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ABSTRACT

The signi�cance of quality assurance in manufacturing has grown steadily in

recent years. The use of Coordinate Measuring Machines (CMM) has become an

a�ordable method to inspect manufactured parts. However, the software controlling

these machines is often not very user friendly, creating inspection code is a di�cult

and error prone task and results of the inspection process can be hard to understand.

An experimental system to automate the inspection process of feature based

manufactured parts is being developed. The system provides ICAM standard

Dimensional Measuring Interface Speci�cation (DMIS) code generation for a set

of mechanical features. It includes an animated simulation of the inspection by

parsing the generated code and also provides a intuitive graphical representation

of measurement results by visualizing the nonconformities of the part. A separate

server handles the execution of DMIS commands by establishing a connection with

a Coordinate Measuring Machine.
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CHAPTER 1

INTRODUCTION

Inspection can be described as the checking or testing of products against estab-

lished standards. The goal of the inspection process is to detect and eliminate the

nonconforming, bad or defective items in a product and assure its quality. By using

inspection devices like coordinate measuring machines (CMMs), vision systems or

simple gauges, important information on the conformation of manufactured parts

to design speci�cations can be collected.

Due to increased competition in the manufacturing industry, the signi�cance of

quality assurance has grown steadily in recent years and inspection of manufactured

parts is therefore increasing in importance. Di�erent manufacturing environments

require di�erent inspection systems to meet speci�c needs. Inspection can be

incorporated as an inherent part of manufacturing, so that measurements of an

item are made in di�erent manufacturing stages and corrective actions can be

taken immediately after processing[23, 26]. In the car industry, for instance, it is

important to inspect items directly after each important manufacturing operation

and so special devices are developed to inspect certain products fast and e�ciently.

For example, General Motors developed a machine-vision system to inspect holes

in a truck's front end to verify correct punching[28]. This system is fast and works

well for the job, but in an environment where di�erent parts are designed and

manufactured on a regular basis, there is a need for a more general inspection

system.
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The two basic forms of inspecting a part are screening and sampling. Screening

can be viewed as global inspection. With advances in lasers, pattern recognition and

other vision techniques, it is becoming an attractive practice. Screening, however,

is still an expensive and complex process and is mostly used in special purpose

areas, or as a support for the sampling method. Sampling gathers a set of point

measurements of a part's surface and uses them to estimate the part's geometry.

This derived geometry is then compared to and evaluated against a nominal part

model to determine the conformance of the part. Inspection using CMMs is an

example of the sampling method.

Inuenced by availability, a�ordability and friendliness of smaller machines,

the role of CMMs is growing rapidly in today's manufacturing community. The

machines are very accurate and can be used for a broad spectrum of inspection

problems. However, the software controlling these machines is often not very

user friendly and results of the inspection process can be di�cult to understand.

Also, because an operator usually has no tools other than the physical part and

its speci�cations, inspection code has been hand crafted. This is a di�cult and

error prone task. Ongoing research in developing CAD/CAM systems for design

and manufacturing could help in creating a system for automating the inspection

process and eliminating the problems associated with the manual operation and

programming of CMMs.

A system that will automatically generate inspection code from a geometric

model of a part could ensure the correctness of the code, improve e�ciency and

save time. A simulator that would accurately simulate the inspection process

would provide a testing platform for experimental code and eliminate the risk

of unnecessary programming errors. A method to perform the actual inspection

without having to deal with an awkward user-interface to the CMM would make

the operating task simpler. Also, reporting inspection results in a more intuitive
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form would make it easier to visualize the nonconformities of the inspected part.

Results could be in the form of written reports or graphical representations of the

results. If these ideas are integrated into a user-interface built on top of an already

existing modeling and manufacturing environment, we would have a very useful tool

for easy, accurate, fast and e�cient inspection of di�erent parts. Also, we would

have a complete system encompasing design, manufacture, simulation, inspection

and evaluation of inspection results. We present an experimental version of such a

system next.



CHAPTER 2

INSPECTION SYSTEMS

The implementation of a general purpose system that will inspect and evaluate

any manufactured part would be an almost impossible task. Therefore we start

with a standardized manufacturing environment, the University of Utah's Alpha 1

[9] modeling system for Computer Aided Design and Computer Aided Engineer-

ing. This system has a feature based manufacturing environment upon which the

inspection system is built. The inspection system implemented includes automated

code generation in the DMIS[6] interface language (see section 3.2), an animated

DMIS simulator (see section 6.2), a user friendly mechanism for inspecting parts

(see section 5), and an evaluation portion to present measurement results (see

section 6.4). These four tasks are controlled by a Motif based interface developed

in the UNIX operating system.

2.1 Previous work

Until recently, CMMs were too large and expensive to �nd a home outside

large manufacturing complexes. Operators would develop their own custom soft-

ware and little research was done on developing systems that fully automated the

manufacturing, inspecting and evaluating phases of production. In recent years,

CMMs have become more a�ordable and available to small and medium sized job

shops. However, until the introduction of the Dimensional Measuring Interface

Speci�cation (DMIS) [6], developing inspection systems was still a complex process
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due to the widely di�erent types of CMM programming languages. DMIS provides

a standard programming and interface language for CMMs and other dimensional

measuring devices and makes the development of inspection systems less machine

dependent.

Many systems are developed to assist users in measuring di�erent products[12,

15, 16], and some of these could be called \complete" systems[21, 25]. Most of

them, however, are too specialized to be used as a base for developing the inspection

system described in this thesis. In the next two sections, some of the systems will

be mentioned.

2.2 Specialized inspection tools

Integrated Surface Inspection Software[15] (ISIS) is designed to assist in the

inspection and analysis of freeform surfaces and other nonprismatic geometric

features. ISIS allows a user to generate surface information quickly from a minimal

set of points. It is not a CAD/CAM package but an inspection data generation and

analysis tool that provides the user with a graphical representation of information.

Another tool is Tubular Shape Analyses Software [16] (Tubic). Tubic is designed

to ease the inspection and analysis of tubular shapes on a CMM. It o�ers a simple

way to de�ne a tube from a blueprint and it can generate a part program in DMIS

to begin inspection.

