Mold Accessibility via Gauss Map Analysis*

Gershon Elber
Computer Science Department, Technion, Haifa 32000, Israel

Xianming Chen!

Elaine Cohen

School of Computing, University of Utah

Abstract

In manufacturing processes like injection molding or
die casting, a 2-piece mold is required to be separable, that
is, be able to have both pieces of the mold remove in oppo-
site directions while interfering neither with the mold nor
with each other:

The fundamental problem is to find a viewing (i.e. sep-
arating) direction, from which a valid partition line (i.e.
the contact curves of the two mold pieces) exists. While
previous research work on this problem exists for polyhe-
dral models, verifying and finding such a partition line for
general freeform shapes, represented by NURBS surfaces,
is still an open question.

This paper shows that such a valid partition exists for a
compact surface of genus g, if and only if there is a viewing
direction from which the silhouette consists of exactly g+ 1
non-singular disjoint loops. Hence, the 2-piece mold sep-
arability problem is essentially reduced to the topological
analysis of silhouettes. In addition we deal with removing
almost vertical surface regions from the mold so that the
form can more easily be extracted from the mold.

It follows that the aspect graph, which gives all topo-
logically distinct silhouettes, allows one to determine the
existence of a valid partition as well as to find such a
partition when it exists. In this paper, we present an as-
pect graph computation technique for compact free-form
objects represented as NURBS surfaces. All the vision
event curves (parabolic curves, flecnodal curves, and bi-
tangency curves) relevant to mold separability are com-
puted by symbolic techniques based on the NURBS repre-
sentation, combined with numerical processing. An image
dilation technique is then used for robust aspect graph cell
decomposition on the sphere of viewing directions. Thus,
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an exact solution to the 2-piece mold separability problem
is given for such models.
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1 Introduction

Design-for-manufacturing necessitates that a CAD
system be enhanced with the capability to verify that the
designed model can be manufactured. In this paper, we
consider the problem of determining the existence of and
finding (if one exists) a valid 2-piece mold for a designed
solid model, whose boundary is represented as NURBS

Most papers on 2-piece mold separability problem
(e.g. [16, 5, 1]) work on polyhedral models. Typically, they
select some heuristic directions from which to verify sepa-
rability. Thus, the algorithms are not complete in the sense
that they only verify but cannot find a valid 2-piece mold
even though one might exist. In [1], a complete algorithm
is presented, but for implementation it falls back to veri-
fying some heuristically selected directions because of the
high complexity of the complete algorithm.

In this paper, we use models bounded by NURBS
surfaces that have C'®) continuity, present and implement
a complete algorithm for the mold separability problem.
C®) is required only because relevant aspect graph com-
putation requires third derivatives.

A 2-piece mold, denoted 2P M hereafter, is used in
manufacturing processes such as injection molding or die
casting [4, 13]. In general,

Definition 1 An object that is manufacturable
with the aid of an n-piece mold is denoted by
nP M. The curves along which the object is par-
titioned are called partition line, and denoted by
PL.



Specifically in this paper, we consider 2P M, and re-
quire that there be an opposing separating direction V' for
the two pieces of the mold.

Obviously the existence of a 2P M for a solid model
is completely determined by its boundary surface. The
boundary surface must be closed and bounded, i.e. com-
pact.

If the the separating direction V' and the the boundary
surface S are to be emphasized, we will use the notation
2PM.

Note we assume a connected boundary surface for any
solid model (in fact, the connectedness is usually implicit
in the mathematical definition of a surface), and hence we
do not consider void objects (such as a hollowed sphere),
whose inner and outer boundary surfaces are not connected.
This assumption does not make our discussion any less
general, since void objects obviously cannot have a valid
2P M.

As silhouette generators and silhouettes are our start-
ing point to solve the 2P M problem, we give their defini-
tion here.

Definition 2 Given a viewing direction V, and a
surface S,

1. The silhouette generator GY is the locus
of points on S, whose surface normals are
perpendicularto V.

2. The corresponding silhouette ng/ is the pro-
Jjection of the silhouette generator along the
direction V onto an arbitrary image plane.

