n?) algorithm that

makes surface edge against surface edge comparisons. The boundary edges are defined in

78

the parametric domain of each surface. For tensor product surfaces these boundary edges
exist as isoparametric curves in a rectangular parametric domain and can be denoted as
left, right, top, and bottom with respect to that domain.

The input to the algorithm is a list of surfaces needing edge adjacency declarations.
This list of surfaces is assumed to be preprocessed as follows: Each surface in the list will
have an associated list of edge objects. Each edge object contains a list of edge intervals
that have not yet been matched (declared adjacent) with any other edge interval. Each
edge interval consists of the geometric curve representing that portion of the edge not yet
matched and a back pointer to the parent edge object. Initially each edge list contains a
single interval consisting of the entire boundary edge.

For simplicity of presentation the contact interval information and the tolerance tol
are assumed to be global rather than passed as arguments.
void
find-adjacencies(surface_list)

{

initialize the global contact interval information;

foreach srfl in surface_list

foreach srf2 in surface_list

| if not disjoint(srfl, srf2)

| foreach edgel in srfl edges

foreach edge2 in srf2 edges

| /* Don’t compare an edge of a surface with itself. */

| if not (edgel == edge2 OR disjoint(edgel, edge2))

I {

| edge2_list = list of unmatched intervals in edge2;

| foreach edgel_int in list of unmatched intervals in edgel
| match-edge-int-vs-edge-int-list(edgel_int, edge2_list);

return the global contact interval information;

The match-edge-int-vs-edge-int-1list routine, called above, matches an edge in-
terval against a list of edge intervals. The actual curve/curve interval comparisons are
made by the match-edge-int-vs-edge-int routine. This second routine is described
first.

The match-edge-int-vs-edge-int routine finds all contact intervals between two
edge intervals using the routine find-contact-intervals which in turn uses the algo-

rithm of section 5.2.1.1 to return the contact intervals between the two edge intervals.

79

In general there may be any number of contact intervals between two edge intervals.
This may result in the “fragmentation” of both edge intervals. That is, each edge interval
may fragment into any number of subintervals that remain unmatched. If a match occurs
the match-edge-int-vs-edge-int routine places contact interval information on the
global list and prepares output arguments which contain lists of the remaining unmatched

subintervals (fragments) on each of its edge interval arguments.

boolean
match-edge-int-vs-edge-int (edgel_int,
edge2_int,
output edgel_fragments,
output edge2_fragments)
{

/* Initialize to indicate no fragments. */
edgel_fragments = NULL;
edge2_fragments = NULL;

if disjoint(edgel_int, edge2_int) return FALSE;

contacts = find-contact-intervals(edgel_int, edge2_int, tol);
if (contacts == NULL) return FALSE;

add information on contacts to global list;

edgel_fragments = unmatched subintervals remaining on edgel_int;
edge2_fragments = unmatched subintervals remaining on edge2_int;
return TRUE;

The conceptual complexity of the match-edge-int-vs-edge-int-1list routine, de-
scribed below, stems from the management of the edgel and edge2 subinterval fragments.
These new intervals must be managed so that all necessary comparisons are made while
redundant comparisons are avoided. The implementation described by the pseudo-code
below is recursive and thus uses the program stack to help with the appropriate book-

keeping.

void
match-edge-int-vs-edge-int-list(edgel_int, edge2_list)
{
if disjoint(edgel_int, edge2_list) return;
edge2_int = first of edge2_list;
got_match = match-edge-int-vs-edge-int(edgel_int,
edge2_int,
edgel_fragments,
edge2_fragments);
if not (got_match)
{

80

/* Argument edgel_int might be a new fragment. */
if (rest of edge2_list == NULL)
add edgel_int to edgel_list if not already an element;
else
match-edge-int-vs-edge-int-1list(edgel_int, rest of edge2_list);
}

else

{
remove edgel_int from parent edge interval list;
replace edge2_int with edge2_fragments in parent edge interval list;

if (rest of edge2_list == NULL)
add edgel_fragments to parent edge interval list of edgel_int;
else
edgel_int = foreach interval in edgel_fragments
match-edge-int-vs-edge-int-list(edgel_int, rest of edge2_list);

Figures 7.1 and 7.2 show an example of the use of this algorithm. A cylinder is formed
from eight separate ruled surfaces: four ruled surface panels each with a separate surface
forming a cut-out at the panel tops. The cylinder is capped at the top with a boolean sum
surface (or bilinearly blended Coons patch [17]) formed from four 90 degree arc edges.
This cap is rotated relative to the side panel seams by an arbitrary angle of 27 degrees.

Figure 7.2 depicts the adjacencies found for this collection of surfaces.

7.2 Reconstructing 3D Curves From 2D Views

This section applies the reparametrization by axis algorithm of section 5.1 to the
reconstruction of 3D curves from 2D orthographic views. This technique is useful for
recovering 3D curves from scanned part drawings or blueprints. This technique may also
be useful as a design paradigm for 3D curves.

