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Abstract. Computing irradiance analytically from polygonal luminaires in
polygonal environments has proven effective for direct lighting applications in
diffuse radiosity environments. Methods for analytic integration have tradition-
ally used edge-based solutions to the irradiance integral; our previous work pre-
sented a vertex-based analytic solution, allowing irradiance to be computed in-
crementally by ray tracing the apparent vertices of the luminaire. In this work
we extend the vertex tracing technique to the analytic computation of irradiance
from a polygonal luminaire in other indirect lighting applications: transmission
through non-refractive transparent polygons, and reflection off perfectly specular
polygons. Furthermore we propose an approximate method for computing trans-
mitted irradiance through refractive polyhedra. The method remains effective in
the presence of blockers.

1 Introduction

Indirect lighting, particularly specular and refractive transfer, is an important part of
realistic rendering, yet continues to be a difficult problem. The literature is replete
with methods for computing caustics and specular effects. For example, Arvo [1] used
ray tracing from the light source to generate caustics. Monte Carlo path tracing and
other stochastic techniques have also been used, but some common drawbacks are cost
and sometimes noise [23]. The theory of catastrophic optics [19] has been applied
to caustics from curved surfaces [33], but research has concentrated mostly on point
or directional light sources. Recent research has often focused on interactive tech-
niques [10]. More recently, Jensen’s photon map technique has been used for a wide
variety of global illumination problems, including specular reflection and caustics from
area sources [15–17].

Our previous work in direct lighting and radiosity reconstruction in diffuse environ-
ments worked by tracing rays through the source vertices and incrementally computing
irradiance [30]. The goal of this paper is to extend this work to include indirect illumi-
nation from perfectly reflective facets and through refractive objects. For the reflective
effects the resulting illumination remains exact, but we employ a heuristic for refraction
and use it to produce plausible caustics. Section 2 contains a brief review of the vertex
tracing approach on which this work is based and extends the work to handle non-
refractive transparent polygons. Section 3 shows how the approach can be extended to
handle reflected irradiance, while Section 4 develops the refraction heuristic. Accelera-
tion and efficiency issues are discussed in Section 5. Results are examined in Section 6
and future work is discussed in Section 7.
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Fig. 1. To apply the vertex-based formula, the source polygonP is projected onto an image plane
parallel to the receiver plane. Occluding polygons are also projected, and the apparent source is
the projected source clipped against the projected occluders. The vertex tracing algorithm allows
for the vertices of the apparent source to be added incrementally without actually projecting any
of the polygons, or clipping the source.

2 Computing Irradiance by Tracing Vertices

We recall that the irradiance from a uniformly emitting surfaceS, which is not self-
occluding as viewed from a pointr on a receiver, can be computed from the surface
integral

I(r) = M

∫
S

cos θ0 cos θ

d2
dS, (1)

whered is the distance fromr to a point onS, θ0 andθ are the angles made by the ray
joining r and the point with the receiver normal atr and the surface normal at the point,
respectively. The constantM is an emission constant ofS [2].

If the surface is a planar polygonP with verticesv1, . . . , vn, the irradiance may be
computed from a formula attributed to Lambert:

I(r) =
M

2π

n∑
i=1

βi cos γi, (2)

whereβi is the angle subtended byvi, vi+1 from r, andγi is the angle between the
plane containingvi, vi+1, andr, and the normal to the receiver atr (e.g.,[6]).

In polygonal environments where the source polygon can be partially occluded,
the irradiance can be computed by integrating over theapparentsource, which is the
source clipped against the scene blocker polygons [7]. Applying Lambert’s formula to
this clipped source results in the exact irradiance, but a drawback is that the summation
is over the edges, and the edges of the apparent source are more difficult to find than
the vertices.

In our previous work [30] we developed a vertex-based analogue of Lambert’s for-
mula, and showed how it can be used to compute irradiance incrementally by tracing
the apparent vertices of the source in the scene. The vertex-based formula is derived by
projecting the polygonP through the receiver pointr onto a localimage plane, which
is the plane parallel to the surface atr and one unit above as shown in Figure 1. In
order for the projected polygon to be a proper bounded polygon on the image plane,



the source must also be clipped against a view frustum [27]. Note this image plane is a
device for computing irradiance atr, and has nothing to do with an “image plane” in a
ray tracing or camera context.

