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ABSTRACT

The study and understanding of molecules, once the domain
of blackboards and stick-and-ball models, has become more and
more exclusively linked to the use of computer-aided visualiza-
tions. Our project seeks to return the physical facsimile to the bi-
ologists, allowing the use of tactile senses while interacting with
and manipulating a physical model, thus aiding educational and
research endeavors. To increase the effectiveness of such a tool,
the model is constructed such that multiple levels of information
are viewable within the single physical form, stressing the inter-
action between the assorted components within the molecule. We
use the term 3-D physical visualizations to refer to the fabricated
model, to avoid confusion with the common usage of model as a
virtual representation on the computer.

To effectively combine multiple components into a smooth
manufacturable physical visualization, all components of the
model must be in a homogeneous format. Our research sets forth
a method for converting triangulated mesh data, as provided by
the molecular modeling packages, into spline models. Spline
models have the attractive qualities that they are smooth without
triangular facets, can be combined using traditional boolean op-
erations (and, or, not), and can be directly fabricated using mod-
ern CAD/CAM techniques. Our method divides the polyhedral
representation into multiple rectangular grids, then fits interpo-
latory spline surfaces to the data in each region, while focusing

Figure 1. A physical representation of a protein subunit of a hemoglobin.

The model, fabricated using the developed system, shows a peptide chain

colored based amino acids snaking through a clear plastic representing

the associated molecular surface.

on smoothly stitching the boundaries and corners of the spline
surfaces in order to create a near G1 continuous model.
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Figure 2. Illustration of the conversion pipeline of a molecular triangular mesh into a spline model. The system consists of the following steps: (a) the

input triangular mesh has connectivity equivalent to the nth subdivision level of an icosahedron, (b) the data is segmented into 10 rectangular data grids,

(c) tangents are fit across adjacent boundaries of each grid, (d) tangents and twists are computed to smoothly stitch each corner region, and (e) complete

spline interpolation creates spline surfaces from the collected data. (f) Boolean operations combine two spline models to form a solid model during the

fabrication process.

INTRODUCTION
The historic stick-and-ball molecular model was advanta-

geous because it enabled scientists to use multiple senses to un-
derstand and reason about their data. Unfortunately, these phys-
ical models have become inadequate given the complexity of
modern structural biology, where multiple layers of information
are embedded within the molecular structure. Our work seeks
to address these concerns by combining multiple elements into a
single realizable physical model. We will henceforth term such a
model a 3-D physical visualization, reserving the term model to
refer to a virtual computer model.

Computer graphics and immersive environments have be-
come the standard method for investigating and visualizing
molecules. Recently structural molecular biologists have collab-
orated with computer scientists to manufacture interesting phys-
ical visualizations. Unlike virtual models, these concrete con-
structions allow the added understanding given by sensory and
tactile feedback, as well as a better understanding of the 3D rela-
tionships between molecules.

The concept of the 3D physical visualization is shown in
Figure 1. Here, two elements are incorporated within the con-
structed molecule; the molecule’s backbone and the associated
molecular surface. The protein backbone protrudes from the
molecular surface in multiple locations (based on the degree of
the spherical harmonic used to approximate the molecular sur-
face), thus becoming part of the defining surface of the molecule.
Both the backbone and the surface geometry are necessary to
the understanding of the molecules’ function. Consequently, we
seek to combine these two elements in the fabrication in a manner
that facilitates scientists’ understanding of the molecular func-
tion.

The backbone and molecular surface are represented in het-
erogeneous formats. The molecular surface is stored as a trian-

gular mesh, produced by the sampling methods of the molecular
visualization system [1] [2] [3]. The protein strand is represented
as a spline model, formed by a circular tube swept through the
center of the key defining atoms. While computer visualizations
can combine disparate data sets, manufacturability is improved
by higher level representations such as spline surfaces.

In this paper, we define a system that converts a triangu-
lar molecular mesh into a spline model. The methods maintain
an accurate representation of the original data by constraining
the spline model to interpolate the vertices of the input trian-
gular mesh. The new model has two main advantages over the
mesh representation. First, the continuity of the splines more
accurately captures the smooth flow of the molecular surface, re-
moving the planar artifacts inherent in triangular representations.
Second, splines are conducive to performing the boolean oper-
ations which are needed to combine the surface and backbone
elements in modern CAD systems. These operations form solid
models from two components, from which a split away mold is
created by dividing the model into two halves.