Assume that the separate views are orthographic projections of a curve onto the XY
and X Z planes. Denote these separate curves as yXY (u) and y%XZ(v) respectively. No
parametric correspondence between these curves is assumed (which would be the case if
their parametric representations resulted from curve fitting of scanned data). The curves
are both reparametrized along the X axis, resulting in XY (¢) and 4XZ(t). The 3D curve

is now reconstructed as:

a(t) = (327 (6), 7, ¥ (1),42 7 (¢))

where subscripts denote coordinate functions.

81

Figure 7.1. A capped cylinder made up of nine separate surfaces.

Figure 7.2. Topological information found by the find-adjacencies routine. Edge
adjacency information has been determined along the highlighted edges. Different edge
adjacencies are declared for the edge pieces demarcated by the balls on these edges. Links
are shown between adjacent edge pieces of separate surfaces.

82

This technique has limitations. We must assume that the X coordinate functions for
the two curves, vXY (u) and yXZ(v) in this example, are strictly monotonic. It should be
possible to extend this technique to piecewise monotonic coordinate functions however.

Figures 7.3 and 7.4 show the reconstruction process. Figure 7.3 shows the orthographic
projections onto the XY and X Z planes. Dots are shown at equally spaced points in the
parametric domain of each curve to indicate that the parametrizations of the two curves
are unrelated.

Figure 7.4 shows these curves after they have been reparametrized along the X axis.

The space curve is then reconstructed from the reparametrized curves as discussed above.

7.3 Arc Length Spacing and Density

The algorithm of section 4.2 can be used to generate approximations to the inverse
arc length function for NURBS curves. In addition to applications in motion synthesis
these maps can be used to ensure proper spacing of parametric and geometric features.
Below are two examples of this application.

Figure 7.5 shows geometric features equally spaced in arc length along a curved surface.
This kind of distribution is often important, for example, in the placement of bolt holes
on mating parts, the placement of embedded instrumentation such as miniaturized strain
sensors, or the location of fasteners for the attachment of metal skins to bulkheads.

Figure 7.6 shows the effects of NURBS curve refinement on the results of a shape
warping operator where knot density with respect to arc length is used as the refinement
criterion. Loosely speaking, an attempt is made to add some uniform measure of “flexi-
bility” along the spline curve per unit of its length. This refinement is accomplished by
using a change of parameter map created by the arc length reparametrization algorithm
of section 4.2. The effects of this refinement are compared to a standard refinement
technique where additional knots are distributed uniformly over the original domain space.

In these examples the curve shapes are modified using the warp operator of Cobb
[11]. The warp’s center and direction are indicated by an arrow in the figure. The warp
operator works by displacing the control points of the spline curve, and its effects are
very sensitive to the degree of refinement and placement of knots in the curve. The warp
results converge rapidly for the arc length technique.

Refinement by using densities with respect to arc length may be particularly useful
when applied to models that maintain their arc length when manipulated. Such models

include the flexible wire and tube elements of [59].

83

Figure 7.3. Example data for the reconstruction of 3D curves from 2D data. Dots on

the curves indicate their relative parametrization.

Figure 7.4. Same curves as in Figure 7.3 after reparametrization along the X axis. A

3D curve is reconstructed from the reparametrized 2D curves.

84

Figure 7.5. Structured space frame member showing rivet holes for the attachment of
skins along the top surface and weight reduction holes along the lower surface. These
holes are distributed evenly in arc length along the frame.

(d).(e)

Figure 7.6. Effects of a warp operator on a curve after different knot refinement
techniques are applied. (a) The original curve. (b) The effects of the warp operator
with no additional knots. (c) The effects after the addition of 12 knots using a uniform
knot density measure in the original parametric space. (d) The effects of the warp after
the addition of 12 knots using a knot density measure with respect to arc length. (e) The
effects of the warp after the addition of over 1000 knots using a knot density measure
with respect to arc length. Curves (d) and (e) are hard to distinguish from one another
in this figure. The arrow indicates the center and direction of the warp.

85

7.4 Curve Matching Via Point/Point
Specifications

The algorithms of Chapters 4 and 5 change the parametrization of curves by using: a)
metrics that measure how far curves are from the desired parametrization and b) iterative
techniques to ensure convergence to within a user specified tolerance. Close adherence
to a specific metric may not be an important consideration for some design work. The
user may only desire that a given curve have a “better” parametrization; e.g., a better
correspondence with another curve.

One method for accomplishing this is to specify the relative correspondence of two
curves by using sparse pairs of matched points. These points are either specified directly
by the user (for example by allowing the user to designate locations on a curve using a
tablet or mouse) or specified by rules (these rules can be embodied by procedures written

in a modeler command language). There are several benefits to using this technique.

e Certain correspondences may be very difficult to discover algorithmically. Hence a
modeling system should allow the user an efficient method for directly specifying

them.

e This technique may have applications to user editing of automatically generated
correspondences that are unsatisfactory only in limited intervals of the correspon-

dence.

e The combination of sparse point matches generated by command language pro-
cedures with algorithmic reparametrization of curves allows for a wide class of

experimentation with correspondence methods.

The change of parameter functions will be generated from the point matches using
the available monotone shape preserving interpolants, M, of section 4.1.2.

Figure 7.7 shows a surface designed for manufacture with wire EDM (electro-discharge
machining), a process used for the fabrication of ruled surface designs. The parametric
correspondence between the defining curves of the ruled surface affects the specific geom-
etry of the result. Here the correspondence has been established using pairs of matched
points as shown by the linked balls on the two curves.