Finally there is the Airfoil Inspection Software[12] (AFIS). AFIS is a package

that will inspect any foil shape including turbine blades, stators and hydrofoils.

Standard airfoil dimensions are completely implemented by AFIS, and it does not

require a nominal de�nition to de�ne an airfoil section. AFIS can be used to reverse

engineer airfoils where nominal de�nitions are not available.

Because of the commercial value of these tools, little literature exists detailing

their speci�c implementations.
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2.3 Complete inspection systems

There are two commercial systems that could be looked upon as complete sys-

tems. The �rst one is CimStationTM [25]|a graphic workstation for the interactive

design, programming and simulation of automated manufacturing systems. Cim-

Station provides users with a system for Computer Integrated Manufacturing ap-

plications, and the use of computer simulation to verify the manufacture, assembly

and inspection of parts and products. CimStation can be used to simulate entire

manufacturing processes.

The second one is Valisys [21]|a software package that integrates the design,

manufacturing and inspection processes using a CAD database. Valisys translates

speci�cations into part programs for inspection operations and executes inspection

on CMMs.

No papers were found that discuss the speci�c implementations of these two

systems in more detail.

2.4 Other work

M.J. Corrigal and R. Bell [10] describe a system that implements the inspection

process planning and inspection machine planning. Inspection process planning an-

alyzes a part drawing to determine what to measure and on what type of inspection

device to do it. The machine planning performs the actual inspection on the chosen

device. Although the idea behind this system is sound, it will be an immense task

to make it work for all modeling environments and all available inspection devices.

Another system has been developed by Merat and Radack [22]. It has several

similarities with the system described in this thesis and is called \Automatic In-

spection Planning Within a Feature-Based CAD System". It is implemented in a

variation of the Common LISP Object system and the concept Modeler [29]. Each



7

mechanical feature (see section 4.2) used has a set of geometric dimensioning and

tolerancing (GD&T) speci�cations from which inspection code is generated. The

user speci�es which tolerances apply to the design and a code generator will then

create a code segment for every GD&T. Together these segments form the inspection

program. Some of the di�culties mentioned by the authors are interacting features,

probe orientations, part orientations, merging of code segments and path planning.

Using queries to the solid modeler, interacting features (see section 4.2.5) are

identi�ed and planning is done on a surface-by-surface basis. This means that

when a code segment has to be generated for a set of interacting features, surface

information will be used to determine how to measure the features.

The system currently allows only vertical probe orientations and does not men-

tion the fact that di�erent styli may be needed during an inspection process. During

a typical inspection, multiple styli and probe orientations are used to perform the

required measurements. Because the system does not utilize all possible probe

orientations, multiple constraints on part orientations are made.

The system generates inspection points from the GD&Ts. If two or more GD&Ts

are speci�ed for one feature, the system will attempt to merge the code segments

so no redundant measurements are made. Finally, the system tries to create an

optimal path between all the point measurements to minimize inspection time.

Besides contact based inspection using Coordinate Measuring Machines, vision

systems have been studied as a method for inspection. Several CAD-based com-

puter vision systems for object recognition and inspection have been developed

[2, 3, 4, 5, 18, 19, 20, 27].



CHAPTER 3

BACKGROUND

To fully understand the inspection approach of this thesis, a description of

important background information will be given. We will talk about the mod-

eling environment, the inspection language, the CMM, and the basic scenario for

inspecting a part.

3.1 The modeling environment

The environment is the Alpha 1 modeling [9] system for Computer Aided Design

and Computer Aided Engineering. It was developed at the University of Utah and

runs on UNIX platforms. For mechanical design, a large set of mechanical features,

including a number of hole types such as counterbores and tapped holes, several

kinds of pockets, and slots are provided. The feature package includes linear and

radial patterns which can be formed from other features. There are also procedures

associated with each feature to generate Numerically Controlled (NC) code for the

manufacturing of the modeled parts. The features describing the part are the main

source of information for the generation of inspection code in the described system.

3.2 The inspection language

The Dimensional Measuring Interface Speci�cation (DMIS) [6] was developed

by Computer Aided Manufacturing International (CAM-I)[7] as a standard for the
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communication between inspection systems and design equipment and is used as

the language for all the inspection programs generated. DMIS provides geomet-

ric calculations of circles, cones, cylinders, lines, planes and spheres from point

measurements. These primitive features are used to describe the more complex

mechanical features used in the Alpha 1 environment. DMIS also implemented the

ANSI Y14.5M-1982[1] tolerancing standards for cone angles, angularity, circularity,

sphericity, conicity, concentricity, coordinate location, cylindricity, diameter, at-

ness, parallelism, perpendicularity, position and straightness. Besides geometry-

oriented de�nitions, there are also process-oriented commands in DMIS. They

consist of motion, machine parameters and other commands that are used in the

inspection process itself. The particular inspection device used in this thesis is a

gantry CMM that uses the Coordinate Measuring Inspection Software (CMIS)[13]

as its interface language. CMIS is a direct implementation of DMIS and no post-

or pre-processing is required.

The following CMIS commands groups are used for the code generation (for

speci�c details see [17]):

� Feature De�nitions Commands

The Feature De�nitions Commands are used to provide nominal de�nitions of

the primitive features. For example the FEAT/CIRCLE and FEAT/CONE

commands de�ne a circle and a cone.

� Parameter Set Commands

The Parameter Set Commands are used to provide further de�nition for fea-

tures and the actions performed on them. An example is FEDRAT for setting

the velocities used in measurements and safe moves.
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� Motion Sequence Commands

The Motion Sequence Commands are used to perform nonmeasurement mo-

tion. For example the GOTO statement to move the probe to a speci�c

location.

� Measurement Sequence Commands

The Measurement Sequence Commands are used to initiate a measurement of

a feature. Some examples are the MEAS, PTMEAS and ENDMES commands

to start a measurement, measure a point and end the measurement.

� Sensor Commands

The Sensor Commands are used to de�ne, calibrate (see section 4.3.4) and

invoke settings for the sensor. The described system uses a sensor consisting

of a stylus mounted on a probe. For example, the SNSDEF/PROBE, CALIB,

SNSLCT and SNSET commands which are used to respectively de�ne a sensor,

calibrate the sensor, select a prede�ned sensor and invoke settings like approach

and retract vectors.

