
MODELING THE FILM HIERARCHY IN

COMPUTER ANIMATION

by

Michael S. Blum

A thesis submitted to the faculty of
The University of Utah

in partial ful�llment of the requirements for the degree of

Master of Science

Department of Computer Science

The University of Utah

August 1993

Copyright c
 Michael S. Blum 1993

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Michael S. Blum

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Richard F. Riesenfeld

Robert Mecklenburg

Robert McDermott

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of The University of Utah:

I have read the thesis of Michael S. Blum in its �nal

form and have found that (1) its format, citations, and bibliographic style

are consistent and acceptable; (2) its illustrative materials including �gures,

tables, and charts are in place; and (3) the �nal manuscript is satisfactory

to the Supervisory Committee and is ready for submission to the Graduate

School.

Date Richard F. Riesenfeld

Chair, Supervisory Committee

Approved for the Major Department

Thomas C. Henderson
Chair/Dean

Approved for the Graduate Council

B. Gale Dick
Dean of The Graduate School

ABSTRACT

We introduce an integrated animation and storyboarding system that simpli�es

the creation and re�nement of computer generated animations. The framework

models both the process and product of an animated sequence, making animation

more accessible as both a communication medium and as an art form. The system

adopts a novel approach to animation by integrating storyboards and the tradi-

tional �lm hierarchy of scenes and shots into a computer modeling and animation

system. Traditional animators initially storyboard key moments in a �lm to help

guide the animation process. In a computer generated animation, a much more

dynamic and integrated relationship between storyboards and the �nal animated

sequence is possible. This hierarchical decomposition allows animators to reduce

the complexity of long animations to manageable proportions. We also introduce

the animation proof reader, a tool for identifying awkward camera placement and

motion sequences using traditional �lm production rules.

CONTENTS

ABSTRACT : iv

LIST OF FIGURES : vii

ACKNOWLEDGEMENTS : ix

CHAPTERS

1. INTRODUCTION : 1

1.1 Introduction : 1
1.2 System Overview : 4

2. PREVIOUS WORK : 7

2.1 Animation Production : 7
2.2 Camera Placement and Control : : : : : : : : : : : : : : : : : : : 7
2.3 Property Manager : 9
2.4 Animation Proofreader : 9
2.5 Animation With Alpha 1 : 10

3. ANIMATION PRODUCTION : 11

3.1 The Design : 11
3.2 The Interface : 14

4. CAMERAS : 16

4.1 The Design : 16
4.2 The Interface : 17

4.2.1 Positioning Cameras : 17

5. THE PROPERTY MANAGER : 20

5.1 The Design : 20
5.1.1 Automatic Propagation of Changes : : : : : : : : : : : : : 23
5.1.2 Linking Props and Motion Curves : : : : : : : : : : : : : : 24
5.1.3 Generation of Simple Models : : : : : : : : : : : : : : : : : 25
5.1.4 Additional features : 30

5.2 The Interface : 31
5.2.1 Constructing a Property Manager with a Text File : : : : : 31
5.2.2 Interactively Constructing a Property Manager : : : : : : : 32

5.2.3 Changing Active Prop Instances : : : : : : : : : : : : : : : 33
5.2.4 Importing Models : 33

6. RENDERING : 36

6.1 Preview and Edit Design : 36
6.2 Preview and Edit Interface : 38
6.3 High Quality Rendering : 40

7. AN ANIMATION PROOFREADER : 42

7.1 Film De�nitions : 43
7.2 The Triangle Principle : 44
7.3 Background : 44
7.4 Rule Primitives : 47

7.4.1 Screen Sectors : 47
7.4.2 Locating Objects : 48
7.4.3 Object Direction and Velocity : : : : : : : : : : : : : : : : 48

7.5 The Rules : 49
7.5.1 Simple Rules : 49
7.5.2 Switching Sides of the LOI : : : : : : : : : : : : : : : : : : 50
7.5.3 Character Motion : 51
7.5.4 Camera Motion : 52
7.5.5 Constraints : 53
7.5.6 Strong Poses : 53

8. RESULTS AND FUTURE WORK : 54

8.1 Results : 54
8.2 Current Status : 55
8.3 Future Work : 55

8.3.1 Cameras : 55
8.3.2 Property Manager : 56
8.3.3 Previewing : 56
8.3.4 User Interface : 57
8.3.5 Animation Proofreader : 57

9. CONCLUSIONS : 58

REFERENCES : 59

vi

LIST OF FIGURES

1.1 In traditional �lm, an animation consists of one or more scenes. Each
scene consists of one or more shots. During �lm production shots are
often represented by storyboards. Frames are eventually generated
for each shot. : 2

1.2 The animation system communicates with and relies upon external tools
to provide models, motion curves, and rendering. : : : : : : : : : : 6

3.1 The storyboard widget. Objects are being viewed from the camera's
perspective. : 14

4.1 The Story workspace window. The camera is rendered as the trihedron
on the left with the viewing frustum expanding to the right. The
\up" vector is labeled. The small cross on the right is the camera's
center of attention. The receiver's motion curve is displayed as a
polyline and an orientation trihedron. : : : : : : : : : : : : : : : : : 18

5.1 A \gun" prop has three instances with the Colt being active. : : : : : : 21

5.2 A detailed representation of the property manager data structures and
the \gun" prop. The hash table uses virtual addresses to map objects
to props. : 22

5.3 Symbolically linking two props. The current con�guration would show
a
ying jet but could easily show a
ying train. : : : : : : : : : : : 25

5.4 A wire frame rendering of a complex B-spline model. : : : : : : : : : : 27

5.5 This model was generated by constructing a bounding box for every
surface. : 28

5.6 This model was generated with a complexity measure of 0:020. : : : : : 29

5.7 Two boundary curve versions of the telephone at complexity 0:034 (left)
and 0:020 (right). : 29

5.8 Users may interactively add models to the property manager. : : : : : 32

5.9 Users can query the property manager for prop information and can
interactively change a prop's active instance. : : : : : : : : : : : : : 34

6.1 An example shot sequence. The overlap between shots 2 and 3 and the
omission of time between shots 3 and 4 is evident. : : : : : : : : : 38

6.2 The preview control window. : 39

6.3 The high quality rendering control window. : : : : : : : : : : : : : : : 41

7.1 The �ve variations of the triangle principle. : : : : : : : : : : : : : : : 45

7.2 A director has several choices to ensure smooth shot-to-shot transitions. 52

viii

ACKNOWLEDGEMENTS

I would �rst like to thank Robert Mecklenburg for his unwavering moral sup-

port, inventive ideas, and help throughout this work. With his guidance, Alpha 1

revealed itself to be a powerful foundation on which to implement this thesis. I am

also very grateful to the rest of my committee, Richard Riesenfeld, who had the

faith to support me, and Robert McDermott, who helped motivate several ideas in

this work.

Although the entire Alpha 1 sta� and many of the Alpha 1 group have served

as helpful resources, several deserve special mention. Marc Ellens proved to be an

invaluable mentor, never too busy to answer the silliest system or C++ related

question. Tim Mueller showed great patience in preaching the intricacies of the

new display code. Greg He
in and Mike van Thiel gave me boosts in moments of

despair. Finally, I could always count on Beth Cobb's unbridled enthusiasm.

I would also like to thank Chih-Cheng Ho and Gershon Elber for their collabo-

rative ideas in designing algorithms to extract key features from models and Lance

Williams for corroborating my ideas.

Elaine Cohen deserves special thanks|without her help I would never have

attended graduate school in Utah. Many thanks as well to David Johnson and

Greg for their useful comments on early drafts of this thesis.

This work was supported in part by the DARPA (DOD) (N00014-91-J-4123

and N00014-91-J-4046) and the NSF and DARPA Science and Technology Center

for Computer Graphics and Scienti�c Visualization (ASC-89-20219). All opinions,

�ndings, conclusions, or recommendations expressed in this document are those of

the author and do not necessarily re
ect the views of the sponsoring agencies.

CHAPTER 1

INTRODUCTION

1.1 Introduction

The Story system is an integrated animation and storyboarding system that

simpli�es the creation and re�nement of computer generated animations. The

framework enables an animator to produce better organized and potentially more

dynamic animations in a shorter amount of time than is currently possible. By

structuring the animation process, we have taken a step towards making computer

animation both a more accessible art form and a more useful communication tool.

The process of creating a computer animation is iterative in nature[9]. The indi-

vidual or team producing the animation must develop a story, model the characters

and props, decide the composition of each shot, script all dialogue or other sound

e�ects, generate the motion of all the moving characters, and render each frame of

the animation. All of these elements may be modi�ed or re�ned before the �nal

animation is completed. Enabling animation teams to make simple re�nements

quickly while minimizing the time consuming and computationally expensive oper-

ations required to revise models, generate motion, and render images will result in

signi�cant time savings.

This iterative technique is similar to �lling in an outline. The structure of

this outline, originally developed by the �lm and animation community[1, 25] for

describing animated and live action sequences, forms the framework of our system.

The framework consists of a hierarchy[18] that describes an animation as a sequence

2

of scenes containing a number of shots (see Figure 1.1). Each shot consists of any

number of individual frames. In particular, a scene is a piece of animation with a

collection of objects in speci�c locations during a period of time. A scene may be

broken up into a number of shots for dramatic purposes. Shots record the action as

seen from a particular camera position. By editing these shots together, a complete

scene is created.

The �lm and animation community have also developed techniques to help guide

and organize the creative endeavor from the early stages of production. One such

technique allows an animator to represent a shot by one or more storyboards.