The rest of the paper is organized as follow. In Sec-
tion 2, we give the necessary background of vision events
and aspect graphs. In Section 3, the relations between
mold accessibility and, silhouettes and visibility, are inves-
tigated. In Section 4, a complete set of algorithms for com-
puting the 2P M separability for NURBS surfaces is given.
The implementation uses a combination of symbolic and
numeric computation, as well as a technique from image
processing. Some examples are given in Section 5. Also
for practical manufacturing, Section 6 computes the parti-
tion line itself given the view direction, shows how to pre-
scribing a relief angle, and further shows how to redesign
the difficult to remove regions . Finally, the paper concludes
in Section 7.

2 Background

In this section we briefly review relevant basic terms
and results about vision events and aspect graphs, which
are essential to the two theorems and the algorithms of this

paper. Refer to Koenderink [17] for more detail. For read-
ers familiar with differential geometry and singularity the-
ory, this section can be skipped safely.

1. Let S be the surface, p be any point on S, and n,
the surface unit normal at p. The Gauss Mapping is
definedas N : S — .72 N (p) = n,,

Here, .#? denotes the manifold of all unit surface nor-
mals, and is called the Gauss Sphere. Later, .72 will
also be used to represent the manifold of unit orthogo-
nal viewing directions, and consequently is also called
the viewing sphere.

Every viewing direction V' € .%? prescribes a great
circle C on .2 orthogonal to V. Then,

Gy ={peS|Np) eCh

2. A parabolic curve is defined as the locus of points on
S with zero Gaussian curvature, i.e., one of the princi-
pal curvature being zero. The zero principal curvature
direction is necessarily an asymptotic direction, since
the second fundamental form is O (i.e. self-conjugate),
or, intuitively the tangent line at that direction has or-
der 3 contact with the surface. The asymptotic di-
rections on a parabolic curve generate a developable
called axis cylinder developable.

3. Parabolic curves separate the elliptic from the hyper-
bolic regions of the surface. There are 0, 1, and 2
asymptotic directions on each point of elliptic sur-
face regions, parabolic curves, and hyperbolic sur-
face regions, respectively. At a hyperbolic surface re-
gion, there are two asymptotic direction(vector) fields,
the integral of which are two families of asymptotic
curves. The locus of all the geodesic inflection points
on these two families of asymptotic curves gives two
flecnodal curves. At these geodesic inflection points,
there are order-4 contact asymptotic directions, which
generate two non-developable ruled surfaces(with ei-
ther of the flecnodal curve as the base curve), called
flecnodal scrolls.

4. A bi-tangent ray is a line tangent to the surface at
two different points. If the line also lies in the plane
that is tangent to the surface points, it is then a limit-
ing bi-tangent ray, the locus of which is a bi-tangent
developable, contacting the surface at a bi-tangency
curve.

5. For all of these three ruled surfaces, translating their
generating lines to the origin gives the corresponding
generating cones.

6. For orthographic projection, the manifold of viewing
directions can be represented as the unit sphere sur-



face .72, .72 can then be partitioned (by the vari-
ous generating cones) into regions, with the property
that the silhouettes of all the viewing directions in any
one region have the same topology. When the view-
ing direction crosses the boundary of a topologically
equivalent region on .#? into anther one, the topology
of the silhouette suddenly changes, i.e., a vision event
occurs. A graph whose nodes are the representative
silhouettes of all the partitioned regions on .2, and
whose edges are the vision events between them, is
called an aspect graph.

7. A point on a curve is called an ordinary cusp if locally
the curve can be represented as 5% = z3 after an ap-
propriate coordinate transformation. In this paper, all
cusps considered are ordinary, and are simply called
cusps.

8. It may happen that there is a cross on the silhouette,
either from one loop or two distinct loops. For an
opaque object, part of one of the four branches is
occluded, and hence the cross appears as a T-shape,
called a T-junction.

Aspect graphs play a major role in many geometric ap-
plications, most noticeably in computer vision and recog-
nition. These graphs capture vision events of topological
changes in the object appearance as the view direction is
changed. A complete understanding of aspect graph re-
quires differential geometry and singularity theory, both
of which are well-established [19, 17, 2, 3]. The imple-
mentation, however, is not as satisfactory even after three
decades of research and development. Earlier research has
been conducted mainly on polyhedral models [8, 9, 10] or
some specific kind of surfaces, such as quadratic surfaces
or surfaces of revolution [18]. Petitjean [21] computed as-
pect graphs of smooth algebraic implicit surfaces.