� Coordinate System Commands

The Coordinate System Commands are used to create a Part Coordinate

System (PCS). Since part features are de�ned in reference to datums, a PCS

must be established reecting these datums before features can be measured.

Some examples are ROTATE and TRANSLATE to rotate and translate a

coordinate system.

� File Commands

The File Commands are used to de�ne sensor, data and coordinate system

�les. For example, the FILNAM/DATA is used to de�ne the data �le.
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� Output Commands

The Output Commands are used to output results of feature measurements

to a �le or communication port. For example, the DISPLY and OUTPUT

commands are used to set the output device and output actual data.

See Appendix A for an example of DMIS inspection code. DMIS makes certain

requirements on the point patterns used for geometry calculations. When measuring

a cone, DMIS requires the �rst three points to lie on a circle in a plane perpendicular

to the cone's axis. The next three points have to lie in another perpendicular plane

as far as possible from the �rst plane. The points in each circle must span at least

180�. Additional points can be taken anywhere.

For a cylinder, DMIS requires the �rst three points to lie on a circle in a

plane perpendicular to the axis of the cylinder. DMIS requires a minimum of

two additional points that can be taken anywhere.

When measuring a circle, DMIS requires a minimum of three points that lie on a

circle or arc. Finally to measure a plane, DMIS requires a minimum of three points

on the plane.

3.3 The coordinate measuring machine

The Coordinate Measuring Machine (see Figure 3.1) used consists of two major

assemblies: the Machine Control Unit (MCU) and the Robot Assembly Unit (RAU).

The MCU contains all of the electronics and software that control the measurement

hardware, such as reading position scales and activating motor drives. The RAU is

the mechanical part of the CMM which includes a frame, a table, motors, sensors

and other mechanical assemblies.

A measurement probe (or sensor) attached to the mechanical arm on the CMM,

controlled by a host computer, registers the actual measurements. The probe comes
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Figure 3.1. Coordinate measuring machine

equipped with di�erent sized ruby ball styli that have to be attached to the probe

(see Figure 3.2). These styli are used to touch the object. The probe registers

the touch, determines the machine coordinates at the time of contact, and reports

these back to the host computer. Depending on the shape of the features, di�erent

styli may be selected and attached to the probe during the inspection process. The

changing of the styli can be done manually or by using an automatic styli changer.

To get accurate measurements, it is necessary to calibrate every stylus before

using it for any measurements. This calibration is achieved by measuring a reference

object of known dimensions. This information is then used for the calculation of

o�sets which are used to correct subsequent measurements.

All measurements registered by the probe are with respect to the machine

coordinate system and have to be translated to a coordinate system representing

the part. By making a set of manual measurements of the part a Part Coordinate

System (PCS) is calculated. This coordinate system matches the coordinate system

of the geometric model so that measurement data can be compared against the

nominal data.
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Figure 3.2. Probe and stylus

3.4 Inspection scenario

The basic scenario for inspecting a part using a CMM is as follows.

� Fixturing

Fixture the part on the work area of the CMM.

� Calibration

Calibrate all the styli that are going to be used during the inspection of the

part.

� Establishing part coordinate system

Determine the part coordinate system by acquiring a set of initial measure-

ments.

� Creating inspection program

Write an inspection program that will make the correct measurements.
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� Inspecting

Execute the inspection program on a CMM.

� Evaluation

Evaluate the results of the measurements.



CHAPTER 4

THE API SYSTEM

4.1 General description

In this section, a general description of the implemented system is presented.

The system is written in a Lisp variant, Rlisp[8], C++ and Motif. It is referred to

as the Automated Part Inspection (API) system and consists of several parts.

A FANAMATION COMERO 404024 [11] Coordinate Measuring Machine (CMM)

is used to perform the actual inspection. The CMM is controlled by the CMIS user

interface [14] and takes Coordinate Measuring Inspection Software (CMIS)[13] as

input (see section 3.2).

A code generator creates the DMIS inspection code (see section 4.3) and the

necessary administration �les (see section 4.3.4) from a list of mechanical features

(see section 4.2) describing the part. This list is provided by the user.

A simulator (see section 6.2) parses the generated code and simulates the in-

spection process by animating a stylus along the inspection path.

The execution of DMIS code on the CMM is managed by the CMIS server. This

server acts as a communication medium between the API system and the CMIS

user interface (see Chapter 5). Lines of DMIS code are sent from the API system

through the server to the CMIS user interface. Measurement results are sent the

other way, stored in an appropriate format and used during the evaluation phase

(see section 6.4).
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The evaluation of inspection results is performed by the evaluator (see sec-

tion 6.4) which presents a graphical representation of inspection results to the

user.

A graphical user interface provides a user friendly way of dealing with display

of parts, code generation, simulation, inspection and presentation of results. The

interface manages the total information ow between the di�erent modules (see

Figure 4.1) and makes the system work fast and e�ciently.

4.2 Code generation

The input for the code generator consists of a list of features describing the

part. Features are structures that hold information on a particular detail of a part.

In addition to geometric information, tolerance requirements for the feature and

interactions (see section 4.2.5) with other features can be stored. The output from
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Figure 4.1. Flow diagram describing the user interface.
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the code generator are the generated DMIS inspection �les.

4.2.1 Available features

The following mechanical features can be inspected using the API system: holes,

counterbores, countersinks, counterdrills, slots, rectangular pockets, pockets from

4 points, pro�le pockets and pro�le bosses.

4.2.2 Collision avoidance

To ensure no unexpected collisions occur during nonmeasurement moves of the

probe, a safe area is de�ned in which all moves, styli changes and probe orientation

(see section 4.2.3) changes are made. This safe area is de�ned by the area outside

the bounding box of the inspected part.

4.2.3 Probe orientations

The probe orientation is de�ned by the tilt and roll. The tilt is the elevation

angle of the probe head and has a value from 0� and 105� in increments of 7:5�,

the smallest supported by the CMM on which it is implemented. The roll is the

rotational angle of the probe head and has a value from �180:0� to 180:0� in

increments of 7:5�, again limited by the speci�c hardware. All probe orientations

can be used to make the required measurements.