For example, the Stratasys Fused Deposition Modeling
Rapid Prototyping Machine is used to construct a physical form
from a solid model of a molecular surface combined with its as-
sociated protruding protein strand. A flexible split away mold is
created from the physical visualization. Meanwhile, the protein
backbone is separately produced in opaque plastics using the Z-
corp 3D color printer. By placing the realized backbone in the
mold and injecting a clear plastic, a 3D physical visualization
of the hemoglobin, the constructed protein strand and molecular
surface shown in Figure 1, is achieved.

Our algorithm creates a near G1 continuous model by de-
composing the input mesh into ten spline surfaces, as seen in
Figure 2. The splines are defined to maintain C2 continuity over
the interior points of each spline surface. The boundaries and
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corners require special considerations to ensure smoothness. The
key to our algorithm is its ability to minimize the ridges along
these boundaries, thus generating smooth spline models, while
utilizing conventional complete spline interpolation techniques
to fit the surface data.

System Overview
Figure 2 illustrates the pipeline developed for the conver-

sion process. The pipeline input is a triangular mesh that is topo-
logically equivalent to an icosahedron. The mesh’s connectiv-
ity is the byproduct of sampling techniques used to obtain some
molecular data, including the models that motivate this work.
The triangles of the input mesh are mapped to the 20 faces of
an icosahedron.

The system unrolls and pairs the 20 faces of the icosahe-
dron, forming 10 rectangles that define the data grid for each bi-
cubic surface. Each rectangular data grid is extracted by walk-
ing the vertices of the triangles within the paired faces. Next,
cross-boundary tangents are estimated across all edges of adja-
cent grids. The system then computes a configuration of cross-
boundary tangents and twists for each corner, where either 3 or
5 surfaces meet, to minimize G1 discontinuities. Conventional
complete spline interpolation methods create the final spline sur-
faces from the collected data grids and tangential boundary vec-
tors.

The remainder of the paper is organized as follows. The
previous work section summarizes similar efforts in surface sub-
division, spline fitting, and corner stitching. The implementation
section further describes the details, methods, and motivations
of the pipeline highlighted by this section. Analysis of the con-
version process results and the mathematical properties of the
corner configuration is presented in the case studies section. The
last section provides concluding remarks, reporting the results of
the conversion process, as well as stressing the importance of the
issues addressed by this work.

PREVIOUS WORK
Many research topics exert efforts in solving mesh smooth-

ing to better define a model. The most popular techniques uti-
lize subdivision surfaces. Catmull-Clark [4], Doo-Sabin [5], and
Loop [6] schemes each develop refinement methods to recur-
sively define new smoother meshes. Stencils weight existing
information in order to compute the locations of new vertices,
edges and faces. Subdivision schemes produce smooth surfaces,
which, in their limit are equivalent to a spline surface of a given
degree. These refined meshes add smooth detail between the
known data; however, they fail to interpolate the original ver-
tices as each recursive step shrinks the model. Thus, such an
implementation will not maintain an accurate representation of
the input molecular data.

Algorithms designed to fit surfaces to point cloud data sets
address similar smoothing and data interpolation considerations.
Xie et al. [7] create C1 models by growing a surface over the
data set. The prioritized expansion fits quadrics to the local data
points along the frontier of the growing surface, further adding to
the known surface. The recent efforts of Cheng et al. [8] present
an iterative method to fit a Loop subdivision surface to an un-
organized point cloud. The defined surface converges toward
the original data by optimizing a defined square distance mini-
mization method. Similarly Hoppe et al. [9] fit Loop subdivi-
sion surfaces to scattered data, focusing on constructing smooth
piecewise surfaces. Hoppe also presents modifications to Loop’s
subdivision rules in order to model sharp features. The quadric
surfaces and triangular meshes closely approximate the input
data without the model volume reduction of subdivision surfaces.
However, these methods do not provide the means to combine,
within the model, distinct sets of molecular data.

Alternatively, multiple non-uniform B-spline surfaces
(NURBS) may be used to define complex models. The surfaces
are stitched together in order to match the tangential proper-
ties across shared boundaries. Geometric modeling texts, such
as [10], describe interpolation techniques that leverage tangen-
tial information while defining spline surfaces. NURBS may be
computed such that they exactly interpolate a set of data and pro-
duce seamless models.