In this paper, we implement a set of algorithms to com-
pute the aspect graph of a freeform object represented as
NURBS surfaces. The computed aspect graph is almost
complete, except we do not compute cusp-crossing and
triple-point vision events, which are irrelevant to the mold
separability problem. See Section 3. Symbolic computa-
tion is used extensively, with the help of numeric computa-
tion. This differentiates our approach from previous meth-
ods. We also use a different method based on image dila-
tion to decompose viewing sphere into topologically equiv-
alent maximal regions. See details in Section 4.

We now give some relevant results from singularity
theory on aspect graph with brief explanation.

1. A ssilhouette generator g}; generally consists of one or
more closed regular space curves on S, except when
V' is the asymptotic direction of a parabolic point on
S. Then SY has singularity of either an intersection

(or cross) or an isolated point. The singularities are
unstable, i.e., they disappear under small perturbation.
This is because

Gy ={peS|Np eCy
(where C is the great circle orthogonal to V'), and N
is a locally differmorphism except at parabolic points.

. The viewing direction V' and tangent direction 7" to

g}; are conjugate, i.e., their second fundamental form
is zero, II(V,T) = 0 [6, pp. 61-62].

This simple result is actually all we need to completely
understand any kind of cusp singularities.

. The only singularities that a silhouette S¥ can have

consists of cusps and T-junctions, both of which are
stable. A cusp occurs when V' is the asymptotic direc-
tion at the cusp’s pre-image on S. A T-junction occurs
when V is tangent to two distinct points on .S

When V' is the asymptotic direction, which is self-
conjugate, i.e., II(V,V) = 0, we are necessarily
looking at the tangent direction of the silhouette gen-
erator (cf. 2), and Sg will potentially have a cusp.

Vision events are closely related to parabolic curves,
flecnodal curves and bi-tangency curves on the sur-
face, or more precisely to their corresponding asymp-
totic ray manifolds or bi-tangent ray manifolds. There
are two other multi-tangent ray manifolds related to
vision events (see cusp-cross and triple-point events
below). For mold separability problems, however,
they can be safely ignored.

. There are 6 types of vision events, 3 local and 3 multi-

local (Figure 1 and Figure 2).

(@) A lip event occurs when the viewing direc-
tion crosses the axis cylinder developable at a
parabolic point of elliptic type [17, pp. 297-303].
In this case, 2 cusps (dis)appear.

(b) A beak-to-beak events occurs when the viewing
direction crosses the axis cylinder developable
at a parabolic point of hyperbolic type [17, pp.
297-303]. In this case, 2 cusps (dis)appear.

(c) A swallow tail event occurs when the viewing
direction crosses the flecnodal scroll. Again 2
cusps (dis)appear, and in addition, a T-junction
(dis)appears.

(d) A tangent crossing event occurs when the view-
ing direction crosses the limiting bi-tangent ray
manifold, In that case, 2 segments of silhouette
approach, touch, and then separate again.



(e) A cusp crossing event occurs when the view-
ing direction crosses the manifold of those bi-
tangent rays, which happen to be the asymptotes
at one of the two surface points

(f) A triple point event occurs when the viewing
direction crosses tri-tangent(touching 3 surface
points at the same time) ray manifold.

3 Mold Accessibility And Silhouettes & Visi-
bility

For a generic compact surface S, viewed from direc-
tion V/, its silhouette generator G, is formed out of one or
more disjoint closed regular curves. Genericity is a mathe-
matical concept of openness, denseness and transversality.
In the context of this paper, a generic surface is simply a
surface whose silhouette topology, under any sufficiently
small perturbation of the surface, does not change.

2P M manufacturability is closely related to the visi-
bility and silhouette processing problem, and is reduced to
them by the following theorem;

Theorem 1 A compact surface S of genus-g has
a valid 279/\/@ if and only if the silhouette gen-
erator g‘S’ has exactly g + 1 loops, each of which
is totally visible from the direction V.

Intuitively genus can be understood as the number of
handles or through-holes in a surface.

Proof:

(=). If the surface has a valid 2P M, then the two
pieces can be separated in opposite V' direction, interfering
neither with each other nor with the molded object inside.
In other words, if a ray parallel to V' is emitted from a point
p on the surface facing the viewer, the ray is not occluded
by any other surface points, and so p is visible. Specifically
the partition line PL is visible from V. Furthermore, PL
is identified with G¥ , because,

1. PL C g}g’. P L is visible from V as shown above. PL
is also visible from —V by exactly the same reason.

2. G¥ C PL. If not, there would be added silhou-
ette generator segments. Consequently there would
be a back-facing region and overlap at least one piece,
so pulling this piece away would necessarily interfere
with the molded object inside, hence a contradiction.