4.2.4 Tolerances

Although DMIS provides several tolerance related commands they are not cur-

rently used by the API system. Tolerances are speci�ed by the user and used during
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the evaluation phase (see section 6.4) of the system to determine the conformance

of the part. Four tolerances de�ned by the ANSI standard for Dimensioning and

Tolerances[1] are implemented in the API system.

A positional tolerance is part of the group of tolerances of location and
de�nes a zone within which the center, axis or center plane of a feature
may vary from true position.[1]

The positional tolerance is speci�ed by a radius of a circle indicating the zone

in which the center, axis or center plane must lie. The center of the circle is the

true position of the considered element.

A diameter tolerance is part of the group of form tolerances and speci�es
a zone in which the considered value must be contained.[1]

The diameter tolerance is speci�ed by a value indicating the maximum deection

from the nominal diameter.

An angularity tolerance is part of the group of orientation tolerances and
indicates the condition of a surface or axis at a speci�c angle (other than
90�) from a datum plane or axis. An angularity tolerance speci�es a
tolerance zone de�ned by two parallel planes at the speci�c basic angle
from a datum plane, or axis, within which the surface or axis of the
considered feature must lie.[1]

The angularity tolerance is speci�ed by indicating the distance between the two

parallel lines.

A perpendicularity tolerance is part of the group of orientation tolerances
and indicates the condition of a surface, median plane, or axis at a right
angle to a datum plane or axis. A perpendicularity tolerance speci�es a
cylindrical tolerance zone perpendicular to a datum plane within which
the axis of the considered feature must lie.[1]

The perpendicularity tolerance is speci�ed by a radius of a circle indicating the

zone in which the axis must lie. The center of the circle is the true position of the

considered element.



19

4.2.5 Interacting features

When inspecting complex parts, problems can occur. Features might interact;

that is, parts of the features might not exist due to intersections with other features

(see Figure 4.2). If there is no information on what part of the feature can be used

for measurements, problems can occur when generated code is executed. The API

system requires the user to specify the relationships between features in the initial

feature list. If there are no speci�cations on interactions between features, the API

system assumes that the features are complete. Currently there are no provisions

to specify feature interactions in the initial feature list.

4.3 The generation process

The generating process can be divided into the following four phases.

4.3.1 The decomposition phase

The DMIS inspection code only provides feature de�nitions for a set of primitive

features. Therefore, all the mechanical features available in the system have an

associated method that decomposes the feature into a set of inspection steps. Each

inspection step of the API is associated with a primitive feature and contains the

following information:

� Primitive feature

Every inspection step includes a primitive feature. To describe what part

of the primitive feature is available for measurements (see section 4.2.5) it

is possible to specify a start and end angle (see Figure 4.2). The following

primitive features are available:
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Start angle

End angle

Figure 4.2. Start and end angle

1. Cone

A cone is described by a center point, the o�set to the bottom, the

diameter at the top, the diameter at the bottom, the included angle and

the orientation (see Figure 4.3 a). A cone could be used to describe a

chamfer (see Figure 4.4 a).

2. Cylinder

A cylinder is described by a center point, the o�set to the middle, the

depth, the diameter, the orientation, and a Boolean indicating if the

cylinder extends through the material (see Figure 4.3 b). A cylinder could

be used to describe a hole (see Figure 4.4 b).

3. Circle

A circle is described by a center point, the o�set to the center, the

diameter, a Boolean indicating whether the outside or the inside of the

circle should be measured and the orientation (see Figure 4.3 c). A circle

could be used to describe an arc in a pro�le curve (see Figure 4.4 f).

4. Rectangular plane

A rectangular plane is described by the four points de�ning the rectangle,

a save point from where to start the measurement, the normal of the plane

and the orientation of the original feature the plane is contained in (see
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a. Cone b. Cylinder c. Circle

d. Rectangular plane e. Circular plane

Diameter at bottom

Diameter at top
Offset

Included angle

Center point

Center point

Diameter

Depth

Offset

Center point

Diameter
Offset

Center point

Outside Diameter

Inside Diameter Offset

Save point

Normal

Figure 4.3. Primitive features

Figure 4.3 d). A rectangular plane could be used to describe the sides in

a slot (see Figure 4.4 e).

5. Circular plane

A circular plane is described by a center point, the o�set to the plane, the

outside diameter, the inside diameter and the orientation (see Figure 4.3

e). A circular plane could be used to describe a step in a counterbore (see

Figure 4.4 b).

� Name

Every inspection step includes a unique name, consisting of a one character

code describing the original feature type, a number to identify features of the
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a. Hole b. Counterbore c. Countersink d. Counterdrill

e. Slot f. Pocket

Figure 4.4. Decomposition of features.

same type, a one character code describing the primitive feature and a number

identifying primitive features of the same type.

� Styli set

Every inspection step includes a styli set (see section 4.3.2) that can be used

to perform the required measurements.

� Code fragment

Every inspection step includes a DMIS code fragment to perform the required

measurements.
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� Start position

Every inspection step includes a safe start position from where to start the

measurements described in the code fragment. This positioning is not part of

the code fragment because it might not be performed if the stylus is already

in a safe position.

� End position

Every inspection step includes a safe end position from where to continue to

the next inspection step. This positioning is not part of the code fragment

because it might not be performed if the next inspection step is at the same

location as the current one.

Every mechanical features is decomposed into di�erent inspection steps. A hole

is decomposed into two inspection steps. A cone representing the chamfer and a

cylinder representing the actual hole (see Figure 4.4 a).

A counterbore is decomposed into four inspection steps|a cone representing the

chamfer, a cylinder representing the bore, a circular plane representing the divider

between the hole and bore and a cylinder representing the hole (see Figure 4.4 b).

A countersink is decomposed into two inspection steps|a cone representing the

sink and a cylinder representing the hole (see Figure 4.4 c).

A counterdrill is decomposed into four inspection steps|a cone representing the

chamfer, a cylinder representing the bore, a cone representing the counterdrill and

a cylinder representing the hole (see Figure 4.4 d).

A slot is decomposed into four inspection steps|two cylinders representing

the two semicylinders and two rectangular planes representing the two sides (see

Figure 4.4 e).