Some efforts recognize these advantages and focus on defin-
ing splines to model input data. Krishnamurthy and Levoy [11]
describe an interactive algorithm, allowing a user to paint the
boundaries for spline surfaces on the input mesh. They fit the
splines to the user-partitioned data with a least square approx-
imation to a grid of re-sampled data. While this method rep-
resents a model with spline surfaces, exact interpolation is not
guaranteed, and inter-surface continuity is not considered. Addi-
tionally, leveraging the inherent nature of our input data, we are
able to remove the time intensive requirement of user interactiv-
ity by automating data segmentation.

Other techniques also create spline models. Grimm et al.
[12] produce manifold surfaces of medical data by leveraging a
user produced generator polyhedron. The user input aids in the
calculation of multiple spline surfaces that are fit to the original
data. This work handles inter-surface continuity by overlapping
boundaries. Loop [13] fits a G1 continuous surface of an irregular
mesh by utilizing quad-nets to generate smooth spline surfaces.
These methods produce numerous spline surfaces to model the
original data. In order to avoid heavy computations with boolean
operations to form the solid models, our approach limits the num-
ber of spline surfaces used to describe the model.

In a related work, Livingston [14] explores inter-surface
continuity when stitching the regions where three spline surfaces
meet. His work modifies the location of the corner point to pro-
duce smoother results. Our problem prohibits the freedom to
move the corner point, requiring that the end model interpolates
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the original data set.

We define a method to best approximate the information
needed to compute complete spline interpolation [10]. The
system creates interpolatory spline surfaces, thus maintaining
the original data while creating homogeneous working environ-
ments. Additionally, the algorithm described focuses on pro-
ducing near G1 inter-surface continuity, smoothly stitching the
boundary across adjacent spline surfaces.

IMPLEMENTATION
Molecular models are smooth by nature without ridge lines

or creases on their surface. When converting a triangular mesh
into a parametric spline model, obtaining this smoothness across
adjacent spline surfaces may become a major challenge. It is
impossible to specify equivalent cross-boundary tangents, with-
out introducing a singularity on one of the surfaces, at a corner
formed by an odd number of spline surfaces. The following sec-
tion describes the pipeline in Figure 2, explaining our method
to stitch adjacent surfaces where this challenge is an issue. The
system limits potential G1 discontinuities to corner regions and
employs a novel technique to minimize such ridges.

The system requires the input triangular mesh to have a
known connectivity. This assumption allows our methods to fo-
cus on achieving inter-surface continuity instead of the tangen-
tial challenge of data segmentation. The connectivity of the input
data is dictated by the sampling techniques of the molecular vi-
sualization system used to generate the molecular meshes that
motivate our work.

In particular, the molecular data is sampled and represented
as a mesh with connectivity equivalent to the nth subdivision
level of an icosahedron [15]. The mesh’s triangles are recur-
sively grouped forming parent triangles, until all the triangles
are mapped to the original 20 faces of an icosahedron. These 20
triangles are paired forming 10 rectangles, as shown in Figure
2, such that no T-junctions occur on the on the boundary edges
and every triangle is paired once and only once. After the data is
segmented, the mesh’s vertices are marched, extracting the rows
and columns for each of the 10 rectangular data grids.

Non-uniform open cubic B-spline surfaces can be computed
to interpolate these data grids using complete spline interpola-
tion [10]. Interpolation techniques require that each data point
is assigned a parameter value

�����
ui � v j ��� pi j � � , and that cross-

boundary tangents are provided specifying the boundary condi-
tions. In our molecular model, each data point is sampled at
a regular interval, making the parameter assignment simply the
data points’ row and column within the grid. The remainder of
this section details a method to compute tangents, assigning the
boundary conditions for the data grids, to ensure inter-surface
smoothness between adjacent spline surfaces.

Figure 3. The points used to fit quadratic polynomials and evaluate

cross-boundary tangents along shared boundaries.

Cross-Boundary Tangents
Frequently, complete spline interpolation is performed to

create isolated spline surfaces. In this case, the boundary con-
ditions are defined by fitting a quadratic curves to the first three
data points of each column and row, computing incoming tan-
gents. Similarly, the final three data points are fit to obtain out-
going tangents. Complete spline interpolation returns a spline
surface with the computed tangent vectors as its boundary con-
ditions.