Storyboards, �rst used by Disney animators in the 1930s, are used to suggest

the action, the locale, and the appearance of characters. These storyboards help

guide the creation of the animation or �lm. In a computer generated animation, a

much more dynamic and integrated relationship between storyboards and the �nal

animated sequence is possible. In our system, storyboards are an integral part of

Animation

Scene

Shot

Storyboard

Scene Scene

Shot Shot Shot Shot Shot

Storyboard Storyboard Storyboard

Frames Frames Frames

Figure 1.1. In traditional �lm, an animation consists of one or more scenes.
Each scene consists of one or more shots. During �lm production shots are often
represented by storyboards. Frames are eventually generated for each shot.

3

the animation creation process.

Computer animation systems have not adequately addressed the process of

animation creation. By applying the scene, shot, storyboard hierarchy to computer

animation, we gain several advantages. First, by using the structure established in

the �lm and animation industries, we make computer animation more accessible

to industry professionals. Second, we directly address the problem of managing

long, animated sequences. Feature length computer animations will be technically

possible in the near future; unfortunately, a practical framework for managing and

re�ning such features has not been adequately explored. As early as 1978 Catmull[3]

stressed the importance of using computers to manage storyboards and associated

information, but we have not seen storyboards as traditionally used discussed in

the literature[11]. Finally, the framework applies even to short animations because

it stresses e�cient use of computational resources by minimizing computationally

expensive tasks such as rendering.

Eventually animation will become a \desk top" industry as publishing is today.

(Multimedia authoring tools are already widely available.) Novices will have the

power to produce animations but will lack the aesthetic judgment acquired by

professional �lmmakers through a lifetime of education and practice. Sound advice

on animation aesthetics would help ensure a clear presentation of their ideas. Such

advice, like advice on word usage, grammar, or spelling in publishing, might be

provided by a set of automated tools that are able to identify and advise animators

on problems in animated sequences.

Shot composition is of critical importance in creating clear and engaging anima-

tions. To help animators avoid shot composition problems, our user interface allows

an animator to position easily and orient any number of cameras and then inter-

rogate the cameras' views. The importance of careful shot selection is illustrated

in the following example. Suppose we wanted to �lm a scene of a large diamond

4

being thrown towards a cli� only to be saved at the last instant by a surprise catch

from a boy standing behind a boulder at the edge. We might break the scene up

into two shots; the �rst shot shows the diamond hurtling towards the cli�, and the

second shot shows a hand rising above the boulder to catch the ball. If the �rst

shot showed any part of the boy, the surprise would be given away.

The Story system is conceptually divided into �ve components. Animation

Production facilities manage the hierarchical framework used by the rest of the

system. Camera Placement tools provide an animator with a variety of mechanisms

to create and position cameras and examine their views. The Property Manager is a

exible model manager that provides version and complexity control of models and

other attributes in an animation. The Rendering Manager provides rendering and

previewing features to produce frames of varying quality. Finally, the Animation

Proofreader identi�es awkward camera placement and motion sequences according

to a set of traditional �lm production rules.

1.2 System Overview

The computer animation �eld has had varying amounts of success producing

photo-realistic images, physical and nonphysical motion, simulations of natural

processes (e.g., procedural modeling of �re and plants), and geometric models

adequate for current needs. However, no monolithic animation program can provide

all of these features and provide fast, e�cient, and current algorithms. Therefore, a

complete animation system providing all of these facilities must operate in a diverse

environment and integrate a variety of tools.

Story, written in C++ and Motif, is an integrated component of the Alpha 1

modeling system[6]. Alpha 1 is centered around a NURB-based geometric modeler

that can be used both interactively and through a network interface as a server.

In server mode, the modeler may act as a gateway for transferring models and

5

control information between various clients. Although oriented towards geometric

modeling and manufacturing, Alpha 1 provides a tool-rich,
exible environment

suitable for the construction of complex animations.

Services provided by the Alpha 1 system include scanline and ray traced render-

ing, physically and nonphysically based motion generation, interactive sculptured

surface creation, and a common communications format for tool integration. The

Story system coordinates access to these tools. Figure 1.2 provides an overview of

how the system interacts with the rest of Alpha 1.

The Story program communicates directly with the geometricmodeler, shape edit,

which mediates further communication with clients for physically-based motion gen-

eration and a key-frame system for nonphysically-based motion. Story's rendering

module controls both the animation segments to be rendered and the quality of the

rendered frames. The system can also import conventional images scanned in by

an animator. By integrating this complex environment, we provide a
exible and

powerful animation system which would not be possible with a more monolithic

design.

The rest of this thesis is arranged as follows. We begin with a discussion of

related and background work. Subsequent chapters discuss animation production,

cameras, the property manager, rendering, and the animation proofreader. We

then brie
y discuss some of the results produced. Finally, we discuss the status of

the system, future work, and conclusions.

6

Render Manager

Story System

Cameras

Rules

Production
System

Images Animation Tools

Alpha_1 Geometric
Modeler

Property Manager

Renderers

Figure 1.2. The animation system communicates with and relies upon external
tools to provide models, motion curves, and rendering.

CHAPTER 2

PREVIOUS WORK

This thesis draws upon a variety of past graphics research e�orts. We describe

these works as they relate to the relevant sections of the thesis.

2.1 Animation Production

The utility of storyboards as a graphical outlining tool has long been known

to conventional animation production houses[25], and some computer generated

animations have used hand-drawn storyboards as well[18]. In general, however,

computers have not played a role in managing storyboards and associated informa-

tion, although as far back as 1978 Catmull[3] stressed the value of using computers

for this purpose. Recently, there has been some interest in creating interactive

storyboard systems[8], but at this time, no such system is discussed in the literature.

2.2 Camera Placement and Control

Positioning synthetic cameras is one of the more complex tasks that the scene

creation interface must handle. A good deal of literature on this subject has

been produced during the past few years. Ware and Osborne[27] evaluate three

metaphors for controlling cameras in virtual environments. All control is performed

using a six degree of freedom input device. For instance, the \eyeball in hand"

metaphor allows the user to view a scene from the vantage point of a virtual eyeball.

The \scene in hand" metaphor transforms the whole environment in correspondence

to changes of the input device. If the input device is twisted to the right, the whole

8

environment is rotated right. The last metaphor, \
ying vehicle control," allows

the user to control a virtual vehicle. The authors were unable to declare any of

these metaphors as the best under all circumstances; each appears well suited to

certain tasks. \Flying vehicle control" was chosen as the metaphor best suited for

movie making, probably because it corresponds most closely to the way a camera

operator manipulates a real camera.

Gleicher and Witkin[10] have implemented a collection of techniques that permit

a user to manipulate a camera by constraining features in the image seen through

the camera's lens. The techniques can be used independently of the underlying

camera parameterization.

Mackinlay et al. have developed a three-dimensional (3D) viewpoint movement

scheme appropriate for examining a speci�c target[17]. Their system will automat-

ically reorient the synthetic camera to present a maximal view of some speci�ed

object of interest. Controlled navigation is achieved by allowing the user to move

a camera rapidly when the target object is far away and logarithmically slower as

the camera approaches the target.

More recent work by Phillips et al.[19] augments 3D direct manipulation of

cameras by automatically adjusting the view to ensure smooth viewing transitions

and avoid viewing obstructions. Drucker et al.[8] have developed a system that

allows for high-level procedural descriptions of camera speci�cations to be written.

These descriptions can encapsulate di�erent camera control paradigms such as

Ware's; can allow for speci�cation of standard �lm industry camera moves such

as pan, tilt, and roll; and can be extended to produce very complex camera moves.

A topic related to camera control is general interactive 3D control of objects.

We are speci�cally interested in 3D control using two-dimensional (2D) input

devices. Chen[4] conducted experiments comparing the speed and accuracy with

which novice users were able to perform rotations using �ve di�erent mouse-based

9

controllers. These controllers varied from the traditional horizontal sliders that

allow for rotation about one axis at a time to a more complex virtual sphere

controller that simulates the mechanics of a physical 3D trackball. Chen found

that sliders work best when accurate rotations are required or for simple rotations

about one axis. However, users felt that the complex controllers behaved more

intuitively, and tests proved they completed complex rotations more quickly with

them.

2.3 Property Manager

The property manager is a database designed to allow e�cient access to objects

needed for animation. An interesting component of the database allows models

of varying complexity to be freely substituted for one another. Hitchner[13] has

developed techniques for reducing the complexity of data in order to interactively

visualize
y-bys of Mars. He makes dynamic substitutions of portions of the

landscape based on such factors as distance from the eye, smoothness of the surface,

and closeness of a patch to the center of view. This approach is more sophisticated

and accurate than the standard approach used by
ight simulators in which model

complexity is based solely on the distance of the model from the eye. The closer

the object to the eye, the more complex the model used. Both of these approaches

perform model substitution automatically.

2.4 Animation Proofreader

Although the idea of an animation proofreader appears to be novel, there has

been some attempt to incorporate cinema, stage, and dance knowledge with tra-

ditional computer animation[14, 16, 20, 21, 30]. Ridsdale and Calvert[20] have

developed a set of rules that attempt to ensure the theatrical concept of focus. For

instance, to shift an audience's attention to the next speaker, the other actors may

move to the back of the stage or may form a line that points towards the speaker.

10

The character movements needed to ensure this focus are inferred from a script.

Karp and Feiner[14] have developed an expert system that uses cinematic knowledge

to construct coherent descriptions of a scene. Their knowledge-based system auto-

matically selects appropriate camera positions and movement based on cinematic

considerations. We have abstracted many of these cinematic considerations into

rules that we will discuss in relation to our animation proofreader.

Below is a description of how characters can be animated using the Alpha 1

system.

2.5 Animation With Alpha 1

Alpha 1 has a variety of tools to animate models. Although each system may

use a unique internal representation for the created motion, all generate standard

Alpha 1 motion curves to represent the animation. A motion curve is a function,

represented as a NURB in the Alpha 1 modeling system that speci�es the values

of the transformation over time. Motion curves in Alpha 1 can specify rotation,

translation, scaling, and other transformations such as quaternions. The x-axis

corresponds to time, and the y-axis speci�es the value of some transformation at

each point in time. Time is represented by the parameter, t. For example, rx(t) is

a curve representing rotation about the x-axis.