A rectangular pocket is decomposed into eight inspection steps|four cylinders

representing the four corners and four rectangular planes representing the four sides
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(see Figure 4.4 f). A pocket from four points is decomposed in the same manner

as a rectangular pocket.

A pro�lepocket is decomposed into as many inspection steps as there are arcs

and lines in the pro�le. This means that the pocket is �rst described in terms of

arcs and lines. Then an inspection step is created for every cylinder represented by

the arc and for every plane represented by the line (see Figure 4.4 f). A pro�leboss

is decomposed in the same manner as a pro�lepocket.

The start and end position for all inspection steps is a point on the axis of the

primitive feature outside the bounding box of the part (see section 4.2.2).

After the decomposition, the original list of features describing the part does not

exist anymore. Therefore, an administration �le is created describing the original

mechanical features in terms of its primitives. This �le is used during the evaluation

phase to piece the features back together and return meaningful results. Mechanical

features that cannot be described in terms of the DMIS supported primitive features

cannot be inspected by the system. These could include freeform surfaces and other

complex shapes. The result of the decomposition phase is a list of inspection steps

describing the part.

4.3.2 The selection phase

For every primitive feature, the API system must select an appropriate stylus

from a library of ruby ball styli, extensions and adaptors. Ruby ball styli are used

for all probing applications in the API system, extensions provide extra probing

penetration for the styli and adaptors allow you to use all styli on all probes.

To maximize accuracy it is recommended[24] to keep the styli short and sti�.

The more a stylus bends or deects the lower the accuracy. It is also recommended

to keep the stylus ball as large as possible. With large balls, surface �nish has less

e�ect, and more exibility is gained due to the ball/stem clearance (see Figure 4.5).
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EWL

Ball/Stem Clearance

Figure 4.5. Ruby ball stylus

To select a suitable stylus the e�ective working length (EWL) and the ball

diameter are taken into account. The EWL of a stylus (see Figure 4.5) determines

how deep the stylus can safely penetrate a feature and still get a measurement

without fouling the stem on the component. Generally the larger the ball, the

greater the EWL. If the EWL of a stylus is the same as the actual length, a

stylus extension can be used to lengthen the EWL. The ball diameter of a stylus is

determined from the smallest hole to be measured.

A styli set is established for every inspection step. This set contains all the

extension-styli combinations that can be used to perform the required measure-

ments. The set is created by eliminating all unsuitable styli. The eliminations are

accomplished by applying length and diameter �lters. The diameter �lter removes

all styli that have a diameter larger than the one speci�ed in the �lter. The length

�lter removes all styli/extensions with an e�ective working length (EWL)/length

smaller than the one speci�ed in the �lter. If the length of a stylus is equal to its

EWL, the stylus is not removed from the set, because an extension could be used

to lengthen the EWL. The following �lters are applied to get the styli set for the

di�erent primitive features:
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� Cones

The value of the diameter �lter is equal to the minimum of:

1. The diameter of the circle tangent to the two lines representing the feature

hole and the cone (see Figure 4.6 a) minus a default moving clearance. If

the cone is not located inside the feature (see Figure 4.6 b) a default

diameter is used.

2. The diameter at the bottom of the cone (see Figure 4.3 a) minus a default

moving clearance.

The value of the length �lter is equal to the o�set from the centerpoint to the

bottom of the cone (see Figure 4.3 a).

� Cylinders

The value of the diameter �lter is equal to the diameter of the cylinder minus

a default moving clearance.

The value of the length �lter is equal to the depth of the deepest point

measured in the cylinder.

A. Inside feature B. Outside feature

Feature hole

Cone

Cone

Feature Hole

Figure 4.6. Selecting a probe for a cone.
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� Circles

The value of the diameter �lter is equal to the diameter of the circle minus a

default moving clearance.

The value of the length �lter is equal to the o�set from the centerpoint to the

center of the circle (see Figure 4.3 c).

� Circular planes

The value of the diameter �lter is equal to the di�erence of the outside and

inside diameter (see Figure 4.3 e) minus a default moving clearance.

The value of the length �lter is equal to the o�set from the centerpoint to the

the plane.

� Rectangular planes

A rectangular plane does not have an associated method for selecting styli. It

uses styli selected by other primitive features.

A length �lter is only applied to those extensions that are used for styli that

have an EWL which needs to be lengthened. The value of this length �lter is equal

to required EWL for that stylus minus the actual EWL of the stylus. After the

selection phase, each inspection step includes a set of styli.

4.3.3 The optimization phase

During the optimization phase the inspection steps are regrouped into inspection

segments. An inspection segment is a group of inspection steps with common styli

in their styli sets. By creating the inspection segments, a minimum number of

styli changes during the inspection process is ensured. If an inspection segment

has multiple common styli in the styli sets, the best stylus is selected. The best
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stylus is the stylus that provides the greatest accuracy (see section 4.3.2). After

the optimization phase, each inspection segment has only one associated stylus,

thus ensuring the minimal amount of styli changes.

4.3.4 The generation phase

During the generation phase, the API system creates two administrative �les.

One of the �les (see Appendix C) describes the original features in terms of its

primitive features (see section 4.3.1). The other �le contains information on the

styli to be used during the inspection (see section 4.3.2).

Each time the CMM is started, all styli used during inspection need to be

calibrated to insure optimal accuracy. Calibration is needed to establish the exact

ball diameter and the relationship between the center of the ruby ball and the probe

head. By measuring a calibration ball of known dimensions and comparing the

results against the nominal dimensions, the styli de�nition is adjusted by the CMIS

software to minimize the e�ect of measurement errors. For every stylus selected

during the optimization phase, a calibration �le (see Appendix B) is generated to

calibrate all needed orientations (see section 4.2.3) of the stylus. Before inspecting

the part, all calibration �les need to be executed.

Because a part can be located anywhere on the work area of the CMM it is

necessary to create a Part Coordinate System (PCS) which is used as a datum by

the inspection programs. To create a PCS, the API system creates a �xturing �le

(see Appendix D) to determine the position of the part. When executing this �le

the user is asked to manually make a set of measurements on the part. The PCS

is then calculated and saved for use during the actual inspection. A simular �le is

generated for determining the PCS of the calibration ball.