The irradiance is computed by the following formula:

I(r) = M
∑
v∗

i

F (xi, yi,min) − F (xi, yi,mout) (3)

where each projected vertexv∗
i has coordinates(xi, yi) on the image plane, andmin

andmout are the slopes of the incoming and outgoing edges, respectively, on the im-
age plane. Terms where the slope is undefined are omitted from the summation. The
functionF is

F (x, y,m) =
Ax

2
arctan(Ay) +

C(y − mx)
2

arctan [C(x + my)] (4)

where

A =
1√

1 + x2
, C =

1√
1 + m2 + (y − mx)2

. (5)

Equations (3), (4) and (5) provide a formula for the irradiance due to a uniformly emit-
ting polygon in terms of the projected vertices and the local behavior of the incident
edges. The sum may therefore be evaluated in any order and the formula is thus well
suited for an incremental evaluation.

2.1 Vertex Tracing and Angular Spans

The incoming and outgoing edges at each vertex on the image plane can be encapsulated
by anangular span, consisting of a position, two angles, representing the slopes of the
incoming and outgoing edges, a depth, and an emission constant. From an angular span,
the vertex contribution to the irradiance in (3) can be immediately computed and added
to the sum. A vertex of the clipped source can be either an intrinsic vertex of the source
polygon, an intrinsic blocker vertex which appears inside the source, or anapparent
vertex caused by the intersection of two edges. The form of the angular span depends
on the type of vertex.

However, actually projecting the source polygon onto the image plane and clipping
defeats the purpose of the vertex-based approach. Rather, our method computes an
angular span for each apparent source vertex by tracing the ray through the vertex and
collecting angular spans for each polygon vertex, edge, or face the ray intersects and
thereby allows the irradiance to be computed without ever projecting or clipping the
source. Figure 2 illustrates the idea. The angular span algorithm handles occlusion by
inserting a “full” angular span for an interior blocker intersection, and in fact cleanly
handles all the “hard” cases where vertices and edges appear to coincide. Furthermore
the approach generalizes easily to the situation where all the scene polygons are treated
as emitters. Finding all the apparent vertices, which amounts to finding all the apparent
edge intersections in the scene, tends to be the bottleneck.

The vertex-based approach provides a method for evaluating irradiance that is fun-
damentally different from methods based on Lambert’s formula. The vertex tracing
algorithm eliminates polygon clipping, an inherently unstable process, and the need
to maintain polygon contours. The method continues to work well in situations when
polygon clipping methods become impractical, such as when there is a great deal of
fine-scale geometry, and when there are many emitting polygons such as in the problem
of radiosity reconstruction.
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Fig. 2. A “conjunctive” vertex. Two transparent polygons and an opaque blocker appear in front
of a square source. When a ray is traced through the vertex of the blocker, angular spans for
the objects incident on the ray are collected (left), then sorted by distance and combined into a
collection of angular spans that encodes the vertex contribution (right).

2.2 Simple Transparency

Although our previous work was concerned with uniform emission and opaque occlu-
sion, the angular span algorithm can be extended to handle transparent (non-refracting)
polygons. An angular span for a transparent polygon must be flagged to indicate it is
transparent. The span combination algorithm also requires modification: when a trans-
parent span covers an emissive span the emission is multiplied by the transparency.
Furthermore, span insertion in arbitrary depth order is no longer feasible. Rather, the
spans are collected as they are found along the vertex ray and then sorted by depth
before they are inserted. The spans are inserted from back to front. Insertion of an
opaque span involves inserting the start and end of the span, and removing all the span
boundaries it covers, while insertion of a transparent span requires the emissions of the
covered spans to be multiplied by the transparency of the new span. Figure 2 illustrates
this for a “conjunctive” vertex.

3 Reflection

Our previous work concentrated on diffuse environments and considered only direct
lighting and radiosity reconstruction. In this section we extend the vertex tracing ap-
proach to environments having perfectly reflecting polygonal surfaces.

A perfect mirror creates avirtual imageof each object it reflects: the virtual image
is the object reflected through the plane of the mirror as illustrated in Figure 3(a). Thus
the radiance from a source polygon reflected off a mirror polygon is equivalent to the
radiance from the virtual image clipped against the complement of the mirror polygon in
the mirror plane. Equivalently, the irradiance can be computed by reflecting the receiver
point in the mirror plane rather than the source—indeed this is preferable because it does
not reverse the orientation of the source polygon, and it eliminates the need to reflect
the source at all (Figure 3(b)). The vertex tracing algorithm may also be used provided
that angular spans for edges and vertices of “negative” polygons (the complement of
the mirror polygon in the mirror plane) are properly handled.