In order for two adjacent surface to be continuous, equiva-
lent cross-boundary tangents must be assigned along their shared
edge, matching corresponding incoming and outgoing tangents.
The system extends the isolated surface approach, for the com-
putation of the cross-boundary tangents. Quadratic polynomials
are fit across the boundary, utilizing information equally from the
two surfaces. As shown in Figure 3, the tangent is evaluated at
the shared point, then this vector is assigned to both surfaces for
their corresponding row or column.

The fit considers three points,
�

p � 1 � p0 � p1 � . Point p � 1 is
an interior point of the first data grid, displaced by one location
from the shared point. Point p0 is the shared boundary point at
which the tangent is evaluated. Point p1 belongs to the second
data grid and is an interior point also displaced by one location
from the p0. Parameter values,

�
u � 1 � u0 � u1 � , are assigned to the

3 points in the same manner as they had been assigned to the
data grids, explained previously. The curve’s tangent, c � � t �	�
2a2t 
 a1t, is evaluated at t � u1, where, a2 �

p2 � p0
u1 � u � 1

� p1 � p0
u0 � u � 1

u1 � u0
,

and a1 � p1 � p0
u0 � u � 1 � a2

�
u0 
 u � 1 � .

It is important to allow each surface equal influence on the
cross-boundary tangent, as arbitrary tangents, or tangents eval-
uated based only on one side of the data grid, may inject un-
dulations on the two surfaces. By fitting the curve across the
boundary, the neighborhood of the point, p0, is considered from
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Figure 4. Illustration of the corner tangent and twist computation pipeline. (a) The neighborhood is extracted, (b) weighted least squares fits a cubic

surface to the points and tangent vectors are computed on the surface along each boundary, (c) twists are computed by enforcing constraints that create

the illustrated regularity about the corner.

either side. Quadratic polynomials require a minimum of 3 data
points, thus each involved data grid is given equal influence over
the direction of the tangent. Consequently the method produces
tangents that minimizes undulations within the resultant surfaces.

Corner Tangents and Twists
Defining cross-boundary tangents in this manner is capa-

ble of handling all points along the boundaries, save the corner
points. It is impossible to specify the cross-boundary tangents
at corners formed by an odd number of spline surfaces such that
the boundaries are C1 without producing a singularity on one of
the surfaces [14]. As a result, an algorithm is, at best, capable of
achieving a near G1 continuous stitching around such corners.

The data segmentation technique described earlier produces
two corner scenarios victim of this condition. The rectangular
grids form corners where either 3 or 5 spline surfaces will meet
at a common point. This subsection outlines a technique to com-
pute a configuration of tangents and twists for each spline sur-
face surrounding the corner that minimizes resulting creases, or

G1 discontinuities. The twist is defined as ∂2σ
∂u∂v where u and v are

defined along the boundaries for the surface. While the following
discussion applies the algorithm only in the context of the 3 sur-
face corner, the technique is scalable to any number of meeting
surfaces. In fact, it must be scaled to the 5 surface corner case in
order to complete the conversion process.

The system analyzes the properties of a cubic surface, fit to
the corner region, in order to estimate tangent and twist values
that will smoothly stitch the boundaries. First the neighborhood
of the corner is extracted, as shown in Figure 4a. After assign-
ing parameter values and weights to this double ring of neighbor
points, a weighted least square cubic surface is fit to the region.
The surface’s equation is defined within

�
u � v � parameter space

as,

σ � a00 
 a10u 
 a01v 
 a20u2 
 a11uv 
 a02v2


 a30u3 
 a21u2v 
 a12uv2 
 a03v3 �
(1)
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The partial derivatives, ∂σ
∂u and ∂σ

∂v evaluated at σ
�
0 � 0 � , span

the tangent plane located at the origin. The tangent vectors are
computed in the direction of each boundary edge by multiplying
the parameter values for the corresponding boundary point with
the computed partial derivatives.

tangenti
�
ui � vi � � ∂σ

∂u
ui 
 ∂σ

∂v
vi (2)

The system evaluates the control points along each boundary
equal to one-third the length of the corresponding tangent value.
The variables, a,b,c,d, and e, are computed corresponding to the
control points locations on the tangent plane, as shown in Figure
4. The diagram in Figure 4 illustrates the

�
u � v � coordinates of

each control point on the tangent plane, as well as the variables,
j,k, and l, which are scalar values that control the distance along
the boundary tangent of the corresponding tangent control point.