For every inspection step (see section 4.3.1) a fragment of DMIS inspection code

is generated using the DMIS command groups (see section 3.2). Together these
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fragments form the complete inspection program (see Appendix E) which is stored

in an inspection �le.

The command groups can be separated into two main command classes. The

�rst class is the motion class which includes the motion and measurement sequence

groups. The code generated using these commands is used to position the probe

and make measurements. The other class is the nonmotion class which includes all

of the other groups. The code generated using these commands is used to de�ne

features, set velocities, de�ne and select sensors, invoke sensor settings and control

output to �les or communication ports. The following outline is used for the code

fragments of all the primitive features:

- Select a sensor.

- Invoke the sensor settings.

- Set the positioning velocity.

- If necessary, go to the safe start position (see section 4.2.2 and 4.3.1).

- Perform an initial positioning.

- Set the measurement velocity.

- De�ne the feature.

- Start the measurement.

- Measure a point pattern to calculate the geometry of the feature (see below).

- End the measurement.

- Output the data.

- Perform a �nal positioning.

- If necessary, go to the safe end position. (see section 4.2.2 and 4.3.1).

Although the pattern of nonmotion commands is almost identical for all features,

the motion commands are very di�erent. For every primitive feature, a di�erent

pattern of points is used to make measurements. The pattern for a cone and

cylinder consists of two parallel circles on the feature (see Figure 4.7 a,b). A
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a. Cone b. Cylinder c. Circle d. Rectangular plane e. Circular Plane

Figure 4.7. Point selection for primitive features.

circle is determined by measuring three points on the circle (see Figure 4.7 c). A

rectangular plane by four points (see Figure 4.7 d) on the plane and �nally a circular

plane by three points (see Figure 4.7 e).
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CODE EXECUTION

The execution of code is performed by the CMIS[13] user interface which controls

the CMM. The CMIS interface executes one line of DMIS code at a time and waits

for a reply from the CMM before executing the next one.

5.1 Communication

The communication with the CMIS interface is controlled by the CMIS server

which is part of the API system. The server establishes a connection and commu-

nicates with the interface through an RS232 port. Any client program can connect

to the server and send requests. A reply is given to every request.

When sending the request BUFFER n, n being a number greater than zero, the

server creates a bu�er to store n lines of DMIS code. The reply to this request is

Bu�er set. By using a bu�er, the client can send a DMIS code fragment to the

CMIS server without having to wait for execution of the code. The CMIS server

executes the code, takes care of errors and stores the replies from the CMM in

a queue. The client can continue performing other tasks while the code is being

executed, and replies can be requested at a later time. If a bu�er already exists

upon receiving the bu�er request, the old bu�er is emptied and the code stored is

lost.

When sending a line of DMIS code as a request, three replies are possible. If a

bu�er exists, the line is stored in the bu�er and the reply Added to bu�er is sent
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to the client. If the line sent is the last line (number n), the CMIS server will send

the reply Emptying bu�er and start executing the bu�ered code. If no bu�er exists,

the line is executed by the CMIS server and the reply from the CMM is sent to the

client. In this case, the client has to wait for the CMM to �nish execution of the

line.

By sending the request REPLY, the CMIS server pops a reply from the queue

and sends it to the client. If the reply queue is empty when a reply request is

received, the server will reply with an ENDREPLY message. If a reply queue exists

upon creating a new bu�er, the queue is emptied and the replies stored are lost.

Because the CMIS server is a separate program, it is possible to specify an

inspection �le name on the command line. In this case, the server does not accept

connections with any clients but executes the DMIS code in the inspection �le and

sends the CMM replies to standard output.

5.2 Error detection

When the CMM replies with an error after attempting to execute a line of DMIS

code, the CMIS server discontinues execution of the bu�ered code and informs the

client of the error upon receiving the next REPLY request. After informing the

client, the server will break the connection with the CMIS interface, initialize all

variables and try to establish a new connection. The client has to deal with the

error in an appropriate way to minimize its impact. For example, the API system

will inform the user of the error and asks to restart the inspection.
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USER INTERFACE

The user interface makes the use of the API systemmore convenient by providing

a user-friendly way of operating the system. The user interface consist of several

parts.

6.1 Code generation

The interface provides an area in which a mechanical part can be displayed.

By selecting a set of features in this area, the user can create a feature list (see

section 4.2) to be used for generating inspection code.

6.2 Simulation

After generating a DMIS inspection �le, it is possible to simulate the inspection

process. Along with the commands in the motion and measurement sequence

groups, sensor selections and velocity settings are simulated by the API system.

In order to perform a simulation, the inspection �le is parsed and an inspection

object is created. An inspection object contains all the information needed to

simulate or perform the execution of a single inspection �le. An inspection object

consists of several items.

The �rst item is the initial code fragment which is used when performing the

actual inspection (see section 6.3). It is not needed for the simulation and consists
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of commands to initialize the inspection process, such as �le name de�nitions and

parameter settings. The initial code fragment is executed a single time at the

beginning of every part inspection.

Another item is the �nal code fragment which is also used when performing the

actual inspection. It consists of commands to �nalize the part inspection, such

as selecting a sensor orientation and moving to a default position. The �nal code

fragment is executed after completing a part inspection.

Finally, for every inspection segment (see section 4.3.3) a simulation object is

created and added to a list stored in the inspection object. A simulation object

contains all the information needed to simulate or perform the inspection of a single

inspection segment.

The simulation object contains several items, such as a start time at which the

�rst motion in the inspection segment occurs and an end time for the last motion.

It also contains a list of action objects. Action objects contain the actions

performed at speci�c time steps during the simulation. Besides the time at which

to perform the action, an action object contains any combination of the following

items:

� The position to where the stylus will move during this action.

� The point that is being measured during this action.

� The orientation change of the sensor during this action.

� The message that needs to be displayed at this time.

� The polyline representing the path of the stylus during this action.

Another item in the simulation object is a list of inspection objects. An in-

spection object contains a code fragment consisting of DMIS commands that must

be executed together. These fragments include feature measurements, changing of
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sensors, orientation of sensors, positioning of sensors and output of data. The larger

code fragment associated with the inspection segment is decomposed into smaller

code fragments which are stored in the inspection objects. An inspection object

also contains the time at which to execute the code fragment and a list of replies

for all the commands in the code fragment.