The presence of extra occluders complicates things, because they can appear in two
separate places: between the source and the reflector, and between the reflector and the
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Fig. 3. Reflection in “Flatland”. (a) The radiance coming from the real source reflected off a
mirror is the same as the radiance coming from the virtual source, the source reflected through
the mirror plane. (b) The irradiance from the virtual source clipped against the complement of the
a mirror polygon is equivalent to computing the reflected irradiance, or computing the irradiance
at the reflected receiver pointr′. (c) Blocker polygons between the source and the mirror are most
easily found by tracing fromr′; those between the mirror andr are found by tracing as usual. (d)
Beams can be used for efficiency

receiver point. A naive clipping approach would require the occluders to be reflected
through the mirror plane, but the vertex tracing approach does not. Rather, each vertex
(intrinsic or apparent) is simply traced twice, once from the actual receiver point, and
once from the reflected receiver point (Figure 3(c)). From the receiver point, only
vertices and intersections in front of the mirror plane are considered; from the reflected
point, only those behind are considered. However, pairs of edges from both sets of
occluders must be tested for apparent intersection.

Multiple reflection complicates things even more. The virtual scene requires mul-
tiple reflections of the scene in the naive approach, and the basic vertex tracing still
works, but the multiple reflections must be traced separately, starting from the closest
mirror surface, with the source and other blockers reflected through all but this surface,
and so the process continues.

4 Refraction

Computing reflected irradiance as in the previous section works in principle by comput-
ing the irradiance from a virtual source that cannot be distinguished from the reflected
real source. If such a virtual source for a refracted source polygon can be found, then
the same technique applies. The refracted irradiance can be computed from the virtual
source, occluded by the complement of the refractive facet. The question is, what is
the virtual source? That is, what does the source look like when viewed from a re-
ceiver point through the refractive interface? This problem is more difficult than the
reflective case for several reasons. First of all, lines generally appear curved under re-
fraction, so the virtual source is not generally even a polygon. Consequently we can
only approximate refracted irradiance with a polygonal virtual source. Second, accu-
rately approximating the virtual source involves the problem of inverse ray tracing, that
is, finding the ray direction which hits a particular point (i.e., a source vertex) through a
refractive medium. And finally, while the virtual source of a reflected polygon happens
to be independent of the viewing position, this is not the case for a refracted polygon—
a different virtual source is needed for each viewpoint. Figure 4 illustrates refracted
virtual sources in Flatland.
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Fig. 4. Refraction in Flatland. (a) A virtual refracted source is more difficult to compute. There
are many choices for the virtual source, the one illustrated is the one found by appropriately
contracting the depth of the source directly toward the interface plane. (b) The virtual source
changes with the viewpoint. (c) The virtual source can be clipped against a facet complement
and irradiance computed as if the refractive medium were not there.

It should be made clear that the goal of this section is not to render truly focused
caustics, in the sense of catastrophic optics [19]. The focusing of light by its very nature
requires curved surface interfaces; indeed even the first-order behavior of refracted (and
reflected) light is dependent on the surface curvature. It is therefore not reasonable to
expect light transmitted through refractive surfaces to be well approximated by a macro-
faceted surface approximation. We are interested in simulating how polyhedral objects
transmit light, not how well this approximates a curved surface; the latter is a subject
for future research. Figure 6 shows a faceted approximation to a smooth surface.

4.1 Depth Contraction

We now turn to the development of the transformation that approximates how a polygon
appears when it is viewed through one, or several, refractive interfaces. This transfor-
mation can then be applied to the source, and any blocker polygons on one side of the
interface so that the vertex tracing approach can be used to compute the irradiance.

Snell’s law [12] governs the angleθ2 of refraction given the angle of incidenceθ1:

sin θ1

sin θ2
=

n2

n1
(6)

wheren1 andn2 are the indices of refraction (Figure 5(b)). The rule is well suited to
ordinary ray tracing but by itself does not provide much intuition for how refraction
transforms the general appearance of objects. Suppose, for example, one looks into the
front face of a fish tank from across the room. The general effect is that the inside of
the tank appears compressed toward the front of the tank. A similar phenomenon can
be seen from a canoe or kayak in shallow still water. When the bottom is roughly flat,
it always looks as if the bottom is shaped like a bowl and the observer is always above
the deepest part (Figure 5(a)). Further away it tends to look more shallow. So in fact,
the depth contraction is dependent on the viewing angle with respect to the surface of
the water.