Figure 7.8 shows examples of curves in radial correspondence. Rather than specifying

a metric to which the reparametrized curves must adhere (the approach taken in sec-

86

Figure 7.7. Candidate shape for a transition surface to be manufactured using a wire
EDM process. (a) This shape was modeled as a ruled surface generated from two planar
curves. (b) To form the shape, the correspondence between the curves was established
using the sparse point to point matching indicated by the linked balls on the two curves.

87

& @

~—

—_—

<y

g =g

o 8

5 3 s 2
= = tph
) Bl

mwwm.mfm
TR
- \ ’ S rEIE
S ET 5
B8 T3]

>3

g +

i

< Q.

= >
o
-

5]

w0

S g
= lS)

=]

88

tion 5.2.2), a small number of matched points have been placed with approximately equal
radial spacing about the central point. The matched points were generated with a user

defined procedure written in a geometric modeler’s command language [1].

CHAPTER 8

CONCLUSIONS AND FUTURE
RESEARCH

8.1 Summary
This thesis argues that the reparametrization of curves is an important and practical
approach to solving a variety of problems in CAD environments. With this approach

users can:

e transform geometric representations into spaces better suited to establishing desired

properties,
o relate properties and geometry in correspondence, and
e explore the design space.

Practical uses are surprisingly varied, from generating speed profiles along tool-paths,
to approximating the inverses of functions, to determining topological relationships be-
tween surfaces in a boundary representation. As useful as these operations are, reparame-
trization is often lacking or underutilized in CAD environments.

To take advantage of the potential of these operations, reparametrization must be
incorporated into CAD systems as practical design tools. Doing this requires that we
address challenges apt to arise in any reparametrization scheme.

Users must be afforded the means of specifying change of parameters in ways that
make sense to them. The results of these operations must be predictable and take usable
forms.

In CAD systems it is necessary to compose the operations provided by the system to
build up complex geometry. This makes closure of operations under a system’s chosen
representation of great importance. It may not be possible, however, to formulate exactly
the desired reparametrizations within a CAD modeler’s representation space. Algorithms

must then create and use appropriate spaces of approximation for their results — spaces

90

which are usually unknown initially. Errors in these approximations must be subject to
control by the user in intuitive ways.

In most approximation schemes, a balance must be achieved between accuracy, compu-
tational cost, and complexity of the result. Many schemes to achieve approximate function
composition increase the data complexity of results, in terms both of polynomial order and
number of parametric spans in the result. This increased complexity carries the additional
burden that it is often passed on to other entities through geometric constructions (for
example surface constructions from reparametrized curves).

This thesis has presented new algorithms for NURBS curve reparametrization for
important cases including: approximate reparametrization by arc length, approximate
reparametrization by inverse functions, and reparametrization to establish bounds on the
Frechet distance between curve mappings. These algorithms have true error bounds in
terms of meaningful metrics for design and can be implemented as practical tools in CAD
environments. Though important in their own right, these algorithms are representative
of a wider class of reparametrization algorithms in the methods they employ to solve the
challenges stated above. This thesis has demonstrated the utility of these algorithms by
giving a series of applications and examples.

These algorithms were presented from within an overall framework that unifies the
approach to seemingly disparate operators, and that yields practical solutions to the
challenges mentioned above. The reparametrization algorithms presented in this thesis
result from specialization of this framework. The core strategy afforded by the framework
is to create adaptive algorithms that attempt to do work only where needed. This serves
to restrain the growth in data complexity of the resulting approximations.

The framework for these algorithms also provides the user with trade-offs in computing
results. The user can trade accuracy for complexity of result and can place the resulting
reparametrized curve into spaces of any desired polynomial order. The alternative general
strategies provided by Methods 1 and 2 give the user further choices over properties of the
result. The user can control the accuracy of approximations by specifying error bounds
in meaningful metrics which the algorithms maintain.

The applications presented in this thesis demonstrate a range of practical uses for curve
reparametrization in CAD environments. The need for equally spaced features (such
as bolt holes), or the need for controlling the speed of cutting tools while machining

along feature curves, are common problems in CAD. So too is the need to correct

91

improper correspondence between curves in surface constructions. Allowing users to
specify, quickly and succinctly, appropriate correspondences is important also; examples
of this capability given in the thesis include explicit point to point specifications and
point to point matches established by the application of rules. Automatically determining
approximate equivalence of curves, as in the algorithms of sections 4.4 and 5.2.1, is also

an important operation that can be used to overcome common problems in CAD.

8.2 Extensibility

It is our belief that the framework given by Methods 1 and 2 is quite extensible. Its
basic requirements are straightforward: a metric for measuring distance from a desired
parametrization, a method for refining the space of approximation for the reparametrized
curve (or change of parameter function), and a method for generating more data for the
approximation. The substitution of different elements into this framework can lead to
quite different algorithms. In section 5.2.2, for example, the Frechet distance algorithm
was extended to an algorithm for computing relative radial reparametrizations, solely
through the consideration of a different metric.