Finally the simulation object contains a motion curve and a stylus. A motion

curve is a function that speci�es the values of several transformations over time and

is used by Alpha 1 to animate models. By using the time, position and orientation

slots in the action objects, translation and rotation transformations over time are

speci�ed and stored in the motion curve. The geometry of the stylus is used as the

model that is animated by the motion curve.

During the simulation, the user can control several options (see Figure 6.1), in-

cluding selecting an inspection segment, displaying the part, displaying the inspec-

tion path, displaying the stylus, obtaining information on the stylus (see Figure 6.2),

toggling the sound and starting the actual simulation. The actual simulation is

controlled by the preview widget (see Figure 6.3). This widget consists of a set

of VCR control buttons indicating stop, play forward, play backward, fast forward

and fast backward. The preview widget executes the action objects at the correct

time. During the simulation, the code fragments in the inspection objects are not

executed.

6.3 Inspection

Before starting the inspection process, a connection with the CMIS server is au-

tomatically established. The server executes the DMIS commands (see Chapter 5)

and stores replies from the CMM. The following options are available in the user

interface and must be performed in order to inspect a part:
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Figure 6.1. Options during simulation.

Figure 6.2. Stylus information window.
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Figure 6.3. Preview widget.

� Locate Calibration Ball

Before calibrating the styli needed for the inspection, the Part Coordinate

System (see section 4.3.4) of the calibration ball must be calculated. This is

accomplished by sending the pregenerated �xturing �le to the CMIS server.

Because the PCS is used by the CMIS interface, it is stored locally and no

reply requests are sent to the CMIS server.

� Calibrate Styli

Before inspecting the part all styli needed during the inspection must be

calibrated (see section 4.3.4) by sending the di�erent calibration �les (see

section 4.3.4) to the CMIS server. Because the calibration results are used

by the CMIS interface they are stored locally and no reply requests are sent

to the CMIS server.

� Locate Part

Before inspecting the part, the PCS of the part must be calculated. This is

accomplished by sending the pregenerated �xturing �le to the CMIS server.
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Because the PCS is used by the CMIS interface and the code generator, a

reply request is send to the CMIS server to obtain the correct orientation of

the part.

� Inspect Part

The inspection object described in section 6.2 is also used for the actual

inspection. During the inspection the user, has the same control as in the

simulation. The only di�erence is the fact that the code fragments stored in

the inspection objects are executed at the correct time. Before sending a code

fragment to the server, the API system requests all replies from previous code

fragments and stores them in a result �le. This �le contains all measurement

results for the inspection. By sending the entire code fragment to the CMIS

server, the API system does not have to wait for the execution of the code and

can continue with the simulation.

6.4 Evaluation

The evaluation section of the API system uses data stored in the result �le and

information from the administration �le (see section 4.3.4) to present the user a

graphical and written representation of the inspection results.

The written report gives an overview of all the inspected features. It reports

the nominal and actual dimensions of the part and also indicates the di�erence

between these dimensions. According to the tolerances speci�ed by the user (see

section 4.2.4) it indicates whether the features are within or out of tolerance.

Tolerances are globally speci�ed in the tolerance information area of the user

interface (see Figure 6.4).

By selecting a feature detailed information is requested, the feature is displayed

in a di�erent area (see Figure 6.5) and numerical information is presented to specify
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Figure 6.4. Tolerance information.

Figure 6.5. Evaluation results.

which part of the feature is out of tolerance. The graphical representation of the

inspection results uses a color coding to indicate which features are out of tolerance.

Features within tolerance are green and features out of tolerance are red.



CHAPTER 7

FUTURE WORK

Although the current version of the API system is complete and can be used for

a variety of inspection problems, much work can be done to improve the system.

Currently only inspection steps (see section 4.3.1) associated with the �ve prim-

itive features exist. These inspection steps are used to measure a primitive feature

and compare the actual dimensions against the nominal dimensions after the mea-

surements. The user is always forced to inspect a feature in a prede�ned manner.

To provide for multiple methods of decomposition, more inspection steps should

be implemented. Some examples are inspection steps associated with the possible

ANSI tolerances (see section 4.2.4). Also, it should be possible for the user to

inuence the decomposition of features. This could be done by storing speci�c

tolerance requirements with every feature and using this information to perform

the decomposition. Another option would allow the user to set default parameters

for decomposition, such as the number of points measured on a circle.

Only four global tolerances (see section 4.2.4) can currently be speci�ed in

the system, they apply to all measurements and are not feature speci�c. More

tolerances should be available, and, in particular it ougth to be possible to specify

one for each separate feature. The API system should also use the tolerance related

commands in DMIS to implement the inspection steps for these tolerances.

Only the features mentioned in section 4.2.1 can be inspected. All features

de�ned in the Alpha 1 system should be supported by the API system.
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One probe orientation is chosen for every primitive feature. The tilt and roll of

the probe are speci�ed in increments of 7:5� (see section 4.2.3) and features oriented

using the same orientations can be inspected without a problem. Features that are

not oriented in the same manner might need more than one probe orientation to

perform all necessary measurements. An algorithm is needed to select the probe

orientations necessary to inspect a primitive feature. Also the outline of the code

fragment (see section 4.3.4) for the primitive features will need to be adjusted to

allow for multiple probe orientations within one measurement.

The only safety feature is the collision avoidance provided by the bounding box

(see section 4.2.2). The user has real time control over the inspection process

and can cause unexpected collisions. For instance, if the user selects a di�erent

inspection segment (see section 4.3.3) while the inspection is paused (stop button

pressed) and the stylus is located inside a hole, a collision will occur because the

probe orientation will change while the stylus is inside the hole. The system should

provide a method to ensure that when a request for a sensor change is made, a

move to a safe position will always be made.

Currently, the initial feature list (see section 4.2) holds no information on in-

teraction between features (see section 4.2.5). Therefore the API system always

assumes that the entire feature is available for measurement. A method should be

developed to determine what part of a feature is available for measurement, and

this information should then be provided to the API system to ensure correct code

generation.