Alpha 1 has several tools capable of generating motion curves. These tools

are representative of both common and state-of-the-art animation techniques. Al-

pha 1's physically based modeling tools can simulate the dynamics of rigid link/joint

systems, create goal-directed motion of linked �gures using spacetime constraints,

and animate
exible surfaces such as cloth[7, 5, 24]. The nonphysically based

tools include a simple key-framing system and the Alpha 1 geometric modeler,

shape edit, which can be used to create models and to procedurally animate them.

Rlisp[6], a Lisp variant, serves as the interface to shape edit.

CHAPTER 3

ANIMATION PRODUCTION

The heart of the Story system supports the animation hierarchy. This support

is provided by four objects: movie, scenes, shots, and storyboards. These objects

model the traditional �lm hierarchy and structure the �lm, providing a focus for

various production facilities (see Figure 1.1). By reducing production complexity,

we increase the amount of time an animator can spend on creative tasks, allowing

longer and more intricate animations to be produced.

We introduce storyboards as a design paradigm to oversee the entire animation

process.

3.1 The Design

In the 1930s animators at Disney studios began to use story sketches, or story-

boards, to suggest action, relationships, locale, and the appearance of characters[25].

Director and producer Woolie Reitherman states, \When you look at a board, it

should re
ect the feeling of the sequence so the viewer starts to pick up some

excitement and stimulation"[25]. These storyboards were passed on to the layout

artist whose job was to stage and dramatize each scene. This artist would design

backgrounds, suggest motion paths for the characters and camera, and indicate the

camera positions that would tell the story in the most entertaining fashion.

In addition to storyboards, animators developed other charting techniques to

control the large amount of information generated during the animation process.

12

The route sheet lists the length, vital statistics, and name of the person in charge

of every scene. The exposure sheet lists the dialogue, background, characters and

various character attributes such as color and tone, and camera position for each

frame in the animation[3].

The Story system adopts features of conventional storyboards, layouts, and route

sheets and disperses the traditional information in scene and shot objects, and

in the geometric models themselves. In computer animation, characters become

3D models and character attributes become model attributes such as texture and

surface quality. The scene, shot, and storyboard objects in this section refer to

C++ data structures. A scene object consists of a written description of the scene

and its importance to the animation, the length of the scene (in seconds or frames),

the group of people in charge of the scene, and the names of the props in the scene.

Each scene may also contain any number of shot objects. A shot object contains

a variety of annotations that detail the people in charge of producing the shot and

a description of the action. In addition, shots include a start and end time and

the duration of the shot in the �nal scene and may also contain a camera, a list of

props used, and a list of storyboards that initially inspired the shot. We discuss

how the start and end times of a shot are determined in Section 6.1.

We provided the prop name list in scene objects to ease the task of assigning

props to shots. In our implementation, a scene's prop names are the union of

props contained in its shots. When an animator creates a new shot, prop names

are inherited from the parent scene. This is a reasonable �rst guess because, by

de�nition, all of a scene's shots take place in one location.

Storyboards contain an image object that consists, in part, of a pointer to a run-

length-encoded image �le. The image is intended to capture the same characteristics

as traditional storyboard images including the layout of visible objects in the shot

and the intended camera locations and motion. In addition to the actual �le name

13

of the image, image objects contain annotations detailing the creator of the image,

version number, and comments about the image as well as other attributes that

enumerate the renderer used (scanline or raytrace), whether the image was input

from an external source or generated as output, and the time at which the image was

rendered (for images generated from objects with motion curves). Accompanying

each image object is a written description of the shot, sound e�ects, dialogue, and

the name of the person responsible[29]. A storyboard may also include lists of props

and cameras used in the storyboard.

Our system supports two types of storyboard images: those generated by the

animation system and those imported from other sources. Initial storyboards may

be scanned in from photographs or sketches. These images drive the model creation

process and shot composition re�nements. When the geometry associated with

an imported image is complete, the objects may be composed in the storyboard.

Objects contained in props are added to a storyboard by selecting them from the

workspace. Story allow users to create and position cameras (see Chapter 4) to aid

in viewing objects from di�erent orientations. These cameras can be added to a

storyboard in the same fashion as other objects. The animator can then generate

a synthetic image of the composed objects using one of several renderers.

An animation is described by a strict object hierarchy, but the user is free to

create an animated sequence in any order. For instance, if the user de�nes a shot

before a storyboard, the system will automatically create movie and scene objects

that contain the shot. Later, the user can rename and reorder these components

to �t the evolving sequence.

Many postprocess techniques can be used to complete scene-to-scene transitions

such as dissolves, fade-ins, fade-outs, white-outs, and wipes that our system might

incorporate in the future. For instance, a fade-out (where the screen gradually

darkens) might be implemented by gradually interpolating between the screen's

14

pixel colors and black. This technique, usually completed in the �nal stage of the

editing process, could then be integrated into the animation design cycle.

3.2 The Interface

A display window in the storyboard widget (see Figure 3.1) allows users to

view wireframe representations of objects added to the storyboard. Users may

interactively manipulate the view of objects displayed in this window, and if a

camera has been added to the storyboard, the user may view the objects from

the camera's perspective. Multiple cameras can be added to a storyboard allowing

an animator to see the locations of several cameras while viewing the entire scene

from another camera's perspective. Because the models in a storyboard are actually

Figure 3.1. The storyboard widget. Objects are being viewed from the camera's
perspective.

15

props, the system will automatically update the objects in the display window to

re
ect any changes in the component props (see Section 5.1.4). A straightforward

modi�cation to the system would recreate synthetic images when changes to the

component props occur.

Although images currently exist only in storyboard objects, images in scene or

shot objects might prove helpful in describing the overall view of a scene. This has

not been implemented because the bene�ts gained by such an implementation were

not worth the added interface overhead. Users can still create images that describe

the overall feel of a scene and by placing the image in the �rst storyboard of a

shot, they can derive many of the bene�ts sought without unnecessary complexity.

If this implementation proves insu�cient, integrating image objects with scenes or

shots would be a simple procedure.

Adding, deleting, and reordering storyboard, shot, and scene objects are per-

formed by highlighting the object from a list of object names and selecting the

desired action from a menu. The ordering of elements at each level of the hierarchy

dictates the order of the �nal animation. These features allow an animator to sketch

out the structure of a movie using simple mouse clicks. To reorder a shot, the user

�rst selects the shot to be moved and then selects the new location of the shot. A

small message area in the main interface widget gives the user instructions to make

manipulating these objects easier. For instance, the system will prompt the user

to \Pick a new location" when attempting to reorder a shot.

CHAPTER 4

CAMERAS

4.1 The Design

Cameras in our system are de�ned with a from-to-twist speci�cation[9]. The

camera is positioned at the from point; the center of view is at the to point. The

camera may be rotated about the axis de�ned by to � from by twist. A view

matrix for each camera is calculated from this speci�cation as follows:

1. Determine the plane passing through the from point of the camera with a

normal coincident with the z-axis of the camera (de�ned as to� from).

2. Project the world coordinate system y-axis onto this plane and rotate this

vector by twist. This vector is the y-axis of the synthetic camera.

3. A cross product of the y and z camera axes gives us the camera's coordinate

frame, and the view matrix translates the camera's coordinate system into

world coordinates.

Cameras also have a pseudo-zoom feature that is implemented by scaling the

view matrix by a user controlled constant. A zoom produces di�erent visual e�ects

from translating or \trucking" the camera along its z-axis [29]. This di�erence

manifests itself in the camera's 4x4 view matrix. A scale a�ects the rotational

component of the matrix, whereas a translate a�ects only the translation vector of

the matrix.

Next, we describe a variety of tools that help the animator position cameras.

17

4.2 The Interface

Each camera has a separate viewport that displays the view of the workspace

from the camera's perspective. To prevent cluttering the display, this extra viewport

may be selectively displayed and undisplayed by the user. Much as a television

director may choose a particular camera angle from a palette of monitors, so too

an animator has the ability to examine objects from di�erent camera locations.

Cameras have two di�erent display representations. They may be displayed as

a trihedron of vectors indicating position and orientation or as a more familiar icon

resembling a reel-to-reel movie camera. The �rst representation wastes little screen

space and is quickly drawn, whereas the latter representation o�ers better depth

cues but occupies more screen space and takes signi�cantly more time to display.

Two additional features provide visual cues that help the animator place cam-

eras. First, the center of attention or to point may optionally be displayed. Second,

a skeleton representing the view frustum of a camera may be displayed. Figure 4.1

shows several objects including a camera being displayed in the workspace window.

To help the animator distinguish one camera from another, we associate a color

and a name with each camera. For instance, a blue camera might be named

\blue1-camera." Users may change the default camera colors. To help the user

match a camera with its viewport, a colored marker is drawn in each camera's

viewport.

4.2.1 Positioning Cameras

Users may position and orient cameras using several mechanisms. The most

primitive of these allows a user to enter numerical values for the to and from

coordinates and for the twist angle. This form of control is useful if the camera's

exact coordinates are known a priori or when small adjustments are needed. Sliders,

18

Figure 4.1. The Story workspace window. The camera is rendered as the trihedron
on the left with the viewing frustum expanding to the right. The \up" vector is
labeled. The small cross on the right is the camera's center of attention. The
receiver's motion curve is displayed as a polyline and an orientation trihedron.

a somewhat less cumbersome tool, can also control each coordinate. In practice,

neither method is very convenient.

A more intuitive technique allows either the from or to points to be snapped

to objects in the workspace. This is implemented by casting a ray from the

eye, selecting the intersection point on the closest object, and making this point

the speci�ed camera coordinate. This technique allows the general position and

orientation of a camera to be quickly established. The current implementation

allows for cameras to be snapped to surfaces and certain primitives such as cones,

tori, and spheres.