Now we need to prove, G¢ has exactly g + 1 loops.
This is readily proved by considering the fact that the sur-
face has g through-holes, and that P L is the common con-
tact of the two pieces. First, if it has more than g + 1
loops, then each additional loop would necessarily intro-
duce a through-hole, contradicting the hypothesis of genus

g. On the other hand, the silhouette generator cannot have
fewer than g + 1 loops either; if it did, there would exist
one through-hole completely embedded in only one of the
two mold pieces, which is impossible.

(«<=). This can be most readily proved if we consider
constructing a viewing ray cylinder for each loop on gSV.
There are g + 1 such cylinders, all with V' as the generator,
but with distinct loops of gSV as their distinct base curves.

Because all loops on Qfg/ are totally visible, it is obvi-
ous no pair of such cylinder surfaces can intersect. Consid-
ering further that the model surface is connected, the only
possible layout of these cylinders is that there is one outer
cylinder that completely contains the remaining ¢ cylin-
ders, none of which is inside any of themselves. Actually
these g cylinders exactly correspond to the g through-holes
of the model surface which is of genus g.

Therefore, all the g + 1 loops on g}; actually only cut
the model into two pieces.

Further, each piece must be totally visible. If not, there
would exist some silhouette generator segment between the
invisible back-facing area and the visible front-facing area.
This segment is necessarily invisible, which contradicts the
hypothesis that the silhouette generator is totally visible.

Finally, complete visibility of the two pieces ensures
the successful separating along direction V. il

Theorem 1 is powerful. But to verify the visibility of
the silhouette generator directly is quite difficult. The fol-
lowing theorem gives us a relation between the visibility of
a silhouette generator and the singularity of its correspond-
ing silhouette. The singularity of the silhouette, in turn, can
be readily predicted by the aspect graph.

Theorem 2 If S is a compact surface with
genus-g , then Qg has g+ 1 loops, each of which
is totally visible, if and only ing has g+1 loops,
each of which is non-singular.

To prove this theorem, we need the concept of contact
order of a tangent line touching the surface [6, 17]. Intu-
itively, a line touches surface with order n if, under slight
perturbation, it will possibly intersect the surface at n but
no more distinct points.

Proof:

(=). G¥ with g + 1 loops is projected onto S¥ with
g + 1 loops, each of which must be free of singularity, be-
cause both cusp and T-junction singularities imply occlu-
sion of G¥ (see Section 2).

(«). G¥ can not have fewer than g + 1 loops. On the
other hand, if it has more than g+-1 loops, then 2 loops must
project onto the same loop on Sg, which is the singular
case of a degenerate T-junction. So G¥ has exactly g + 1
loops.



Figure 1. Local Vision Events under orthographic projection. Row I shows a lip event at a parabolic point
of elliptic type. The left and middle images are before and after the vision event. The right image is a closeup silhouette
corresponding to the middle image. Row 2&3 show a beak-to-beak event at a parabolic point of hyperbolic type. Row
4&5 show a swallow-tail event at a flecnodal point. From left to right, each of these four rows shows images before, at
and after the vision event respectively.
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Figure 2. Multi-Local Vision Events under orthographic projection. From left to right, Each row shows
images before, at and after the vision event respectively. Row 1&2 show a bi-tangent cross event. Row 3&4 show a
cusp-cross event. Row 5&6 show a triple-point event. The arrow on the middle image of the last row shows where the
triple-point event occurs.

Second, gg must be totally visible. If not, with p and the visual ray will have 3-order contact
there, i.e. it is an asymptotic direction. Therefore,

1. either there would be a non-local occlusion of gg. In there must be a cusp on the silhouette at p, a contra-

this case, Sg would have a T-junction, a contradiction.

diction.