Although the algorithms given in this thesis have been developed in the context of
NURBS curves, it may be possible to use different curve representations. In this regard
it is instructive to consider what properties of the NURBS representation the general

framework uses. These properties include:

closure under function composition,

closure under certain algebraic operations,

the ability to bound properties of functions, especially function and derivative values,

the existence of a refinement operation causing the coefficients of the representation

to converge to the underlying function.

Although these properties characterize the NURBS representation, they also guide the
search for other representations in CAD.

Extending the framework given by Methods 1 and 2 to surface representations is
another possibility. Such an extension could be used to give surfaces better properties

with respect to grid generation or texture mapping. Extending the framework to surfaces

92

could also be used to establish correspondences between geometrically equivalent, or

nearly equivalent, surfaces that have very different parametrizations.

8.3 Future Work

More experiments should be done in order to find better performance trade-offs re-
garding run time and data complexity. However, in view of the fact that a continued
price is paid for increased data complexity, because of propagation of this complexity to
dependent geometric constructions, it makes sense to spend more computational effort to
decrease the data complexity of the result.

As one example of this, consider the arc length reparametrization algorithm of sec-
tion 4.2. This algorithm develops a point-wise arc length approximation in parallel
to the composed function approximation. Though computationally more expensive, it
is a worthwhile experiment to see if doing this serially would decrease the data size
of resulting arc length approximations; that is, start with an already very accurate
approximation for the arc length function at the start of the algorithm.

Other techniques could be used to help decrease the data size of results, again at the
cost of increased run time. Optimization techniques might prove useful in this regard as,
for example, iteratively optimizing over the placement of free knots for the approximations
r and af; similar to techniques used in [21]. Using data and degree reduction techniques
[48, 49, 69, 68, 22, 57, 8] as postprocess steps for Methods 1 and 2, may also represent a
worthwhile investment in computation in order to decrease resulting data complexity.

Users should be able to cascade, or compose, the effects of reparametrization operators.
Consider, as an example, the arc length correspondence of two curves composed with point
to point matches specified by the user. This kind of composition is possible in the current
implementation; the user would first run the arc length algorithm on the curves, and then
the point to point matching algorithm on the results. Such an approach, however, would
increase the data complexity at each step. It may prove important to develop techniques
where the effects of such cascaded operations can be carried out without the cost in data
complexity of separate invocations of the algorithms.

Allowing users to edit explicitly the results of automatically generated reparametriza-
tions is another example of such cascaded operations. Only relatively small intervals
on a curve may need alteration. The desired change of parameter function would be

the identity except on those intervals. We would like to minimize the penalty for the

93

application of such change of parameter functions, paying the cost only in intervals
where alteration is required. However, applying a sufficiently smooth change of parameter
function might raise the polynomial order of the composed curve, effecting an increase in

data complexity everywhere on the curve.

APPENDIX A

COMPOSITION OF NURBS

This section presents an algorithm for computing the knot vector used to represent the
composition of two NURBS curves. Consider NURBS curve c(u) : I, -+ R"™ and NURBS
function r(t) : I; — I, a piecewise allowable change of parameter with r(I;) = I,,. Assume
that r is polynomial and c¢ either polynomial or rational.

Let r be order ! defined over knot vector 7 and ¢ order m defined over knot vector f.
In order to form the composition ¢(r(t)) the knots of ¢ must be mapped through r ().
Let s = 7 (1) be the knot vector resulting from mapping each knot of i through the
inverse of r. The composed function ¢(r(t)) is a polynomial or rational spline of order
o= (I —1)(m — 1) + 1 defined over knot vector o given by the algorithm below.

For a general polynomial spline function r(t) the inverse problem u = r~!(j1) can be
solved only approximately. This inverse problem can be avoided, however, if enough is
known about the function r. If r is formed using interpolation to discrete values that
include the knots of ¢ (as in sections 4.2.3, 4.3.2 and 4.4.4) then u = r~!(4) is already
known.

In the following algorithm first-p-knot(¢,, m,) and next-p-knot(¢,, m,) assign the
first (respectively next) unique knot value in p to the variable ¢, and the multiplicity of
this value in y to m,. The routines first-r-knot(¢, m,) and next-7-knot(t,, m,) assign
the first (respectively next) unique knot value in 7 to the variable ¢, and the multiplicity
of this value in 7 to m,. Routines next-y-knot and next-7-knot return FALSE if their

respective knot vectors are exhausted, otherwise they return TRUE.

Input:
m the order of c(u),
i the knot vector for c(u),
[the order of r(t),
7 the knot vector for r(t).

Output:
The knot vector o for ¢(r(t)).

Algorithm:

po=r=t(f);
o=(1=-1)(m—-1)+1;
first-p-knot(t,, m,);
first-r-knot(¢, m,);
got-u-knot = TRUE;
got-T-knot = TRUE;

while (got-u-knot or got-7-knot)

{

if (not got-u-knot)

add ¢, to o with multiplicity m, — [+ o;
got-T-knot = next-7-knot(., m,);

}

else if (not got-7-knot)

{
add ¢, to o with multiplicity m, —m + o;
got-u-knot = next-p-knot(¢,, m,);

}

else if (t, = ¢,)

{
add ¢, to o with multiplicity maz(m, — [, m, —m) + o;
got-T-knot = next-7-knot(., m,);
got-u-knot = next-p-knot(¢,, m,);

}

else if (t, <t¢,)

{
add ¢, to o with multiplicity m, — [+ o;
got-T-knot = next-r-knot(., m,);

}

else

{
add ¢, to o with multiplicity m, —m + o;
got-u-knot = next-p-knot(¢,, m,);

}

}

95

APPENDIX B

MONOTONE APPROXIMATION
OPERATORS

This section discusses two candidates for the monotone approximation operator M of
section 4.1.2. These are the C! linear rational spline interpolation scheme of [32] and the
C' quadratic spline interpolation scheme of [60].