Our system also supports the \
ying vehicle control" metaphor for cameras that

Ware and Osborne[27] chose as the metaphor best suited for movie making. The

user can \
y" the camera from its own perspective (coordinate system) through the

scene. The
ying mode is selected from the same set of buttons used to change the

view in the workspace. However, instead of mouse movements altering the view,

19

they change the position and orientation of the camera. The user may translate or

rotate the camera along or about any of its three axes. These tools make camera

positioning straightforward.

CHAPTER 5

THE PROPERTY MANAGER

5.1 The Design

A typical animated �lm will use many geometric models, light sources, texture

maps, and motion curves. In addition, each prop may have several versions, and

di�erent props may be designed to be interchangeable with one another. For

instance, we may have two versions of a gun: one version may have a plain stock

and the other an engraved stock. Models might also have versions of varying

complexity. We might have a bounding box version of the gun su�cient for viewing

a rough sketch and a complete trimmed NURB surface version we will use when

rendering the �nal frames of the animation. By providing animators access to

models with varying levels of complexity, we can more e�ciently use computational

resources, but we also introduce a signi�cant model management problem. We

address this problem by introducing a simple but
exible model database|the

property manager. The property manager has three main functions: associate a

name with an object, link an object with a motion curve, and generate a simple

approximation for a complex model. The object created when we associate a name

with a model, motion curve, light source, etc. is called a prop.

As an example, we can construct a gun prop. Suppose we have three di�erent

gun models: a Colt, a Luger, and a BB gun. We indicate to the property manager

that each one is a possible instance of a gun prop and that the Colt is the currently

active instance (see Figure 5.1). The active instance refers to the instance loaded in

21

"Gun" "Lugar" "BB gun""Colt"

GUN PROP
INSTANCE NAMES

Figure 5.1. A \gun" prop has three instances with the Colt being active.

memory. Each model is now contained in a prop instance. Although the \gun" prop

name has been bound to a Colt object, the version number and complexitymeasure

are free to change. Further, the same Colt instance may be used in multiple props.

Figure 5.2 gives a visual representation of the property manager data structures.

Section 5.2.1 describes how such a property manager can be created.

An animator can now take advantage of the property manager's control features

to construct an animation involving the gun prop. Initially, the animator might

only have a crude model of a generic handgun. This model is added to a prop

instance and used to make a rough \pencil test" of, for example, an old western

shoot-out. Later, a more sophisticated model of a Colt is created and added to the

gun prop. This new prop instance is used to re�ne the animation to ensure that

the gun does not intersect the cowboy's hand. Re�nements are initially veri�ed by

previewing the animation in real-time wireframe mode (see Chapter 6); however the

refresh rate of the display device might be unacceptably low. In order to preview the

animation at a faster rate, the animator might design a new model of the Colt that

has roughly the same shape as the original but is not as complex (see Section 5.1.3).

This less complex model would be added to the gun prop and used to preview the

animation. When the animator renders frames for the sequence to make accurate

timing tests, the more complex version of the Colt can be made active. Further,

other individuals might make re�nements to the Colt model during the animation

22

"Colt"
version:1.0
complexity: 0.5

"Colt"
version:2.0
complexity: 1.0

"Luger"
version:1.0
complexity: 0.3

"BB"
version:1.0
complexity: 1.0

"Gun"
desired version: 2.0

desired complexity: 1.0

"Lugar" "BB gun""Colt"instance names

active instance

GUN PROP

INSTANCES

SYMBOLIC REFERENCES

Property Manager

Props

Prop Instances

"Old West"

Hash Table

ColtModel

LugerModel

BBModel

Gun Prop

Gun Prop

Gun Prop

LightObj Light Prop

Map Objects to Props

Figure 5.2. A detailed representation of the property manager data structures and
the \gun" prop. The hash table uses virtual addresses to map objects to props.

design loop. We can keep the original model by placing the re�nements into new

prop instances with varying version numbers.

As Figure 5.2 describes, each prop has a notion of the desired version and

complexity of its active instance. When the user varies these values, the property

manager attempts to load the instance that most closely matches the requested

version and complexity as follows:

23

closest = NULL;
for each <prop_instance> in <prop manager>

if <prop_instance->name> == <desired name> &&
<prop_instance->version> == <desired version>
if NOT closest

closest = prop_instance;
else

diff_current = fabs(prop_instance->complexity -
<desired complexity>);

diff_closest = fabs(closest->complexity -
<desired complexity>);

if (diff_current < diff_closest)
closest = prop_instance;

Because the version attribute of a prop instance is a string, we force the desired

version and actual version to match exactly.

5.1.1 Automatic Propagation of Changes

Objects may be passed from Story to a shape edit server (see Section 5.2.4).

These objects may be modi�ed in shape edit with changes propagated back to

Story. This type of interaction presents some problems when the objects that are

being modi�ed are contained within props. This di�culty arises because both Story

and the shape edit server assume they have absolute control over objects in their

memory space.

Models in the server exist within a directed dependency graph. When an object

in the graph is modi�ed, all of its dependent objects must be updated. The server

updates these objects by constructing new objects and deleting old ones. Story,

however, uses virtual addresses as keys to map objects to props (see Figure 5.2). We

use virtual addresses because they uniquely identify objects and can be extracted

with very little overhead. When the server constructs a new model, the old key

becomes meaningless. We update the address map by intercepting an event sent

by the server to our client. The event contains pointers to both the old and the

updated object; if the old object corresponds to a key in the address map, we delete

24

the old hash table entry and construct a new one associating the updated object

with its prop.

In general, the property manager does not create models but rather manages

associations between models and names and provides
exible access through spec-

i�cation of name, version number, and complexity measures. There are, however,

two instances under which the property manager will create models. The �rst occurs

when associating a model with a motion curve and the other when generating simple

versions of models. We discuss these two cases next.

5.1.2 Linking Props and Motion Curves

The Alpha 1 modeler supports an instance data structure that consists of a

geometric model and a transformation. A transformation can be a collection of

simple matrices or motion curves. In order to maximize the
exibility of models and

motion curves, the animator can separately register models and motion curves with

the property manager and link them dynamically while composing an animation.

This linking is achieved by creating an instance whose geometry and transformation

are both property names, not actual geometry or transformations. Because the

references are symbolic, by changing the value bound to a property name we change

the representation of the linked object (see Figure 5.3). For instance, suppose we

have a \projectile" prop and a \trajectory" prop. Initially the \projectile" prop

might have an active \jet" instance. We can create a new prop, called \
ying"

prop, that links \projectile" and \trajectory." When we preview the animation

using the tools described in Chapter 6, we see a
ying jet.

Now we can switch to another instance of the \projectile" prop, perhaps a \train"

instance (we can make anything
y in our world!); the corresponding \
ying" prop

now has the train attached to the motion curve. This facility allows an animator

freedom to mix and match geometry and motion quickly and easily.

25

"Projectile Prop" "Trajectory Prop"

"Flying Prop"

Object Motion Curve

"Train Instance""Jet Instance" "Flight Instance"

Figure 5.3. Symbolically linking two props. The current con�guration would show
a
ying jet but could easily show a
ying train.

Another advantage of using symbolic reference is that many props may share

the same motion. Users could construct an animation of a column of marching

soldiers using the following technique. First, construct a model of a soldier and the

motion curve to animate her. Then construct other instances of the soldier o�set

from the original model. Finally, create props for each model and the motion curve

and then link each model prop with the motion curve prop. The transformations of

the motion curve are applied after the o�setting transformation of each instanced

soldier, so when the props are animated, a column of marching soldiers in perfect

lock-step will be previewed.

5.1.3 Generation of Simple Models

The property manager can store and load objects modeled at varying levels of

complexity. Switching between these models on-the-
y allows fast display rates on

low performance graphical devices as well as better time/quality trade-o�s during

rendering. The dimensions of the actual object should be closely approximated

in the less complex models. For example, both a simple and complex model of

26

a hammer should be the same height. We can use the simple model to quickly

rough out the animation and substitute in the complex model for �ne tuning

the motion and generating �nal images. If like models do not share dimensional

correspondence, substitution may be meaningless. We present several algorithms

that maintain correspondence by generating lower complexity approximations from

full geometry.

Although some work has been done on generating simple models from polygonal

data [13, 22], our algorithms are designed to work on an arbitrary set of, possibly

trimmed, NURB surfaces.

The �rst two algorithms take an unsophisticated approach to generating simple

models by extracting either a bounding box or boundary curves from each surface.

Boundary curves are the curves constructed from the control points of the �rst and

last row and column of a surface control mesh. To extract simple bounding boxes:

simpleModel = NULL;
for each <srf> in <model>

bbox = extract_bounding_box(<srf>);
simpleModel = append(bbox, simpleModel);

To extract bounding curves:

simpleModel = NULL;
for each <srf> in <model>

curves = extract_boundary_curves(<srf>);
simpleModel = append(curves, simpleModel);

These algorithms are insu�cient because they generate models that are typically

as complex as the full model. The resulting \simple" models are often more clut-

tered than the original and show relatively poor data reduction qualities. However,

because these models are easily polygonized, it takes less time to raytrace or scanline

render these models than their NURB counterparts.

Figure 5.4 shows a wire frame rendering of a NURB telephone base. Figure 5.5

shows a version with a bounding box for each surface.

27

Figure 5.4. A wire frame rendering of a complex B-spline model.

To be truly useful, simple models should extract the key features of the full

model. We determine key features by calculating the area for each surface and

comparing this value to the surface area of the entire model. If the ratio of the

surface's area to the total area is greater than some user de�ned total percentage,

then a bounding box or boundary curves are extracted from the surface. These

algorithms work quite well, preserving the general shape of a model, while greatly

reducing complexity. The ratio of a surface's area to total surface area also serves

as a complexity measure for the property manager.