2. or there would be a local occlusion of QSY - At this lo- So there is a contradiction in both cases, and the theorem is
cal point, say p, a visible silhouette generator segment proved. B
and an invisible silhouette generator segment meet.
The visible segment has normal 2-order contact with By Theorems 1 and 2, a straightforward way to find a
the surface. The invisible segment locally has normal valid 2P M for a genus-g compact surface is to enumer-
2-order contact. However it will pierce the surface ate all the possible topologies of its silhouette under all
at an extra point since it is invisible. Approaching p orthographic viewing directions, and to see whether there

along the invisible segment, this extra point merges is one that satisfies the condition in Theorem 2. This is



exactly the information contained in vision events and as-
pect graphs. Methods to compute aspect graphs of different
kinds of surfaces, from polyhedral and quadric surfaces, to
surfaces of revolution and general implicit surfaces, have
been presented [8, 9, 10, 18, 21]. One result of this paper
is a method to compute aspect graphs of freeform compact
NURBS surfaces under orthographic projection. However,
since we are using aspect graphs to solve the mold separa-
bility problem, we do not have to compute triple-points and
cusp-crossings. This is because cusps or T-junctions exist
both before and after the events. So, by Theorems 1 and
2, the validity of the 2P M does not change. We also only
have to render the transparent silhouette.

4 Aspect Graph of a NURBS Surface

Since vision events occur when the viewing direction
crosses the generating cones of axis cylinder developables,
flecnodal scrolls and limiting bi-tangent developables, it is
necessary to compute the intersection of their generating
cones with the viewing sphere. From the resulting partition
of the viewing sphere, we select a representative point, i.e.
a representative viewing direction, from each region, and
compute the silhouette corresponding to that viewing di-
rection. If the silhouette is free from singularities, and has
g + 1 loops (for a surface of genus g), then we are sure that
all the viewing directions in that region are valid separating
directions of the 2-piece mold.

Now, we give all the algorithms to solve the 2-piece
mold separability problem.

Note, algorithms are given only to compute the fea-
tured curves on surface; one must evaluate asymptotic di-
rections to get the axis cylinder developable and the flecn-
odal scroll.

4.1 Computation of the Axis Cylinder Devel-
opable

A parabolic curve( [7]) is the locus of zero Gaussian
curvature points on the surface. In [11], a method that com-
bines symbolic computation of the Gaussian curvature field
of NURBs surfaces and numeric extraction of the parabolic
lines as its zeros, is presented, via subdivision. Bezier sur-
faces are treated in [20] using a similar approach.

The parabolic curves separate separates an elliptic re-
gion (K > 0) from a hyperbolic region () < 0). The
Gaussian curvature equals [7]

L]
K=
1F]]

where F' and L are the matrices of the first and second
fundamental forms [7] respectively. Since the zeros of K

equates with the zeros of ||L|| for regular surfaces, the set
of parabolic points, P, of surface S(u, v) can be computed
as,

P ={(u,v) | 0= (Suun)(Sww 1) = (Suv-n)*},
4.1
where n = n(u, v) is the unit normal field of S.

The unit normal field n(u,v) is not rational for the
given parametrization, even for a rational surface S, due
to its normalization factor. However, ||L|| is rational due
to the fact that it contains terms with only the square of
the normalization factor. Because we seek only the zeros
of || L||, we can substitute 72(u, v) = S, x S, for n(u,v).
And as the surface is assumed to be regular, the zeros of
[|L||, using 7i(u, v), are identical to the zeros of ||L||.

The zeros of the rational modification of con-
straint (4.1), using 7(u,v), can be computed using the
equation solver presented in [12]. This solver employs the
subdivision and convex hull containment of the NURBS
representation and combines it with multivariate Newton
Raphson improvement steps. See [12] for more.

Having 2 degrees of freedom, u and v, and 1 con-
straint, ||L||, P is a univariate curve in the parametric do-
main of 9, in general (see Algorithm 1).

4.2 Computation of the Flecnodal Scroll

The flecnodal curve is the locus of inflection points of
either family of asymptotic curves. At a flecnodal point, the
asymptotic ray has contact of order 4 with the surface [6,
17].

At any surface point p, a local (typically not orthogo-
nal) coordinate system for 3D space is (Sy, Sy, p), where
Tp = Sy X Sy. (Su,Sy) is a coordinate system for the
tangent plane at p.

Note all the derivatives are evaluated at surface point p
through this section.