The purpose here is to give an outline of the properties and data requirements of these
two schemes and to indicate useful modifications that allow their incorporation into the
algorithms of Chapters 4 and 5. The linear rational and quadratic spline schemes share
very similar requirements and properties and hence will be discussed together.

These schemes interpolate scalar valued data at specified locations. These data consist
of function and derivative values specified as {(t;, vi,v;)}I~,. Here ¢; is the parametric
location at which the constructed interpolant will assume function value v; and derivative
value v;. For our purposes, these data are assumed to be consistent with a strictly
monotonic increasing function; i.e.: the locations t; must be distinct, the v; must increase
with increasing values of ¢;, and the v; must be positive.

A scalar valued spline is created that interpolates these data at knots of the spline.
The quadratic scheme creates an interpolant that is constrained to be C!, whereas the
linear rational scheme creates an interpolant which is C' by construction only.

It is shown in [32] that the linear rational interpolation scheme never fails to preserve
monotonicity in the data. The quadratic scheme attempts to preserve both monotonicity
and convexity present in the data, but may fail to preserve these properties. Failure
to preserve either property can be detected in this scheme and reported to the calling
program (see [60] for details).

Figure B.1 diagrams the layout of data relative to knot locations for the interpolants
in both schemes. As indicated above, the ¢; are parametric locations where data are to
be interpolated. The v; and v; are, respectively, the function and derivative values to be

interpolated. Singleton knots are placed at all interior ¢; locations. The s; represent inter-

97

V1 V9 o Up_—1 Un
Ul ’0'2 Un.—l U'n
AN A A A AN
to S0 t1 S1 tn—l Sp—1 tn

Figure B.1. Data layout for both the linear rational and quadratic interpolation schemes.
The symbol “A” indicates the placement of singleton knots; “A3” indicates triple knots
at the ends for the quadratic scheme. For the linear rational scheme the end knots would
be double.

mediate locations where additional singleton knots are placed. For open end conditions
order-fold knots are placed at locations ty and t,. Figure B.1 shows the placement of
threefold knots at these locations for the quadratic scheme. For the linear rational scheme,
double knots would be placed at tg and t,. The knot vector for the spline interpolant is

therefore (in the quadratic case):

(t07 tU) th S0, tl) S1y ey tn,]_, Sn—1, tna tna tn)

Figure B.2 shows the layout of data with the inclusion of equality constraints. The

” indicates that equality of function values is constrained at the specified

symbol “=
parametric location. The symbol “=” indicates that equality of derivative values is
constrained at the specified parametric location. The symbols v; and v; count as value
and derivative constraints respectively. For each parametric span there is a total of three
degrees of freedom for both the quadratic and linear rational interpolation schemes. It is
readily verified that the total number of constraints equals the total number of degrees
of freedom for these schemes and that these constraints can be satisfied locally on an
interval [t;,t;11].

The linear rational scheme will maintain monotonicity of the data regardless of where
the intermediate knot values s; are placed. For a given i the quadratic scheme of [60],

on the other hand, computes the knot location s; € (¢;,¢;+1) in an attempt to pre-

serve monotonicity and convexity of the data represented by the tuples (¢;,v;,v;) and

U1 = U2,= = .. Up-1,= = Un
v1 = Uo,= = ... Up_1,= = Un
AN A A A A A3
t() S0 t1 S1 tn—l Sp—1 tn

Figure B.2. Diagram of the constraints for the linear rational and quadratic interpola-
tion schemes.

98

Vi—1 Vi Vi+1
Vi1 i, v Vi1
A A AN A
ti-1 Si—1 t; si tit1

Figure B.3. Modification of the interpolation schemes for lowered continuity at an
interpolation point. “A%” indicates the placement of a double knot. “v;!” and “v;"”
indicate left and right derivative values respectively.

(tit1,vi11,v:11). A failure to maintain monotonicity by this scheme can be “corrected”
by the inclusion of additional degrees of freedom in the system. Two methods for doing
this are indicated below.

If monotonicity over an interval [¢;,¢;+1] fails two intermediate knots internal to this
interval (rather than just one) can be added to maintain both monotonicity on the interval
and the C! conditions at t; and ti+1. The resulting system becomes under constrained
however. An alternative is to maintain monotonicity by lowering the continuity at the
ends of the interval and inserting a linear segment on [t;, t;11].

Both the linear rational and quadratic schemes need to be modified in cases where
the continuity should be lowered at a point of interpolation. If it is known that the
interpolant should only be C? at a location (see for example sections 4.2.3 and 4.3.2) the
scheme is modified as shown in Figure B.3. Here a double knot is inserted at a point of
interpolation (one of the t;) and both left and right derivative values are now required in

the input data.