Figure 5.6 shows a bounding box version of the telephone with a complexity

of 0:020. This measure means that all surfaces with 2% or more of the model's

total surface area have been extracted. The smaller the complexity value, the more

detail contained in the extracted model. Figure 5.7 shows derived models with

28

Figure 5.5. This model was generated by constructing a bounding box for every
surface.

complexities of 0:034 and 0:020, respectively.

Surface area is approximated by subdividing each surface (within some tolerance)

into polygons and summing the area of each triangle generated in the subdivision

process. The algorithm that extracts boundary curves is summarized below; the

bounding box variant is similar.

complexity = user defined value [0-1].
totalArea = compute_surface_area(<model>);
simpleModel = NULL;
for each <srf> in <model>
area = compute_surface_area(<srf>);
if (area / totalArea >= complexity)
curves = extract_boundary_curves(<srf>);
simpleModel = append(curves, simpleModel);

While the boundary curve algorithm can generate models that closely approx-

imate the key features of their full complexity counterparts, it does not closely

29

Figure 5.6. This model was generated with a complexity measure of 0:020.

Figure 5.7. Two boundary curve versions of the telephone at complexity 0:034 (left)
and 0:020 (right).

30

approximate all models because a NURB surface can vary arbitrarily within its

boundary curves. For instance, the boundary curves of a surface with a large

\bump" in the middle will not accurately represent that feature. Animators are

encouraged to model with this limitation in mind.

Although boundary curve models work well when displayed in wireframe, they

are not as useful when rendered with hidden surface algorithms. For \pencil test"

renderings in which an animator checks for occluding surfaces, these simple models

yield little information. An easy enhancement to this algorithm would extract

surfaces instead of boundary curves.

The computation time needed to generate a simpli�ed model from even a fairly

complex NURB model is small enough to make these algorithms acceptable for in-

teractive work. The telephone base contains 172 surfaces and can be approximated

in under one second on an HP 9000/730 workstation. Any number of simpli�ed

models can be generated for a given model.

5.1.4 Additional features

The property manager is designed to be as
exible as possible while still provid-

ing a useful mechanism for structuring animation. For this reason, models may be

referenced through a variety of di�erent prop names. For instance, one animation

may use a model of a pair of scissors as a \murder weapon" prop, whereas another

animation uses the scissors as a \barber shop" prop. By allowing quick substitution

of one prop instance for another, an animator can easily experiment with di�erent

ideas. In an extreme case, a scene might consist of the three props: landscape, hero,

and action. The property manager allows the scene to be a cowboy walking down

the street of a western town or a ball falling down a set of stairs. In addition, the

ability to rapidly substitute one level of model complexity with another simpli�es

progressive re�nement of an animation.

31

Complex geometric models in Alpha 1 are on the order of 100K bytes, and

manipulating them quickly requires careful use of physical and virtual memory. To

make e�cient use of memory, the property manager lazily loads models associated

with props and retains only the active prop instance. This optimization means

that only one model per prop resides in memory at a time and that when the user

changes prop instances, the memory used by the old model is freed and the new

model is loaded. Reducing memory requirements improves overall performance of

the system at the cost of short delays when a model is �rst loaded.

The following sections describe the various facilities Story provides to construct

a property manager and change the active prop instance.

5.2 The Interface

A property manager can be created in two ways: The contents of the database

may be speci�ed as a text �le that the system will parse to generate the database,

or a user may interactively construct the database within Story.

5.2.1 Constructing a Property Manager with a Text File

The text �le format requires instances to be speci�ed before props and is de�ned

as follows:

inst <instance-name> <version> <complexity> <path to model>

....

prop <prop name> <prop-instance> <desired version> <desired complexity>

....

The prop-instance �eld in the prop speci�cation is the name of the prop

instance to associate with the current prop. If more than one instance is associated

with a prop, multiple entries for a prop can be made. The last entry will be the

32

active instance. A \projectile" prop with both a \shoe" and a \rocket" instance

could be de�ned as:

prop projectile shoe 1.0 0.00

prop projectile rocket 2.0 0.3

where \rocket" is the active instance.

5.2.2 Interactively Constructing a Property Manager

Story also allows a property manager to be built interactively. Users may import

models directly into the system, and if a selected model is not found in the property

manager, the user is asked to add the object to the database (see Figure 5.8).

The user can enter the name of the prop, the prop instance, version, and

complexity number before adding the object to the property manager. If the

object has a \name" attribute, the system will use that value as the default

prop and instance name. This default choice allows even a novice user to build

a property manager quickly. If the object being added is a simple model generated

from an existing prop, the system will use the prop's name and instance name as

Figure 5.8. Users may interactively add models to the property manager.

33

defaults. The system assumes a default version of 1.0 and a default complexity

of 0.0; however, if the object being added is a simple model, a default complexity

equal to the user de�ned complexity is used. Any of these default values may be

overridden by the user.

Because of time constraints, we chose to implement a simple interactive property

manager editor. A more sophisticated interface would include editing and deletion

support of property manager objects. The current interface can dump the property

manager out in text format, and by hand editing this �le, users are able to perform

all functions. Once editing has been completed, the system can parse the text �le

and reconstruct the database. The text �le interface is also useful as a backup

mechanism in case the binary version of the database is somehow corrupted. For

instance, the full path of each object is stored in the property manager, but if an

object is moved or deleted, Story will fail when attempting to load that object.

We could avoid this problem by editing the text �le to re
ect the change and

reconstructing the binary property manager. Remember that not only geometric

models but also lights, textures, and motion curves objects can be stored in a prop.

5.2.3 Changing Active Prop Instances

Story provides an interactive facility for changing the active prop instance. The

user may open a separate prop information widget that contains desired version

and complexity �gures for the prop as well as a list of all of the prop's instances.

The user may change active instances by highlighting a di�erent instance entry (see

Figure 5.9).

5.2.4 Importing Models

Models and motion may be imported into our system in several ways. An

animator can import Alpha 1 data structures stored in the standard Alpha 1 format

34

Figure 5.9. Users can query the property manager for prop information and can
interactively change a prop's active instance.

or can access a shape edit server directly through network interprocess communica-

tion. This second option allows the animator to perform modeling and animation

operations in Rlisp and interactively display and then incorporate these models into

the property manager. Further, because multiple modeling and animation tools

may be in communication with the server, we can import geometry and motion

from these other tools by using the shape edit server as a gateway. This second

mode of communication has not been used because most Alpha 1 clients currently

do not support the necessary client/server protocols.

Once an object has been imported, the system will display the object in the

workspace. The workspace is the main display and interaction area of the system.

Objects can exist without being associated with a prop, but if such an object

is imported into Story in either of the two ways mentioned above, the animator

35

can view or modify the object but cannot perform any system speci�c tasks such

as previewing or rendering an animation, generating simple models, or selectively

displaying and undisplaying an object. Users can view and construct objects within

our system without the additional overhead involved in associating these objects

with props (see Section 5.2.1), but once the user selects an \unknown" object, Story

will attempt to create a new prop. Users can override this prop creation process.

We further exploit the capabilities of the server by allowing objects to be passed

between Story and the server. For instance, a model could be directly imported

via a binary �le and then sent to the server to be modi�ed. Objects modi�ed in

the server are automatically propagated back to the Story system to ensure correct

correspondence. Both models and motion curves may be modi�ed in this fashion.

CHAPTER 6

RENDERING

We refer to rendering as viewing any part of an animation in either wireframe

or shaded image mode. We �rst discuss the \fast render" preview and editing

functions. Previewing and editing typically use wireframe renderings of models but

can use shading if hardware support is available. Next we discuss the high quality

rendering facilities.

6.1 Preview and Edit Design

Motion quality and the timing of scenes are critical elements[16] in the creation

of both �lm and animation. Therefore, the animator should get a feel for the

�nal motion as early in the production as possible. To facilitate this, we have

implemented a comprehensive set of previewing widgets. The previewing module

has the ability to display not only geometric models but also such abstractions as

cameras, viewing frustrums, and motion curves (see Figure 4.1). We can also

preview storyboards, shots, scenes, or the entire animation from the director's

vantage or through the camera's lens.

Producing computer animation has advantages over either live action or tradi-

tional animation. We can preview both cameras and motion curves and, unlike

animate objects, their motion can be reproduced exactly. As described earlier, a

camera can be represented as either an oriented arrow or a more realistic looking

camera model. If a camera has been added to a shot, then the shot will be previewed

37

from the camera's perspective; otherwise, the system's last viewing location is

used as a default. The animator may interactively modify this default view. The

view through several cameras can be displayed simultaneously, thus providing an

animator with shot selection
exibility. A camera can display its viewing frustum to

help an animator visualize the space visible by the particular camera. Motion curves

are displayed by sampling the transformations over their valid range and forming

a polyline through the resulting positions. A moving trihedron, representing the

rotational component of the curve, is attached to the translation path.

A motion curve is de�ned by a 2D NURBwhose x-axis is time and whose y-axis is

the transformation's value at each time. By searching the control polygons of all of

a shot's motion curves for the minimum and maximum x-coordinate, we determine

the initial time range of the shot. The animator may then edit the default start

and end times for the shot by either typing in new times or by setting one of these

times to the current preview time. Editing a shot's time range changes the range

over which the motion curves are sampled by the rendering software and e�ectively

incorporates editing into the animation production cycle. Note, that we may overlap

shots for emphasis or we may skip sections of time to achieve compression.

In our system, a shot's time range can be altered only while the shot is being

previewed. The mechanism used to edit shots together could be greatly improved.

The user should be able to manipulate interactively the start and end times for

each shot as a slider. By displaying all sliders simultaneously, the user gains a more

global view of the animation. Figure 6.1 is an example of a more sophisticated shot

sequence editor. Sliders are represented as the end-marked dashed lines beneath

the shot labels.