Suppose aS,, + bS, is an asymptotic direction of 4-
order contact with the surface. Then, by order 3 contact,

(a®Suu + 2abSyy + b2Syy) - 7, = 0, 4.2)
and by order 4 contact,
(03 S +30%bS i +3ab? S +03Sp) Ty = 0. (4.3)

Equation (4.2) simply means that the second funda-
mental form is O for an asymptotic direction (order-3 con-
tact). Equation (4.3) can be understood as follow.

Define a function F as

F:S— R, F(z) = (x—p)- Tp,
for any point = on surface S.

If there is a order-4 contact at surface point p along

direction aS,, + bS,, then the third directional derivative



of F should be 0 at p, which immediately gives Equation
(4.3).(Of course, the second derivative should also be 0,
which gives Equation (4.2), exactly as second fundamental
form does).

Finally,

a?+b%=1. (4.4)

Note that this equation is not the condition for a unit
vector because (S, Sy) is not necessarily an orthonormal
basis. Instead, it just lets us pick one unique vector from
each direction.

Putting Equations (4.2), (4.3) and (4.4) together, we
have 4 variables (parameter u and v, tangent direction vari-
ables a and b) and 3 equations, so the solution should be
one dimension set, i.e., a curve on the surface (see Algo-
rithm 2).

Again we use the constraint solver, presented at [12],
to find the solution. This technique is applicable because all
the above 3 equations are the sum, product, and derivative
of NURBS, and therefore F; are also NURBS [11].

4.3 Computation of the Bi-tangent Developable

Given a C! continuous parametric surface S, surface
points S(u, v) and S(s, t) are bi-tangent points if :

0 = (A(w0),S(wv)—S(s,), @5
_ 0S5(s,t)
0 = <n(u,v)7 95 >, 4.6)
. 0S5(s,t)
O - <n(ua U)7 at > ) (47)
where 7(u,v) = —8551;7”) X 8%1;’”)

Constraint (4.5) ensures that the normal at (u,v) is
orthogonal to the line segment connecting S(u,v) and
S(s,t). Constraints (4.6) and (4.7) guarantee that the two
normals at (u, v) and at (s, ¢) are indeed in the exact same
direction.

Once again, we employ the constraints solver of [12]
to solve Equations (4.5) to (4.7).

Having 4 degrees of freedom, u, v, s and ¢, and 3 con-
straints, F;(u, v, s,t), i = 1,2, 3, the solution B is a uni-
variate over S, in general (see Algorithm 3). Here, each
solution is a pair of points, and defines a bi-tangent line in
space from S(u,v) or S(s,t). A developable sheet could
then be easily constructed by connecting these correspond-
ing bi-tangent points for all the solution set of 5.

4.4 Partitioning the Viewing Sphere Via Image
Dilation

After computing all the intersections between .#’? and
the various generating cones corresponding to axis cylin-

der developables, flecnodal scrolls and bi-tangent devel-
opables, it is necessary to find a representative point in each
partitioned region on .72,

Our algorithm uses image dilation [14], and is imple-
mented in open GL. It is robust and efficient.

First, the intersection curves and their antipodals are
centrally projected onto left, back and top faces of a cube
that bounds the unit sphere. Note the right, front, and bot-
tom faces would yield similar antipodal regions to the first
three faces and hence are ignored. The intersection curves
are rendered into 3 binary images. Dilation is then used 3
times to find, for each region of pixel value 0 (background),
the central point, which is then centrally projected back
onto .72,

The first dilation is applied to the binary image to
achieve the effect of shrinking the boundary foreground
curves inward to find the representative points, i.e., P in Al-
gorithm 4. The second dilation is applied to the binary im-
age of reversed polarity (i.e., regarding background points
as foreground points, and vice versa.) to partition P into
equivalent classes, i.e., P in Algorithm 4. Two points are
equivalent if they are 4-connected, i.e. reachable to each
other via dilation using the cross kernel from equation 4.8.
The third dilation is applied to each equivalent class of
points to find the heuristically optimal point, which has
the maximal distance to the surrounding foreground curve.
(see Algorithm 4).

All dilations use the same cross kernel,

0
1
0

— =

0
11, (4.8)
0

i.e., each foreground pixel is expanded to its 4-
neighbors.

Because central projection of .#2 onto the bounding
cube is used to generate the bitmap, an extra boundary
curve for each cube’s face image is introduced. Therefore,
for those regions spanning across the boundary of a face
under the central projection, more than one representative
point will be returned by our algorithms. However, this
causes no harm beyond a slight computational overhead.