This apparent depth contraction phenomenon is the basis for the transformation
we use for the virtual refracted source. The geometric arrangement is illustrated in
Figure 5. A pointq at depthd below the (flat) interface appears to be at a depthd′
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Fig. 5. Apparent depth contraction. (a) A flat bottom of a pond or pool always looks bowl-shaped,
and appears deepest directly under the observer. (b) A pointq at depthd appears to be at depth
d′ as viewed from above the interface. (c) The associated trigonometry.

below the interface. The apparent depth of the point is thereforecontractedby the
factord′/d. From trigonometry we have

tan θ1 =
s

d′
, tan θ2 =

s

d

so we have for the contraction ratio,

d′

d
=

tan θ2

tan θ1
. (7)

From Snell’s law, the contraction ratio can be given in terms of the incident angle
θ1 or the refracted angleθ2

d′

d
=

cos θ1√
η2 − sin2 θ1

=
cos θ2√

1/η2 − sin2 θ2

(8)

whereη = n2/n1. Of course, actually computing these angles is equivalent to finding
the true ray directions and thus defeats the purpose of the heuristic. But as it happens,
the formulation in terms of angles is suited for approximating the virtual source, pro-
vided we make a key assumption: the apparent angular size of each refractive facet
is small as seen from a receiver point, or another refractive facet (from which it can
receive transmitted light). Because of this assumption, the incident and transmitted an-
gles of any ray hitting the facet from a receiver point, or from another facet, have little
variation and consequently the depth contraction ratio is nearly constant.



4.2 The Virtual Refraction Transformation

Suppose the facet with centroidc and normal̂n lies on an interface between two regions
of different optical densities and the ratio of the indices of refraction of the back side
of the facet to that of the front isη. From a view pointr, the cosine of the angle of
incidence anywhere on the facet is approximately that of the angle of incidence at the
centroidc:

cos θ1 =
(r − c) · n̂
‖r − c‖ .

A point q behind the facet has depthd = (c − q) · n̂; combining this with (8) above
yields a formula for the contracted pointq′.

q′ = q + (d − d′)n̂ = q + (c − q) · n̂

(
1 − cos θ1√

η2 − 1 + cos2 θ1

)
n̂. (9)

If η < 1, q′ will be further from the facet rather than closer, and also there is the
possibility of total internal reflection, which occurs whencos2 θ1 ≤ 1 − η2.

Application of the transformation given by (9) to each vertex of the source produces
a virtual source from which irradiance can be computed as if there is no refraction.
Further transformations (reflections or other refractive transformations) can be applied
to handle multiple reflections and refractions. The same transformation must be applied
to any blocker polygons which lie between the source and the facet on the interface.

In an attenuating medium, the attenuation can be approximated from the centroid-
to-centroid path length. Also, reflectance variations such as those caused by Fresnel
effects can be approximated in terms of the angles between facets.

Of course, the contracted (or elongated) source is still only an approximation be-
cause the true depth contraction is a function of the position on the source and the
position of the receiver, and more precise methods could be used (e.g., [3]). The ap-
proximation is in the assumption that it does not vary over the source (from a fixed
viewpoint). But this method does seem to produce plausible caustics both for single
and multiple refractive interfaces, as shown in Figures 6 and 8.

4.3 Dispersion

Dispersion, the separation of different wavelengths of light due to variation of refractive
index with wavelength [12, 17], can be simulated using our refraction method. For
general dispersion computation, many different wavelengths must be included in order
to achieve the smooth spectral colors often visible on the edges of caustics and such.
But one advantage of using area sources as in our method is that the caustic edges are
not sharp and blending occurs naturally. We have found plausible dispersion effects can
be obtained by using only the three RGB channels.

5 Efficiency: Beams and Culling

A brute-force approach to vertex tracing reflective and refractive polygons can be
costly, because for a particular evaluation point, every reflective and refractive polygon
must be checked, and for each of these polygons, every other reflective and refractive
polygon must be checked for secondary reflection and transmission,etc.

To reduce the cost, we propose a beam hierarchy for spatial subdivision. While this
may sound similar to the beam and cone tracing and hidden surface techniques in the



Algorithm 1 General Beam Construction
for each reflective/refractive polygondo

add a beam for the reflective/refractive region, with depthd = 1
end for

for eachbeamB in the beam listdo
for eachscene polygonP which intersects Bdo

addP to the occlusion list ofB
if P is reflective/refractive and the depthd of B is less than the maximumthen

append a beam forP with depthd + 1
end if

end for
end for
build a hierarchy for the beams

literature (e.g., [9, 13]), the approach is closer to the shaft culling method of Haines
and Wallace [11]. In our context abeamis a (possibly unbounded) convex polyhedron
which bounds the region in space in which a source polygon can potentially appear
reflected from or refracted through another polygon, or collection of polygons. Each
beam contains the following information:

• bounding planes for the polyhedron (for containment testing);
• a formula for how to create the virtual source (reflection, refraction);
• the reflective/refractive polygon;
• a depthd, indicating the number of reflections/refractions;
• a parent beam (NULL ifd = 1);
• a list of potential occluding polygons that intersect the beam.