In addition to altering start and end times, animators may scale the actual

length of each shot. For instance, the user may specify that motion begin at time 2

and end at time 4. When the shot is rendered, the number of frames generated

38

0 1 2 3 4 5 6 7 8

shot 1

shot 2

shot 3

shot 4

time

Figure 6.1. An example shot sequence. The overlap between shots 2 and 3 and the
omission of time between shots 3 and 4 is evident.

is based on the 2-second time di�erential. If the animator requests that the shot

last for 3 seconds, the action slows down; if the shot lasts 1 second, the action

speeds up. Alternatively, this type of control could be implemented by modifying

the motion curves themselves. Alpha 1 has a variety of utilities that generate

and modify motion curves. The architecture of our system encourages application

developers to develop new programs and modify existing ones to take advantage of

the integrated support provided by Story.

As the animator modi�es the start and end time for shots, these values are per-

manently stored in the shot object and are used when generating frames with one of

Alpha 1's high quality rendering tools. Because our system does not provide timing

control during real-time previewing (see Section 8.3.3), total time speci�cation only

a�ects the number of frames rendered with one of the auxiliary tools.

6.2 Preview and Edit Interface

The preview window is an integrated facility allowing the user to edit together

and preview a sequence of shots in real time (see Figure 6.2). An animator can

interactively specify a speci�c shot or a range of shots to preview. Time control

within a shot is controlled by either the familiar set of VCR buttons indicating

39

Figure 6.2. The preview control window.

stop, play forward, play backward, fast forward, and fast backward, or a slider bar.

The tape player buttons include options that allow an animator to loop through a

sequence of shots or step through the animation one frame at a time. The animator

may change the time increment used to sample the motion curves, but this only

changes the apparent length of the shot in preview mode, not the number of �nal

rendered frames.

To interactively modify a shot's time interval, the animator must request that

the previewer use the modi�ed times (see the \Use" button in Figure 6.2). Once

this request is made, the user is unable to preview the animation outside of the

edited range. Otherwise, the shot's full time range can be previewed.

These tools merge previewing and editing into a tight interaction loop. Once

40

several shots have been edited, the animator can preview the entire sequence by

selecting the starting scene and shot and the ending scene and shot.

We have also provided limited storyboard previewing facilities. An animator can

request that Story invoke an external display program and view all of an animation's

storyboard frames in sequence. The storyboard frames can be a mixture of hand

drawn and machine generated images.

6.3 High Quality Rendering

Our system supports high quality rendering by providing access to the rendering

tools in the Alpha 1 modeling system; these include a fast scanline algorithm and

a more sophisticated ray tracer. Both utilities provide options for changing the

image size and quality (e.g., antialiasing, texture maps). The ray tracer also

supports shadows, material properties, varying ray cast depth, and motion blur.

The animator controls the renderers used, image size, and image quality through a

rendering control panel (see Figure 6.3).

The animator can render a storyboard (a single frame), shot, scene or the entire

movie. The timing of an animated sequence can be controlled in several ways. As

with the previewing tools, the default start and end time of a shot are determined

by examining its motion curves; by using the preview and edit tools, the animator

can alter these start and end times to shorten or lengthen the shot. The rendering

control window also allows the animator to indicate the length of a shot as either

frames per second or frames per shot. The former is intended to be used when

generating �nal frames, and the latter is useful when performing \pencil tests."

When the animator has set all rendering parameters, Story generates a Unix shell

script to invoke the Alpha 1 rendering programs. Scripts have several advantages,

foremost being that the actual rendering can take place at a later time in \batch"

mode. Clearly, it is unacceptable to require the animator be logged in during the

41

Figure 6.3. The high quality rendering control window.

time-consuming process of rendering, so frames must be generated without requiring

a windowing system to be active. Scripts also have the advantage of being able to

run on a di�erent host from the one used to generate them. We can make better use

of computational power with this facility. Also, the scripts are structured to allow

the frames of a movie to be rendered in parallel, with each shot's frames computed

on a di�erent workstation.

CHAPTER 7

AN ANIMATION PROOFREADER

As computational power increases and rendering and animation packages become

more robust, even amateur �lmmakers will have the power to create animated se-

quences. These novices will need tools to aid them in producing quality animations.

One such tool is a proofreader able to identify awkward camera placement, motion

sequences or shot transitions. By identifying these problems, a proof reader would,

among other things, help an animator choose camera locations, shoot multiperson

dialogue, and edit action sequences.

Automating what many may hold as a purely artistic endeavor may seem futile.

Indeed, much of a �lmmaker's or animator's job is creative in nature. However,

such an individual �lters his or her creativity through a set of established rules in

order to communicate e�ectively to an audience. A �lmmaker who fails to obey

these rules risks irritating if not confusing an audience[1]. An example is a scene

in which two actors are having a conversation, and each time a character speaks,

the audience sees a close up of the speaker's face. If these close ups are �lmed so

that the speakers appear gazing in the same direction, the audience will believe

that the characters are talking to a third person and not to each other. Our goal

is to identify \bad" animation practice and then devise algorithms or heuristics to

uncover instances of these in an animated sequence.

Arijon[1] de�nes three di�erent types of scenes. Scenes may have dialogue

with action, dialogue without action, or action without dialogue. Because of the

43

di�culties associated with natural language recognition, we attempt to analyze

only the last classi�cation of scenes.

Some relevant terms from �lm nomenclature are �rst de�ned.

7.1 Film De�nitions

A player or character is an object in a scene on which the audience focuses

attention. Any object, including a camera, may move within a shot. In the context

of computer animation, any of these objects may have an associated motion curve

(see Section 2.5). Motion in a neutral direction is either towards or away from the

camera.

A shot's center of attention (COA) is the character that is the focal point of a

particular shot. The line of interest (LOI) is a straight line in the direction of the

COA's gaze or movement. If two characters were speaking to each other, the LOI

would be based on the directions of their gazes. By alternately editing together

shots of di�erent centers of attention, the audience will get a sense of con
icting or

related story lines. For instance, the audience will understand that two characters

are speaking to one another if shots of each character are interleaved. The placement

of the LOI is not always achieved as simply as in the previous example. If the two

characters above were moving, the LOI would also need to move. Or the two

characters may be having a conversation with a third person, requiring the shot to

use multiple LOIs. Such shot sophistication is beyond the scope of this thesis.

The proofreading system must have an understanding of the scene-shot anima-

tion hierarchy as well as knowledge of each shot's COA and LOI. The proofreader

must be able to query the speed and direction of motion for any object in a scene.

For anthropomorphic objects, a representation of direction of gaze (DOG) may also

be important.

44

7.2 The Triangle Principle

The triangle principle is a method for designing camera positions that allow

clear visual coverage of the players in a scene[1]. We de�ne a triangle that has one

side parallel to the LOI. If we place a camera to one side of the LOI and two more

cameras at either end of the LOI, we see that the cameras form a triangle. Another

triangle may be formed by placing a camera on the other side of the LOI. Any visual

composition may be covered by orienting these cameras in one of �ve variations[1].

Figure 7.1[1] illustrates these variations; the backs of the players are represented

by the rounded blobs and the dotted line between the players represents the LOI.

These variations only dictate the placement of the two cameras at the base of

the triangle. One option places these cameras in external reverse angles. In this

case, the cameras are pointed inwards towards the players. The second option

places the cameras close to the LOI and points them outwards covering each player

individually. The cameras in this variation use internal reverse angles. By placing

the internal reverse cameras back to back on the LOI a subjective point of view

of the player excluded from the shot is produced. Parallel position cameras are

deployed close to the LOI, oriented perpendicular to the LOI. This type of shot

also covers players individually. These three options may be combined to increase

the potential number of camera placements. The fourth variation places cameras at

right angle positions. In this situation, the two cameras are pointed in directions 90o

apart. Finally, by advancing one of the cameras along its direction of view (either

physically or with a zoom), we obtain cameras on a common visual axis. This

arrangement is useful for emphasizing a player after showing it in its surroundings.

7.3 Background

The artists at Disney studios developed a set of guiding principles in the late

1920s and 1930s[25] that enabled traditional animation to become more sophisti-

45

a) external reverse b) internal reverse c) parallel

d) right angles e) common axis

Figure 7.1. The �ve variations of the triangle principle.

cated and realistic. Lasseter summarized these principles and described how they

applied to 3D computer animations[16]. These principles are:

1. Squash and Stretch|distortion of an object during motion.

2. Timing|speed of action to de�ne weight and size of objects.

3. Anticipation|prepare the audience for an action.

4. Staging|clear presentation of an idea.

5. Follow Through and Overlapping Action|keeping continuity of motions.

6. Straight Ahead Action and Pose-To-Pose Action|two approaches to creating
movement.

7. Slow In and Slow Out|avoid jerky starts and stops, especially for cameras.

8. Arcs|natural path of motion.

9. Exaggeration|accentuating key elements in an action.

10. Secondary Action|resulting action of another action.

11. Appeal|creating the elements people like to see.

46

All of these principles can be satis�ed with current animation tools. For instance,

spring/hinge dynamics systems can create objects that squash and stretch according

to physical laws[24]. Just as cartoon animations often exaggerate these laws for

entertainment purposes, physical models can also produce exaggerated motion if

arti�cial laws are provided. As a consequence of obeying physical laws, objects

demonstrate e�ects of timing and follow through; a variety of systems[2, 5, 7, 24, 28]

have modeled these laws. For instance, when a crane with an attached wrecking

ball is suddenly stopped, the ball will continue to swing after the crane comes to

rest. In the hands of an artist, the e�ects of spline interpolation are characteristic of

both Anticipation and Follow Through. Straight Ahead Action has its parallel with

iterative techniques[5], while Pose-To-Pose action may be thought of as keyframing.