APPENDIX C

APPROXIMATING ARC LENGTH

Given c(u) : I, = [us,us] — R3, a NURBS curve of order o defined over knot vector

7, we want to approximate the arc length function s(u) = f;‘fl"

||%c(,u)||d,u at a set of
discrete points {u;}; in the curve’s parametric domain. A variety of techniques exist
for approximating values on this integral (see Chapter 3). This appendix presents two
methods, either of which can be readily incorporated into the algorithm of section 4.2.

The first method forms a refinement of the NURBS curve representation for c(u)
by knot insertion. This refined representation is in a space S,; where knot vector 7
is a refined partition of 7 and includes knots of multiplicity o — 1 at each of the u;.
Additional knots of multiplicity one can be inserted between the u; in order to make the
approximation more accurate.

For a given u;, let m be the index of the first knot in 7 with the value u; and let
{C#}r be the set of control points for the refined representation of ¢(u) defined on S, ;.
The control point with zero based index m — 1 will interpolate the point ¢(u;). Thus an

approximation for the arc length at u; is given by the partial sum:
m—1
> ICk-1 = Cill. (C.1)
k=1

Taken over a series of refined partitions 7%, the approximations given above will
converge to values of the arc length function for c(u) as the mesh norm of #¢ converges to
zero. It can be shown that this series of approximations forms an upper bound on the
arc length function values at the u;.

In general the knot vectors 7¢ should be refined over intervals of the parametric domain
where the error in the arc length approximation is outside an acceptable tolerance. The
metric of section 4.2.1 can serve to measure unacceptable error in the context of the arc
length reparametrization algorithm of section 4.2.

Another approach to approximating the arc length function at the u; is to form lower

bound estimates using inscribed polygons that include the points c¢(u;) as vertices. Again

100

a series of refined partitions of the domain can be used to determine points on ¢, between
the c(u;), which are included as additional polygon vertices. Taken over a series of refined
partitions, the approximations will converge to values of the arc length function for c¢(u)
from below.

Either of these techniques can be incorporated into the arc length reparametrization
algorithm of section 4.2. The one sided nature of the techniques’ arc length approxima-
tions, one from above and one from below, can induce different biases in the speed errors

of approximate arc length parametrized curves.

REFERENCES

[1] ALPHA_1 RESEARCH GROUP. Alpha_1 User’s Manual. University of Utah, Salt Lake
City, Utah, 1999.

[2] ALT, H., AND GODAU, M. Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry € Applications 5, 1&2
(1995), 75-91.

[3] BEIER, T., AND NEELY, S. Feature-based image metamorphosis. Computer
Graphics, SIGGRAPH 92 Conference Proceedings 26, 2 (July 1992), 35—42.

[4] BENNIs, C., VEZIEN, J.-M., AND IGLESIAS, G. Piecewise surface flattening for
non-distorted texture mapping. Computer Graphics, SIGGRAPH 91 Conference
Proceedings 25, 4 (July 1991), 237-246.

[6] BEsL, P. J., AND MCKAY, N. D. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 14, 2 (February 1992),
239-256.

[6] BLaNC, C., AND SCHLICK, C. Accurate parametrization of conics by NURBS.
IEEE Computer Graphics and Applications 16, 6 (November 1996), 64-71.

[7] BLOOMENTHAL, M. Approximation of sweep surfaces by tensor product B-splines.
Tech. Rep. UUCS-88-008, Department of Computer Science, University of Utah, Salt
Lake City, Utah, August 1988.

[8] BRAUN, J. Optimal degree reduction of freeform curves. Master’s thesis, Depart-
ment of Computer Science, University of Kaiserslautern, Kaiserslautern, Germany,
January 1995.

[9] CAMERON, S. A comparison of two fast algorithms for computing the distance
between convex polyhedra. IEEE Transactions on Robotics and Automation 13, 6
(December 1997), 915-920.

[10] CAscioLA, G., AND MoORIGI, S. Reparametrization of NURBS curves. Interna-
tional Journal of Shape Modeling 2, 2&3 (1996), 103-116.

[11] CoBB, E. S. Design of Sculptured Surfaces Using the B-spline Representation. PhD
thesis, University of Utah, Salt Lake City, Utah, June 1984.

[12] COHEN, E., LycHE, T., AND RIESENFELD, R. F. Discrete B-splines and subdivision

techniques in computer-aided geometric design and computer graphics. Computer
Graphics and Image Processing 14, 2 (October 1980), 87-111.

[13]

[14]

[15]

[16]

[17]

[18]

102

CoHEN, E., LycHE, T., AND SCHUMAKER, L. L. Algorithms for degree-raising of
splines. ACM Transactions on Graphics 4, 3 (July 1986), 171-181.

CoHEN, E., AND SCHUMAKER, L. L. Rates of convergence of control polygouns.
Computer Aided Geometric Design 2, 1-3 (September 1985), 229-235.

CoHEN, S., ELBER, G., AND YEHUDA, R. B. Matching of freeform curves.
Computer-Aided Design 29, 5 (May 1997), 369-378.