S Examples

We give two examples. See Figure 3 and Figure 4.

For each example, we show its NURBS model, its par-
titioned viewing sphere, and its representative viewing di-
rections and their corresponding silhouettes.

For the first example model, there are four representa-
tive non-singular silhouettes and correspondingly four rep-
resentative viewing directions, from each of which there is
a valid 2P M.



Algorithm 1 Compute Parabolic Curves

Input:
S(u,v), a C® surface to compute its parabolic set.
Qutput:
P, the set of parabolic points of S.
Begin
||L|| <= Determinant of second fundamental form
of S using unnormalized normal field of S
P <= Zeros of || L||;
End

Algorithm 2 Compute Flecnodal Curves

Input:
S(u,v), a C®) surface to compute flecnodal curves.
Qutput:
B, the set of flecnodal scrolls of S.
Begin
Fi(u,v,a,b) < (a®Syy + 2abSyy + b%Syy) - Tip;
Fo(u,v,a,b) <
(a®Suuu + 3a%bSuup + 3ab?Syve + b3 Spuw) - Tip;
Fz(u,v,a,b) < a? +b* — 1;

End

Algorithm 3 Compute Bi-tangent Curves

Input:
S(u,v), a C* surface to compute bi-tangent curves.
Output:
B, the set of bi-tangent sheets of S.
Begin
ﬁ = u v
fl(u,’U, 57t) ~ <ﬁ7 S(ua U) - S(Svt» ;
Folu,v,s,t) < (7, % ;

— 0S(s,t .
Fs(u,v,s,t) < n,% :

05 (u,v) % 95 (u,v) .
2] 2] )

B < Simultaneous solution of { F;(u,v, s,t) = 0}?21 ;
End

B < Simultaneous solution of { F;(u, v, a,b) = 0}?:1 ;

Thus, for this model, any viewing direction from the
same region as any one of these four directions is a valid
separating direction for a 2P M.

Note, there are actually only two topologically dis-
tinct valid viewing directions. We have two extra since we
project the sphere surface onto three faces of the bound-
ing cube, but we apply dilation to them separately as if the
three faces are disconnected.

For the second example model, there is only one repre-
sentative non-singular silhouette, and correspondingly only
one representative viewing direction, from which there is a
valid 2P M. Any viewing direction from the same region
as this direction is also a valid separating direction for a

2P M.

6 Computing the Partition Line

Let V be a selected unit vector viewing direction from
which a regular C'®) surface S(u, v) should be split, to cre-
ate a proper 2P M mold. The silhouette extraction problem

Algorithm 4 Partition the View Sphere

Input:
C, a set of curves and their antipodal curves on 2.
Output:
V), a set of points, one for each region on .#>
partitioned by C and cube edges projected onto ..
Begin
{I;}3_, < bitmaps rendered by central projection
of C onto left, back and top faces of the cube;
V< 0
Foreach I;, i = 1,2, 3, Do
P <= 0;
Repeat
Do dilation;
If background point p, has filled 4-neighbors
P<=PU{pk
Until no more background points;
Fartition P into set of 4-connected point sets P,
Foreach P’ in P, Do
Foreach p in P/, Do
Set p as a foreground point;
Expand p to the foreground boundary;
If p has max dist to the boundary so far,
v « projecting p back onto />
Od
V<V {v,—-v}h
Od
Od
End
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Figure 3. Mold Accessibility Example One. Shown on top left is a NURBS model. Top right shows both the
intersecting curves of the various generating cones with the viewing sphere, and the representative viewing directions of
the partitioned regions. The curve corresponding to a parabolic developable is in cyan, to a bi-tangent developable in
magenta, and to a flecnodal scroll in yellow. The representative viewing directions are represented as pairs of antipodal
small spheres embedded on the transparent viewing sphere. Silhouettes viewed from all these directions are shown next.
There are four representative non-singular silhouettes, shown inside boxes with green color, and correspondingly four
representative viewing directions (shown in green), from each of which there is a valid 2P M. (One of them is difficult
to see, since it is almost parallel to the view direction used to render this image.) Note, there are actually only two
topologically distinct valid viewing directions. We have two extra since we project the sphere surface onto three faces
of the bounding cube, but we apply dilation to them separately as if the three faces are disconnected.
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Figure 4. Mold Accessibility Example Two. Shown top left is a NURBS model. The top right shows both the
intersecting curves of the various generating cones with the viewing sphere, and the representative viewing directions
of the partitioned regions. The curve corresponding to a parabolic developable is cyan, to a bi-tangent developable is
magenta, and to a flecnodal scroll is yellow. The representative viewing directions are represented as small spheres on
the opaque viewing sphere. Silhouettes viewed from all these directions are shown next. There is one representative
non-singular silhouette, shown inside a box with green color, and correspondingly one representative viewing direction,
colored green, from which there is a valid 2P M.