After the control points for the tangent values have been
computed, the control points responsible for the corner’s twists,
∂2σ
∂u∂v , are evaluated for each spline surface. Figure 4d depicts
the regularity conditions enforced on the twists’ locations. The
midpoint between each pair of twist control points is the tangent
control point for the boundary between them. Additionally, each
twist control point lies on the line defined by the tangent vector
opposite it. Further explanation of the mathematical benefits of
this configuration is explained later. The constraints allow the
variables illustrated in Figure 4d to be defined in terms of j as
follows:

k � jad
be � cd � (3)

l � jab
cd � be � (4)

�
x1 � y1 � � � 2 jabd

be � cd � 2 jabe
be � cd � � (5)

�
x2 � y2 � � �

0 � � 2 ja � � (6)

�
x3 � y3 � � � 2 jabd

cd � be �
2 jacd

cd � be � � (7)

Figure 5. A comparison of the input triangular mesh with the converted

smooth spline model. The highlighted regions indicate boundaries with

potential non-smooth features.

where, j is set such that j � k � l � � 1 � 0, and max
�
j � k � l � � 1 � 0.

After computing the desired locations of the co-planar tan-
gent and twist control points around a corner, the system converts
these values to tangent and twist vectors for each surface. Refer-
ring to Figure 4d, tangent and twist values for each surface are
computed as follows:

tangenti � 3
�
cpi � cp0 � � (8)

twisti � 9
�
cpi � 1 
 cpi � 1 � cpi � cp0 � � (9)

This final portion of the algorithm produces the remaining
components required for complete spline interpolation. By com-
positing each computed surface, the original molecule is recon-
structed as a smoother model, as illustrated in Figure 5. The
following section quantifies the smoothness results, analyzes the
end surface, and provides further understanding of the mathe-
matical details of our corner smoothing technique.

CASE STUDY
The following section analyzes the continuity results of two

converted models. The first model is a low curvature molecule,
while the second is dominated by areas of high curvature, partic-
ularly at the corner regions. The configuration of cross-boundary
tangents, by our algorithm, ensures that a majority of the bound-
aries are G1 continuous. Only the regions of the first and last
knot interval for each boundary are not guaranteed to be smooth.

The graphs of Figure 6 plot the angle differences between
normals of shared points along each boundary on their respected
models. Two spline surfaces stitch together with G1 continuity
where their boundary plot is equal to 0. The immediate impres-
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Figure 6. The angles between normals at shared points along each

boundary on (a) the lower curvature model and (b) the high curvature

model.

sion of the graphs is that the only region of differences, as stated
earlier, is within the first and last knot intervals, the highlighted
regions from Figure 5. The graphs also indicate that the first
model experiences better results than the second model.

The lower curvature molecule, Figure 6(a), endures a worst
case angle difference of 1 � 74 � . This same boundary on the orig-
inal mesh has a 7 � 6 � angle between the triangle normals. The
conversion system produces a smoother model, that, in its worst
case, has smaller G1 discontinuities than the original representa-
tion. Additionally, approximately 92% of the model’s boundary
regions are G1 continuous, and 99% are within 1 � of G1 conti-
nuity. Therefore, the ridges created by the stitching process are
confined to a very small portion of the overall boundary space,
and of those discontinuities, an even smaller portion has a no-
ticeable impact.

The second model with higher curvature experiences similar
success, however, with a higher worst case. The 4 � 48 � angle
difference corresponds to a 12 � 4 � angle difference between the
triangles on the original mesh. The converted spline model is
91% G1 continuous and 98% within 1 � of G1 continuity along its
boundaries. While the worst case is larger than the first model,
the conversion records similar percentages of smoothness. The
second model converts well around most corners, and only a few
boundaries, 14 of 50, as indicated by Figure 6, have differences
greater than 1 � .

Figure 7. The naming scheme of L
�
u � , R

�
u � , and γ � � u � , used to further

explain the mathematical underpinnings of the corner stitching configura-

tion.

Corner Analysis

The stitching algorithm enforces a degree of regularity about
a corner region, minimizing G1 discontinuities. However, in re-
gions of higher curvature, practice shows that the size of a ridge
will grow. The following section examines the mathematical un-
derpinnings that explain this phenomenon, as well as motivate
the chosen configuration.