How can a piece of software determine what objects should obey these principles

and to what degree they should obey? In general, a rock should not squash like

a rubber ball when it hits the ground, but perhaps that is exactly the e�ect an

animator desires. A dynamics system can model a man skidding to a sliding stop,

but how exaggerated should the slide be, and what pose should the man assume to

be \appealing"? Although there may be ways of measuring quantity and quality of

these principles (see Section 7.5.6 for a possible \appeal" metric), we believe these

problems do not lend themselves well to computer analysis, and any algorithm that

is designed will probably be too clumsy to yield useful information.

Automation, however, can play an important role in resolving some of Disney's

other principles. The linking of storyboards to camera selection will help the

animator decide the location of objects or staging of each scene, and an animation

proofreader should be of great use in identifying staging problems such as the COA

being completely occluded by a foreground object.

Many other rules have been formalized by Arijon into a �lm grammar. Although

the rules were written for makers of live action �lms, they are meant to ensure the

47

clear presentation of any story in a �lm setting and are therefore just as important

to the computer-assisted animator.

In order for a computer program to be able to interpret many of Arijon's

rules, the system would need to grasp such di�cult concepts as dialogue, storyline,

expression, mood, and emotion. For instance, if an actor has a far away, dreamy

look in his eyes, an audience would not be surprised to see a cut to a dream

sequence. If the audience does not recognize the expression and thus anticipate

the context switch, the dream sequence would be confusing. How, though, can a

program recognize day dreaming or understand what day dreaming may imply?

Such issues are topics for current arti�cial intelligence and expert system research

and do not appear to be tractable problems at this time.

There are rules, however, that are more amenable to software analysis. Most

of these rules ensure clear staging and editing of animations. The proofreader still

requires information about the animation in order to check for violation of these

rules, but this information may be easily speci�ed by the user.

7.4 Rule Primitives

The following are primitive pieces of information the proofreader must determine

in order to analyze an animation.

7.4.1 Screen Sectors

The screen is de�ned to be the view plane of the animation. This view plane

could be a monitor or movie screen, but in general, most analysis will be done using

the projection plane of the viewing frustum, so this too will be considered a screen.

Most rules require knowledge of object location in screen space, and although

some complicated space partitioning structure[9, 23, 26] might seem necessary at

�rst glance, live action �lmmakers generally do not require much accuracy[1] and

48

therefore break the screen up into just two or three vertical screen sectors. We adopt

this convention, although we admit that the reason �lm makers have not required

higher accuracy might be a function of not having appropriate tools available to

them. When discussing the screen split into two sectors, we will refer to the sectors

as half screens.

7.4.2 Locating Objects

Because many rules require screen sector coherency between shots, the proof-

reader must be able to query the screen location of any object at any time. Screen

sector coherency dictates that an object in one screen sector in one shot must often

be in the same sector in the next shot. This check must be made at every time step

for moving objects and for all objects if the camera is moving.

We can make this check by projecting each object onto the view plane. New

objects are formed by intersecting the vertical lines that divide the screen with the

projected model. The area to the left and right of the vertical line is then calculated.

An object is in a particular screen sector if the majority of the projected object is in

the sector. As a rough approximation, we could project the object's bounding box.

A more accurate approach would project the object's full geometry. He
in's[12]

shadow volume work could be useful in forming this second type of projection.

7.4.3 Object Direction and Velocity

In addition to determining each object's screen location, the direction and veloc-

ity of moving characters with respect to the screen must be determined. Many rules

are dependent on whether a player is moving horizontally across the screen or in

a neutral direction. Also, certain types of shot transitions may appear jerky if the

speed of a player di�ers in the two shots, hence the need for velocity information.

49

To check for this, we need to be able to compute the velocity of a player with

respect to the screen. Given a motion curve, we could project the true velocity

vector onto the view plane to calculate this screen velocity.

7.5 The Rules

The number of rules that a proofreader needs to check to adequately analyze a

shot increases dramatically as player motion and sophistication increases. Sophis-

ticated motion means multiple objects moving in a shot, or wildly erratic motion.

Player sophistication refers to how geometrically complex or elaborate a player is.

The more detailed a player, the more di�cult it will be to analyze shots involving

the player.

Just as today's language grammar checkers often give super
uous and short-

sighted advice to
uent writers, an animation proofreader could be expected to be

similarly limited. This seems unavoidable. Any rule may be broken by someone who

understands them, but novices break rules without understanding the repercussions

of their decisions. If a program can identify and warn a novice user when some

guideline is violated, the user can at least make an informed decision. If we can

formulate rules of thumb and can generate algorithms capable of detecting violation

of these rules, the system should generate useful information.

With this in mind, we introduce our rules.

7.5.1 Simple Rules

One �lm convention dictates that the COA should remain unoccluded in the fore-

ground of the shot. We can relate what constitutes foreground to camera position

and check that the COA falls within some acceptable range from the camera. Sur-

face occlusion can be determined with standard shadow volume algorithms[12, 9].

50

Not only should the the COA be unobstructed, but the area behind the COA

should remain relatively uncluttered. We could clip each object against a bounding

box of the COA and if more than a heuristically determined number of clips are

detected, the frame could be tagged as \cluttered." Similarly, the COA should be

colored in a way that distinguishes it from the background. We can check that the

color of the foreground and the COA are signi�cantly di�erent. These rules ensure

that an audience can easily identify the COA.

7.5.2 Switching Sides of the LOI

As a general rule, a scene should only be �lmed on one side of the LOI so as not

to confuse the audience. This rule can be veri�ed by computing the dot product of

the LOI and a vector from the COA to the camera.

Unfortunately, there are exceptions to this rule, which complicate matters to

some degree. There are several tricks that a director can employ to gracefully switch

sides of the LOI. Each of these methods relies on the fact that visual slight-of-hand

easily fools humans.

One technique is to use a cut-away shot before making the switch. A cut-away is

a diversionary shot that does not contain the COA and makes the audience forget

the current viewing direction. For instance, if we wanted to switch sides during a

scene in which a man is typing on a computer, we could �lm him from the right,

use a cut-away shot of the screen he is typing on, and then �lm him from the left.

If a scene has a player moving in a neutral direction, we may also safely switch

sides of the LOI. Presumably a player moving obliquely towards or away from the

camera may also be used for the switch, but Arijon does not specify how oblique

this angle can be without confusing the audience.

Another way to switch sides without confusion is to keep the moving player in

the same half screen for both shots. For instance, in shot one, a player is seen

51

moving from the right towards the center of the screen. Before the player passes

the center of the screen, a switch to the other side of the LOI is made and the player

is seen moving o� to the right. This check can be made if we know the direction

of movement of the player and if we can determine in which half screen a player

resides at the beginning and end of a shot.

7.5.3 Character Motion

Motion is a necessary component to any animation, but with indiscriminate use,

the audience may not focus their attention on each shot's COA. The eye will be

attracted to a moving object in a still scene and to a still object in a busy scene[16].

So, the proofreader should check that if a shot's COA is moving, the rest of the

shot's objects are generally still, and vice versa. We are not sure at this point

whether it is more important for \still" objects to move more slowly than the COA

or simply not as far in screen space.

The following choices ensure a smooth transition from one shot to another when

animating motion (see Figure 7.2[1]). Motion may be repeated in the same screen

sector either in the same or opposite direction, or a moving player may use both half

screens if one of the following guidelines are followed. Motion can begin and end at

the center of the screen, or motion can start on one side and �nish on the opposite

side of the screen. Finally, movement may either converge towards or diverge from

the screen center.

Interestingly, the animator need not allow a player to move o� screen before

making a cut. In fact, faster and more dynamic transitions are often made by

cutting before the player exits.

If the the motion from a single player is split into two shots, the player's speed

should be similar in both shots. If this is not practical, then the speed in the second

52

a) Motion in the same screen
 sector; same or opposite
 direction.

b) Motion begin and end at
 screen center, or start
 on one side and end at
 the opposite.

c) Converge on the screen
 center or diverge from
 the screen center.

Figure 7.2. A director has several choices to ensure smooth shot-to-shot transitions.

shot should increase. Once the proofreader can determine the velocity of objects,

this rule can be implemented with a few simple comparisons.

The audience should usually be given a clue as to where a player is moving.

We know the player's �nal destination because we have the animation curves, so

perhaps we could check that the general destination is displayed in at least one shot

from the suspect sequence.

7.5.4 Camera Motion

In general, a lot of camera movement is distracting to an audience, so the

animator should be warned once some predetermined threshold is reached. This

threshold could be heuristically determined.

53

7.5.5 Constraints

Many of these rules could be used to drive a constraint solver to determine

camera positions or paths that the system has determined to be \grammatically

correct." The user should, of course, be able to override any of these default

settings. Constraint techniques may also be useful in producing timing sequences

that optimize some user speci�ed emotional goal for a scene such as \surprise" or

\tension." This is similar to the work of Kawai [15] in the �eld of rendering.

7.5.6 Strong Poses

Previously we mentioned determining an animation's \appeal." We now propose

an algorithm for measuring the strength of a player's pose. Both traditional

animation[16, 25] and live action[1] literature state that players should be posed

to expose as much of their features as possible. For instance, a model of a woman

should be staged so that the audience can see her face, arms, and both legs.

Shadow volume techniques[12] could be used to calculate the amount of self-

occlusion in a particular shot. The animator is issued a warning when too much

occlusion is detected. This problem is di�cult because not all portions of a model

should be considered self-occluding. For instance, the fact that the front face of an

arm occludes its back half should not be included in a tabulation, but the fact that

the entire arm occludes the chest should.

CHAPTER 8

RESULTS AND FUTURE WORK

8.1 Results

Several short pieces of animation have been completed using the Story system.

The �rst segment showing a hammer falling on an inverted telephone receiver that

in turn launches a chess piece was broken up into a series of shots to enhance the

dramatic appeal of the scene. This is one scene of an intended longer sequence that

follows a rolling tire around a Rube Goldberg-type landscape. Storyboards were

created for several scenes. Initial storyboards were hand drawn and scanned into

the system. Later, as models were designed, synthetic storyboards were created.