COHEN-OR, D., LEVIN, D., AND SOLOMOVICI, A. Three-dimensional distance field
metamorphosis. Transactions on Graphics 17, 2 (April 1998), 116-141.

CoonNs, S. A. Surface patches and B-spline curves. In Computer Aided Geometric
Design, R. E. Barnhill and R. F. Riesenfeld, Eds. Academic Press, New York, 1974,
pp- 1-16.

COQUILLART, S. A control-point-based sweeping technique. IEEE Computer
Graphics and Applications 7, 11 (November 1987), 36—45.

DE BOOR, C. A Practical Guide to Splines, vol. 27 of Applied Mathematical Sciences.
Springer-Verlag, New York, 1978.

DE BOOR, C., AND Fix, G. J. Spline approximation by quasi-interpolants. Journal
of Approzimation Theory 8 (1973), 19-45.

DriskiLL, H. A. COMA, Constrained Optimization for Modeling and Animation.
PhD thesis, University of Utah, Salt Lake City, Utah, December 1995.

Eck, M. Degree reduction of Bezier curves. Computer Aided Geometric Design 10,
3-4 (August 1993), 237-251.

ELBER, G. Free Form Surface Analysis using a Hybrid of Symbolic and Numeric
Computation. PhD thesis, University of Utah, Salt Lake City, Utah, December 1992.

ELBER, G. Symbolic and numeric computation in curve interrogation. Computer
Graphics Forum 14, 1 (March 1995), 25-34.

EMERY, J. D. The definition and computation of a metric on plane curves.
Computer-Aided Design 18, 1 (January/February 1986), 25-28.

Ewing, G. M. Calculus of Variations with Applications. Dover Publications, New
York, 1985.

FARIN, G. Curves and Surfaces for Computer Aided Geometric Design — A Practical
Guide. Academic Press, San Diego, California, 1993.

FAroOUKI, R. T. Optimal parameterizations. Computer Aided Geometric Design
14, 2 (February 1997), 153-168.

FArouki, R. T., AND RAJAN, V. T. Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design 5, 1 (June 1988), 1-26.

[30]

[31]

[41]

[42]

[43]

[44]

103

FArouki, R. T., AND SAKKALIS, T. Real rational curves are not ‘unit speed’.
Computer Aided Geometric Design 8, 2 (May 1991), 151-157.

FriTscH, F. N., AND NIELSON, G. M. On the problem of determining the distance

between parametric curves. In Curve and Surface Design, H. Hagen, Ed. Siam, 1992,
ch. 7, pp. 123-141.

Fuur, R. D., AND KALLAY, M. Monotone linear rational spline interpolation.
Computer Aided Geometric Design 9, 4 (September 1992), 313-319.

GILBERT, E. G., JoHNSON, D. W., AND KEERTHI, S. S. A fast procedure for

computing the distance between complex objects in three-dimensional space. [EEE
Journal of Robotics and Automation 4, 2 (April 1988), 193-203.

GobpAu, M. A natural metric for curves — computing the distance for polygonal
chains and approximation algorithms. In STACS 91. 8th Annual Symposium on
Theoretical Aspects of Computer Science Proceedings (Hamburg, Germany, 14-16
February 1991), C. Choffrut and M. Jantzen, Eds., Springer-Verlag; Berlin, Germany,
pp- 127-136.

GorDON, W. J., AND RIESENFELD, R. F. B-spline curves and surfaces. In
Computer Aided Geometric Design, R. E. Barnhill and R. F. Riesenfeld, Eds.
Academic Press, New York, 1974, pp. 95-126.

GUENTER, B., AND PARENT, R. Computing the arc length of parametric curves.
IEEE Computer Graphics and Applications 10, 3 (May 1990), 72-78.

HArTLEY, P. J., AND JUDD, C. J. Parametrization and shape of B-spline curves
for CAD. Computer-Aided Design 12, 5 (September 1980), 235-238.

HorscH, T., AND JUTTLER, B. Cartesian spline interpolation for industrial robots.
Computer-Aided Design 30, 3 (March 1998), 217-224.

HoscHEK, J., AND LASSER, D. Fundamentals of Computer Aided Geometric
Design. A K Peters, Wellesley, Massachusetts, 1993.

JounsoN, D. E.; AND COHEN, E. Minimum distance queries for polygonal and
parametric models. Tech. Rep. UUCS-97-003, Department of Computer Science,
University of Utah, Salt Lake City, Utah, February 1997.

JoHNSON, D. E., AND COHEN, E. A framework for efficient minimum distance
computations. In Proceedings of the 1998 IEEE International Conference on Robotics
& Automation (Leuven, Belgium, May 16-21 1998), pp. 3678-3684.

KoOSTERS, M. Curvature-dependent parameterization of curves and surfaces.
Computer-Aided Design 23, 8 (October 1991), 569-578.

LEg, E. T. Y., AND LUCIAN, M. L. Mobius reparametrizations of rational B-
splines. Computer Aided Geometric Design 8, 3 (August 1991), 213-215.

LEE, S.-Y., CHWA, K.-Y., SHINE, S. Y., AND WOLBERG, G. Image metamorpho-

[45]

[46]

[47]

[48]

[49]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

104

sis using snakes and free-form deformations. Computer Graphics, SIGGRAPH 95
Conference Proceedings 29 (August 1995), 439-448.