In order to maintain G1 continuity along a boundary between
two surfaces, then γ � � u � � L

�
u � � α

�
γ � � u � � R

�
u ��� . Better written

as,

γ � � u � � �
L
�
u � � R

�
u � � � 0 � (10)

As illustrated in Figure 7, γ � � u � is the curve of first derivatives
along the boundary; L

�
u � is the curve of cross-boundary tangents

for the left surface sharing the boundary; and similarly, R
�
u � is

the curve of cross-boundary tangents for the right surface. Figure
7 also depicts the variable names used for the associated points.
Further defining γ � � u � , L

�
u � , and R

�
u � , for the first knot interval

of the boundary, gives:

γ � � u � � �
c1 � c0 � β0

�
u � 
 �

c2 � c1 � β1
�
u � 
 �

c3 � c2 � β2
�
u ��� (11)
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L
�
u � � R

�
u � � � �

l3 � c3 � �
�
c3 � r3 ��� Θ3

�
u �


 � �
l2 � c2 � �

�
c2 � r2 ��� Θ2

�
u �


 � �
l1 � c1 � �

�
c1 � r1 ��� Θ1

�
u �


 � �
l0 � c0 � �

�
c0 � r0 ��� Θ0

�
u �

� 2
� l0 � r0

2 � c0 � Θ0
�
u �

� 2
�
M � c0 � Θ0

�
u � �

(12)

By substituting back into the original equation,

Θ0
�
u � � �

M � c0 � � �
c1 � c0 � β0

�
u �


 �
M � c0 � � �

c2 � c1 � β1
�
u �


 �
M � c0 � � �

c3 � c2 � β2
�
u ����� 0 �

(13)

In short, this function indicates that in order to produce a G1

continuous stitching of the boundary, the vector
�
M � c0 � must

align with
�
c1 � c0 � , �

c2 � c1 � , and
�
c3 � c2 � . When the vec-

tors of γ � � u � are not co-linear, as in areas of high curvature, it is
impossible, without modifying the data points, to produce a G1

continuous surface across the boundary.
Our approach, instead, minimizes the error by guaranteeing

that
�
M � c0 � aligns with

�
c1 � c0 � . The basis function, β0

�
u � ,

is the largest contributor to the error in G1 continuity over the
first knot interval; therefore, eliminating this term will yield good
results. Because β1

�
u � also has a strong influence over the re-

gion, not all error will be removed, consequently producing small
ridges as seen in the results.

Different tangent configurations around a corner yield dif-
ferent locations for the M point. While the M point is guaranteed
to eliminate the first error term for all boundaries emanating from
the corner, some locations will produce smaller errors from the
second and third terms. Multiple methods to compute different
tangent configurations were implemented, and analyzed. In prac-
tice no one solution guaranteed better performance over another;
however, using the tangent plane of a cubic surface fit to the cor-
ner with a static parameterization most often experienced better
results than other approaches. Using this approach, we recorded
the aforementioned results.

CONCLUSION
The system accurately converts a molecular mesh into a

smooth spline model. Leveraging the newly realized homo-
geneous environment, modeling software toolkits can combine
the protein strand’s spline model with its associated converted
molecular spline surface via boolean operations, Figure 8. After
obtaining a solid model of the molecule, our fabrication process
is able to produce the desired physical visualizations, as shown
in Figure 1.

Two main advantages of our algorithm are accuracy and
smoothness. The converted spline models maintain the origi-

Figure 8. Within the homogeneous environment, the protein spline

model is combined with the converted molecular spline model to produce

the solid model needed for fabrication.

nal data using point interpolation, thus producing the level of
accuracy we desire. Additionally, our stitching methods enforce
inter-surface continuity between the 10 bi-cubic spline surfaces
used to encompass the input mesh. 99% of the boundary space
is within 1 � of G1 continuity, and regions of potential ridges are
confined to the corners of the surfaces, as shown in Figure 5. In
the worst case, the angle between the normals of two surfaces
at a common point is smaller on the new spline model than the
corresponding boundary point on the original mesh. Thus, the
new spline model is an accurate representation of the original
molecular mesh with added smoothness.

FUTURE WORK
Our conversion system ignores the data segmentation prob-

lem in order to tackle the challenges of smoothly stitching multi-
ple spline surfaces. Because our work is motivated by a specific
input data structure, we are able to make assumptions concern-
ing the connectivity of the triangular mesh. Data segmentation
of arbitrary meshes remains an interesting problem, that, when
solved, may be coupled with our algorithms to the convert any
triangular mesh into a smooth spline model.
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