A beam isprimary if its depth is 1. When a point is found to be inside a primary
beam, the source can be vertex-traced along with the polygons in the occlusion list
to compute the irradiance. A point inside a non-primary beam requires the multiple-
interface vertex tracing described previously. The various interfaces are found by fol-
lowing the parent pointers to the primary beam.

There are several things worthy of note about these culling beams. First, the beam
polyhedron is only a bound and nothing more—the vertex tracing algorithm handles
the actual visibility. The number of beams in a scene depends on the number of reflec-
tive/refractive polygons as well as how they interact. Theoretically there is no upper
limit on the number of possible inter-reflections and constructing all the beams could
be very expensive. But for simple types of reflective objects, really only primary beams
are required, and there will be at most one beam for each reflective polygon. For a
refractive object, there will generally be only a few beams for each interior facet.

The general beam construction algorithm is shown in Algorithm 1. In our imple-
mentation, the faces and edges are stored in a bounding sphere hierarchy and this ac-
celerates the beam-polygon intersection test. Once the beam list has been constructed,
the beams themselves are stored in a hierarchy for faster containment testing. Our im-
plementation uses a bounding volume hierarchy, but other spatial subdivision schemes
could be used.



Fig. 6. Approximating caustics from a rippled water surface, using a triangulated grid of32× 32
(left, 12s) and64 × 64 (right, 43s). Here the water surface is rendered as a diffuse surface for
clarity; note the faceting is less noticeable under diffuse shading than in the caustics. Also note
the asymmetry in the caustics due to the shape of the source.

6 Results

We have implemented our methods in the context of a standard ray tracer. When a
diffuse surface is hit, the direct lighting is computed (exactly, using vertex tracing) and
this is added to the reflected and transmitted light which is computed using the vertex
tracing approaches discussed in this paper. The images were run on an SGI workstation
using a single 400 MHz IP35 MIPS R12000 processor, and the quoted running times
include setup, hierarchy construction, rendering, and output time. The images all have
512 vertical pixels.

Figure 7(a) contains the shadow of three transparent polygons, and illustrates “sub-
tractive absorption” of light. Figure 7(b) and (c) show the shadow of a stained-glass
with 171 polygons (122 leads, 49 panes) under different light sources. Note that the
shape of the source has a definite effect on appearance of the shadow, and can be seen
through the “pinhole” effect in various places. In Figure7(a) the top edge of the window
is coplanar with a source edge and this results in the sharperC1 discontinuities seen in
the shadow.

Figures 8(a) and (b) have purely reflective objects. Figure 8(c) is a rendering of a
glass icosahedron, with the surface reflectance exaggerated to more clearly show the
reflected light. Figure 8(d) simulates dispersion (with a dimmer source and whiter
surfaces) as described in Section 4.3. The three-color split is sufficient for the caustics
due to the blurring effect, but results in color discontinuities in ray tracing the object
itself. The focus of this paper is on polygonal objects, but Figure 6 shows what happens
when a smooth surface is approximated with facets and the polygonal refraction is
computed, in this case approximating rippled water.

7 Conclusion and Future Work

In this paper we have extended the vertex tracing approach, a general method of com-
puting irradiance from a uniform polygonal source in a polyhedral environment, first
to include transparency, then to compute exact illumination reflected from mirrored



polygons, and finally to approximate transmitted irradiance. Moreover, a shaft culling
technique was employed to improve the efficiency.

The caustics produced by our depth contraction heuristic are plausible, but we
would like to improve the physical accuracy. In particular more attention should be
paid to energy conservation, which is currently only loosely handled by our method. A
better approximation to the virtual source would require a non-uniform emission to ac-
count for attenuation and reflectance variations such as Fresnel effects. Formulas such
as those developed for polynomially-varying luminaires by Chen and Arvo [5] would
be required. Finally, the ripple caustics suggest there might be a way to better approx-
imate the surface rather than using flat facets, which would give a smoother irradiance
distribution with far fewer surface elements.
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(a) (5s) (b) (37s) (c) (35s)

Fig. 7. Shadows of (a) purely transparent polygons, (b) a stained glass window under a large
triangular source and (c) the source rotated 45 degrees; note the differences in the fine structure
of the shadow.

(a) 20 facets (8.6s) (b) 180 facets (19s)

(c) 20 facets (17s) (d) dispersion

Fig. 8. (a),(b) Purely reflective objects. (c) Transmission through a glass icosahedron. (d) Dis-
persion.