LEVY, B., AND MALLET, J.-L. Non-distorted texture mapping for sheared trian-
gulated meshes. Computer Graphics, SIGGRAPH 98 Conference Proceedings (July
1998), 343-352.

Lin, M. C., AND CANNY, J. F. A fast algorithm for incremental distance
calculation. In Proceedings of the 1991 IEEE International Conference on Robotics
and Automation (Sacramento, California, April 9-11 1991), vol. 2, pp. 1008-1014.

LipscHUTZ, M. M. Theory and Problems of Differential Geometry. McGraw-Hill,
New York, 1969.

LycHE, T., AND M@RKEN, K. Knot removal for parametric B-spline curves and
surfaces. Computer Aided Geometric Design 4, 3 (November 1987), 217-230.

LycHE, T., AND M@RKEN, K. A data reduction strategy for splines with appli-

cations to the approximation of functions and data. IMA Journal of Numerical
Analysis 8 (1988), 185-208.

LycHE, T., AND SCHUMAKER, L. L. Local spline approximation methods. Journal
of Approzimation Theory 15, 4 (December 1975), 294-325.

MaiLLotT, J., YaHIA, H., AND VERROUST, A. Interactive texture mapping.
Computer Graphics, SIGGRAPH 93 Conference Proceedings (August 1993), 27-34.

MARSDEN, M. J. An identity for spline functions with applications to variation-
diminishing spline approximation. Journal of Approzimation Theory 3, 1 (March
1970), 7-49.

MasTIN, C. W. Parameterization in grid generation. Computer-Aided Design 18, 1
(January /February 1986), 22—-24.

MILLMAN, R. S.; AND PARKER, G. D. Elements of Differential Geometry. Prentice-
Hall, Englewood Cliffs, NJ, 1977.

M@RKEN, K. Some identities for products and degree raising of splines. Journal of
Constructive Approxzimation 7, 2 (1991), 195-208.

MUNKRES, J. R. Topology a First Course. Prentice-Hall, Englewood Cliffs, New
Jersey, 1975.

Piecr, L., AND TILLER, W. Algorithm for degree reduction of B-spline curves.
Computer-Aided Design 27, 2 (February 1995), 101-110.

PiecL, L., AND TILLER, W. The NURBS Book. Springer-Verlag, Berlin, 1997.

PUGMIRE, D. Thin Flexible Elements in CAGD. PhD thesis, University of Utah,
Salt Lake City, Utah, to be published.

SCHUMAKER, L. L., AND STANLEY, S. S. Shape-preserving knot removal. Computer

[61]

[62]

[63]

[64]

[65]

[66]

[67]

105

Aided Geometric Design 18,9 (December 1996), 851-872.

SEDERBERG, T. W., AND GREENWOOD, E. A physically based approach to 2-D
shape blending. Computer Graphics, SIGGRAPH 92 Conference Proceedings 26, 2
(July 1992), 25-34.

SHARPE, R. J., AND THORNE, R. W. Numerical method for extracting an arc

length parameterization from parametric curves. Computer-Aided Design 14, 2
(March 1982), 79-81.

SLoAN, P.-P. J., WEINSTEIN, D. M., AND BREDERSON, J. D. Importance driven
texture coordinate optimization. Eurographics’98 17, 3 (1998).

Soni, B. K., AND YANG, S. NURBS-based surface grid redistribution and remap-
ping algorithms. Computer Aided Geometric Design 12,7 (November 1995), 675-692.

SRINIVASAN, L. N., AND GE, Q. J. Fine tunning of rational B-splines motions —
DETC97/DAC03984. In Proceedings of DETC’97, 1997 ASME Design Engineering
Technical Conferences (Sacramento, California, September 14-17 1997).

VERSPRILLE, K. J. Computer-Aided Design Applications of the Rational B-spline
Approxzimation Form. PhD thesis, Syracuse University, Syracuse, New York, 1975.

Wang, F.-C., AND YANG, D. C. H. Nearly arc-length parameterized quintic-spline
interpolation for precision machining. Computer-Aided Design 25, 5 (May 1993),
281-288.

WATKINS, M. A., AND WORSEY, A. J. Degree reduction of Bezier curves.
Computer-Aided Design 20, 7 (September 1988), 398—405.

WEVER, U. Global and local data reduction strategies for cubic splines. Computer-
Aided Design 23, 2 (March 1991), 127-132.

WEVER, U. Optimal parameterization for cubic splines. Computer-Aided Design
23, 9 (November 1991), 641-644.

ZHANG, Z. On local matching of free-form curves. In BMV(C92. Proceedings of the
British Machine Vision Conference (Leeds, UK, 22-24 September 1992), D. Hogg
and R. Boyle, Eds., Springer-Verlag; Berlin, Germany, pp. 347-56.

ZHANG, Z. Point matching for registration of free-form surfaces. In Computer Anal-
ysis of Images and Patterns. 5th International Conference, CAIP ’98 Proceedings
(Budapest, Hungary, 13-15 September 1993), D. Chetverikov and W. G. Kropatsch,
Eds., Springer-Verlag; Berlin, Germany, pp. 460—467.