can be reduced to the following algebraic constraint:

oS 08
S <8U X 8 ,V>—<n(u,v),V>—O,

where n(u, v) is the unnormalized normal field of S(u, v).

However, in many practical cases, a proper mold
should present no vertical walls. That is, the design of
the mold should allow no surface regions where the sur-
face normals are (almost) orthogonal to V. Such vertical

surface regions greatly increase the difficulty in extracting
the manufactured part out of the mold and hence should
be eliminated. Mathematically speaking, we seek to elimi-
nate all regions, R, in the surface, with normals having an
angular deviation from V' of almost 90 degrees:

R = {(uo,v0) | (M(uo,v0),V) < cos(a)},

where 7@ is the normalized normal field of S and « is the
permissible angular deviation from the normal.



The boundary of region R is prescribed by an iso-
cline or isophotes, defined in [15] as the locus of points
on S(u,v) that presents a normal with a constant inclina-
tion angle with respect to a prescribed vector V', such as a
light source direction. An isocline is typically a curve. The
isocline’s constraint could be formulated as

T : (m(u,v),V) = cos(a),

which is not rational for the given parametrization. Hence,
we square the expression to yield,

7 : (n(u,v), V)? = cos?() (n(u,v), n(u,v)). (6.1)

Equation (6.1) extracts, due to the squaring operation,
both front facing and back facing isoclines. In other words,
we extact all surface points with normals with either a 90 —
a or a 90 + « degree angular deviation from V.

Figure 5 (a) shows the isoclines extracted for a surface
in the shape of a wine glass, at 90+ 10 degrees inclinations.
In (b), the regions near the silhouette, between 90 — 10 and
90 + 10, are trimmed away and the result is irepresented as
a trimmed surface.

The trimming of the regions with normals that are
almost vertical leaves gaps in the geometry (See Fig-
ure 5 (b)). We should fill these gaps with the maximally
valid mold-extraction slope as prescribed by «. This rul-
ing extension is conducted in pairs from both 90 — o and
90 + «, toward the local silhouette (at 90) and further
clipped against each other. Figure 5 (c) shows the result
of this ruling extension for the wine glass.

To summarize, we end up with a modified model that
is better suited as a mold with no vertical walls and maxi-
mal slopes of 90 £ « degrees. Figure 5 (d) and (e) shows
two shaded examples of the wine glass from Figure 5 (a)
and of the handle of the Utah teapot model, after apply-
ing the presented isoclines’ clipping and ruling extension
processes.

7 Conclusion

In this paper, we have presented a complete solution to
the 2-piece mold separability problem for a model bounded
by C®) surfaces represented as NURBS and a set of al-
gorithms for computing the aspect graph of such a model.
Clearly, the presented solution is not limited to NURBS
surfaces and any representation that supports the differen-
tial analysis conducted in this work might be equally em-
ployed. In addition we show how to compute and deal with
surfaces having almost vertical parts.

The solution to the 2-piece mold separability problem
is based on the aspect graph. All algorithms have been im-
plemented and results are demonstrated by several exam-
ples in this paper. Our solution requires that the boundary

be C® only because that condition is necessary to com-
pute continuous flecnodal curves.

Extensions to this work include the support of mod-
els bounded by surfaces which are only piecewise smooth,
handling the surfaces one at a time and processing the
boundaries between surfaces as special cases. The treat-
ment of planar facets (polyhedral models) might be of in-
terest as well, being a simple yet common case.

It takes a few minutes to achieve the results presented
in this work on a Pentium 4 machine, but it is expected
to take much more time for any practical models. Hence,
methods to optimize the extract of all the feature curves
must be sought along with robust methods to automatically
detect singularity in the silhouettes.
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