We made simple pencil tests by �rst viewing the storyboards (as a mixture of hand

drawn and system generated frames) in sequence and then by generating rough,

sample frames of the animation. These pencil tests became progressively more

sophisticated as models were completed and motion was �ne tuned.

Another piece of animation, one that simulates the inspection of a mechanical

part, illustrates the importance of animation in the manufacturing domain. By

using a variety of camera angles, we were able to explain clearly the inspection

process. By editing the long inspection, we were able to convey this information in

a concise yet informative fashion.

Both sequences were constructed in less time than previously possible with the

Alpha 1 system.

55

8.2 Current Status

The animation production (with storyboards), camera placement, and property

manager features of the Story program are largely complete. The software includes

support for X window and Silicon Graphics GL display devices and runs on a variety

of hardware platforms.

8.3 Future Work

Although each module of the system (with the exception of the proofreader) is

functional, each can be improved and expanded considerably.

8.3.1 Cameras

The camera positioning system, although adequate for many applications could

be improved. The most obvious improvement would allow camera motion. A

simple camera keyframing system could be added to either the Alpha 1 keyframing

program or Story. Story would then need a few, relatively simple modi�cations to

recognize moving cameras.

The current mechanism employed to snap the to point of the camera is de�cient

when attempting to position a camera in an area where there is no object. This

di�culty could be alleviated by building a sphere widget temporarily placed around

a selected object. The radius of the sphere is interactively controlled and the user

could position the camera along any isoline of the sphere. A prototype of this

interaction has proved very e�ective. We would eventually like to implement a

more robust camera positioning system such as Mackinlay[17] or Gleicher[10] have

developed. Such a system would require a constraint solver that could also be used

to construct temporal constraints.

The physics of our cameras could also be improved to allow for such e�ects as

�eld of view, focus, etc.

56

8.3.2 Property Manager

The property manager could be enhanced in several ways. For instance, we would

like for the system to be able to handle multiple or linked property managers. If a

property is not found in the active database, others would be searched. We would

also like to integrate the property manager concept more fully into the Alpha 1

system so that, for instance, the ray tracer can work on a property manager with

the most complex versions of objects loaded, while Story is using the least complex

versions. A simpler mechanism of dealing with model attributes also needs to be

investigated.

8.3.3 Previewing

One previewing enhancement would allow the animator to preview the entire

animation in a single window with each shot being displayed as a storyboard,

wireframe, or �nal shaded images according to the best representation available.

Another important enhancement to the previewing module would allow accurate

timing control. Previewing is implemented by sampling the motion curves for each

object in a shot, calculating the position of the object along its motion curve,

and displaying the object. Although this algorithm produces smooth motion,

the apparent speed and duration in real time is dependent upon cpu speed and

graphics performance. To properly handle timing while previewing, a system must

monitor the update rate of the graphics display device and calculate the next frame

according to this delay.

We also need to develop a more sophisticated time management interface. An

animation has three distinct notions of time that may be manipulated. Audience

time refers to the total subjective time that an audience spends watching an

animation, story time refers to the actual start and end times that each shot is

57

de�ned over, and �lm time refers to the order in which the various shots may be

arranged in audience time.

8.3.4 User Interface

The addition of several interface widgets would improve the performance of

the system. The �rst widget would relieve the user of the task of showing and

unshowing objects in the workspace. The current implementation has a rather

unsophisticated notion of display lists|individual objects are either in the display

list or are not. The new widget should allow objects to be added to display groups

so that layers of the model could be selectively displayed. For instance, we might

place all dimensioning elements in one group and the actual model in another.

Individual objects or groups of objects should be able to be displayed/undisplayed

or moved to di�erent display groups in a minimum of mouse clicks.

8.3.5 Animation Proofreader

Although the underpinnings of the animation proofreader have been largely

worked out, little has been implemented. Clearly, we can only verify the utility of

the proofreader through experimentation. Experimentation will require additional

interface overhead to allow the user to specify or modify each shot's COA and LOI

as well as code to analyze animation sequences. We believe that many common

staging problems could be detected by implementing just a few rules.

CHAPTER 9

CONCLUSIONS

We present an integrated animation and storyboarding system which simpli�es

the creation of multiscene animations. Our system models both the process of

animating a story and the product of the animation by introducing objects for

movies, scenes, shots, and storyboards. These objects help animators quickly sketch

out the structure of a story and provide a framework for step-wise re�nement of that

structure into a complete �lm. Camera positioning is simpli�ed by several intuitive

placement techniques and \through the lens" or \director's" views of the scene. The

models used in the animation are managed by a
exible property manager, which

allows easily substituting one model for another or for automatically generating

simple approximations for complex NURB models. The rendering module manages

previewing, editing, and the rendering of high quality �nal frames. Finally, the

animation proof reader identi�es awkward views or motion sequences and provides

advice to novice animators. The system integrates a diverse collection of tools into

a consistent animator's workbench. Several short animations have been completed

with this software, leading us to believe our systemmakes computer animation more

accessible to the traditional animator and �lmmaker as well as making animation

a more useful communication tool.

REFERENCES

[1] Arijon, D. Grammar of the Film Language. Hastings House, 1976.

[2] Baraff, D. Coping with friction for non-penetrating rigid body simulation.
In SIGGRAPH '91 Conference Proceedings (Las Vegas, Nevada, 1991), pp. 31{
40.

[3] Catmull, E. The problems of computer-assisted animation. In SIGGRAPH

'78 Conference Proceedings (1978), pp. 348{353.

[4] Chen, M. A study in interactive 3-D rotation using 2-D control devices. In
SIGGRAPH '88 Conference Proceedings (1988), pp. 121{129.

[5] Cohen, M. F. Interactive spacetime control for animation. In SIGGRAPH

'92 Conference Proceedings (1992), pp. 293{302.

[6] Computer Science Department, University of Utah. Alpha 1 User's

Manual, June 1991.

[7] Dovey, D. Integrating geometric modeling and motion simulation for me-
chanical systems. Master's thesis, University of Utah, December 1990.

[8] Drucker, S. M., Galyean, T. A., and Zeltzer, D. Cinema: A system
for procedural camera movements. In 1992 Symposium on Interactive 3D

Graphics (Cambridge, Massachusetts, 1992), pp. 67{70.

[9] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F.

Computer Graphics: Principles and Practice, Second Edition. Addison-Wesley
Publishing Company, 1990.

[10] Gleicher, M., and Witkin, A. Through-the-lens camera control. In
SIGGRAPH '92 Conference Proceedings (1992), pp. 331{340.

[11] Gracer, F., and Blasgen, M. W. Karma: A system for storyboard
animation. In Proceeding Ninth Annual UAIDE Meeting (1970), pp. 210{255.

[12] Heflin, G., and Elber, G. Shadow volume generation from free form
surfaces. In CGI '93 Conference Proceedings (1993).

[13] Hitchner, L. E., and McGreevy, M. W. Methods for user-based
reduction of model complexity for virtual planetary exploration. In Proceedings
of SPIE (San Jose, 1993).

60

[14] Karp, P., and Feiner, S. Issues in the automated generation of animated
presentations. In Graphics Interface '90 (1990), pp. 39{48.

[15] Kawai, J., Painter, J., and Cohen, M. Radioptimization | goal based
rendering. In SIGGRAPH '93 Conference Proceedings (1993).

[16] Lasseter, J. Principles of traditional animation applied to 3d computer
animation. In SIGGRAPH '87 Conference Proceedings (1987), pp. 35{44.

[17] Mackinlay, J. D., Card, S. K., and Robertson, G. G. Rapid controlled
movement through a virtual 3D workspace. In SIGGRAPH '90 Conference

Proceedings (1990), pp. 171{176.

[18] Magnenat-Thalmann, N., and Thalmann, D. Computer Animation:

Theory and Practice. Springer-Verlag, 1985.

[19] Phillips, C. B., Badler, N. I., and Granieri, J. Automatic viewing
control for 3D direct manipulation. In 1992 Symposium on Interactive 3D

Graphics (Cambridge, Massachusetts, 1992), pp. 71{74.

[20] Ridsdale, G., and Calvert, T. The interactive speci�cation of human
animation. In Graphics Interface '86 (Vancouver, 1986), N. Marceli Wein,
Evelyn M. Kidd, Ed., pp. 121{129.

[21] Ridsdale, G., and Calvert, T. Animating microworlds from scripts and
relational constraints. In Proceedings Computer Animation (Geneva, 1990),
pp. 107{116.

[22] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. Inkwell: A 2.5-d
animation system. In SIGGRAPH '91 Conference Proceedings (Las Vegas,
Nevada, 1991), pp. 113{121.

[23] Thibault, W. C., and Naylor, B. F. Set operations on polyhedra using
binary space partitioning trees. In SIGGRAPH '87 Conference Proceedings

(1987), pp. 153{161.

[24] Thingvold, J. A. Elastic and plastic surfaces for modeling and animation.
Master's thesis, University of Utah, March 1990.

[25] Thomas, F., and Johnson, O. Disney Animation: The Illusion of Life.
Abbeville Press, 1984.

[26] Vanecek, G. Brep-index: A multi-dimensional space partitioning tree. Tech.
rep., Purdue University, December 1990.

[27] Ware, C., and Osborne, S. Exploration and virtual camera control in
virtual three dimensional environments. In Proceedings of the 1990 Symposium

on Interactive 3D Graphics (Snowbird, Utah, 1990), pp. 175{184.

61

[28] Wejchert, J., and Haumann, D. Animation aerodynamics. In SIG-

GRAPH '91 Conference Proceedings (Las Vegas, Nevada, 1991), pp. 19{22.

[29] January 1992. Animation Interview with Lance Williams.

[30] Withrow, C. A dynamic model for computer-aided choreography. Tech.
rep., University of Utah, June 1970.