CHAPTER 8

SUMMARY

This thesis describes an approach for an easy, accurate, fast and e�cient feature-

based inspection system for mechanical parts. The code generator provides a fast

and accurate method of creating correct DMIS inspection code from geometric

data. It eliminates the need for manual programming which can be an error prone

and time consuming task. The simulation of the inspection gives the user better

feedback during the execution of programs and can provide a testing ground for

experimental code. By establishing direct communication with the CMIS interface,

user input during inspection is reduced to a minimum. Results are available after

every measurement, and errors are dealt with in an appropriate way. The evaluation

phase of the system provides an intuitive graphic representation of the inspection

results and generates written reports on the inspected parts. Finally, the user

interface pieces the di�erent segments together and makes the system e�cient, and

easy to use. The API system meets the needs of many users, especially, in an

environment where new parts are manufactured on a regular basis.



APPENDIX A

AN EXAMPLE

In appendices B,C,D and E we will show the di�erent �les generated when using

the system for a part including a counterbore (see Figure A.1) of the following

dimensions:

� Location = 0,0,0

� Bore diameter = 0.6

� Bore Depth = 0.35

� Hole diameter = 0.5

� Hole depth = 1

� Chamfer= 0.05

The corresponding Alpha 1 command is:

CBore1 := counterBore( origin, 0.6, 0.35, 0.5, 1, 0.05, T );

Figure A.1. A counterbore.



APPENDIX B

CALIBRATION FILE

The calibration �le for the part in Appendix A will look as follows:

DMISMN/'bcf.cal 3.22'

FILNAM/'ON'

FILNAM/COORD,'setcal.crd',INPUT

WKPLAN/XYPLAN

PRCOMP/ON

FINPOS/OFF

UNITS/INCH,ANGDEC

MODE/PROG,MAN

FEDRAT/POSVEL,MPM,9.2

GOTO/15,15,20

DISPLY/STOR,DMIS

SAVE/D(MCS)

MODE/AUTO,PROG,MAN

RECALL/D(MCS)

S(home)=SNSDEF/PROBE,INDEX,POL,90.0,0.0,0,0,-1,5.35433,0.23622

SNSLCT/S(home)

FEDRAT/POSVEL,MPM,9.2

GOTO/20,40,20

TEXT/OPER,'insert stylus bcf !'

FILNAM/SENS,'bcf.sns',OUTPUT,OVERWR

RECALL/D(CAL)

FEDRAT/POSVEL,MPM,9.2

GOTO/0,0,7.84646

FEDRAT/MESVEL,MPM,0.48

MODE/AUTO,PROG,MAN

SNSET/APPRCH,0.5

SNSET/RETRCT,0.5

SNSET/SEARCH,0.5

SNSET/CLRSRF,1.5

S(0_0)=SNSDEF/PROBE,INDEX,POL,0.0,0.0,0,0,-1,5.74803,0.19685

SNSLCT/S(0_0)
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GOTO/0,0,1.5

FEDRAT/POSVEL,MPM,1.5

F(CALBALL)=FEAT/SPHERE,OUTER,CART,0.0,0.0,0,1

CALIB/SENS,S(0_0),F(CALBALL),9

ENDMES

DISPLY/STOR,DMIS

SAVE/S(0_0)

FEDRAT/POSVEL,MPM,9.2

GOTO/0,0,7.84646

RECALL/D(MCS)

MODE/AUTO,PROG,MAN

FILNAM/COORD,'setcal.crd',INPUT

RECALL/D(MCS)

S(home)=SNSDEF/PROBE,INDEX,POL,90.0,0.0,0,0,-1,5.74803,0.19685

SNSLCT/S(home)

FEDRAT/POSVEL,MPM,9.2

GOTO/15,15,20

ENDFIL



APPENDIX C

STYLUS INFORMATION FILE

The stylus information �le for the part in Appendix A will look as follows:

For setting the Calibration Coordinate system use :

name : bbg

adapter : sa3 (L = 5 mm)

extension : se4 (L = 10 mm)

stylus : ps14r (L = 10 mm, D = 6 mm)

length : 0.984252 inch

diameter : 0.23622 inch

For setting the Part Coordinate System use :

name : bbg

adapter : sa3 (L = 5 mm)

extension : se4 (L = 10 mm)

stylus : ps14r (L = 10 mm, D = 6 mm)

length : 0.984252 inch

diameter : 0.23622 inch

For inspecting the part use the following setups :

name : bcf

adapter : sa3 (L = 5 mm)

extension : se5 (L = 20 mm)

stylus : ps13r (L = 10 mm, D = 5 mm)

length : 1.37795 inch

diameter : 0.19685 inch

There is no stylus to measure B1PLANE !



APPENDIX D

FIXTURING FILE

The �xturing �le for the part in Appendix A will look as follows:

DMISMN/'part.fix 3.22'

FILNAM/'ON'

FILNAM/COORD,'part.crd',OUTPUT,OVERWR

FILNAM/DATA,'part.pos',OUTPUT,OVERWR

WKPLAN/XYPLAN

PRCOMP/ON

FINPOS/OFF

UNITS/INCH,ANGDEC

MODE/PROG,MAN

FEDRAT/POSVEL,MPM,9.2

GOTO/15,15,20

DISPLY/STOR,DMIS

SAVE/D(MCS)

MODE/AUTO,PROG,MAN

RECALL/D(MCS)

S(home)=SNSDEF/PROBE,INDEX,POL,90.0,0.0,0,0,-1,5.35433,0.23622

SNSLCT/S(home)

FEDRAT/POSVEL,MPM,9.2

GOTO/20,40,20

TEXT/OPER,'insert stylus bbg !'

FILNAM/SENS,'bbg.sns',INPUT

GOTO/15,15,20

RECALL/S(0_0)

SNSLCT/S(0_0)

DISPLY/STOR,DMIS

SAVE/D(MCS)

MODE/MAN

F(OrigLine)=FEAT/LINE,UNBND, CART, 0, 0, 0, 0, 0, 1,0.0,-1,0.0

F(Origin)=FEAT/POINT,CART, 0, 0, 0,0.0,0.0,1

WKPLAN/XYPLAN

TEXT/OPER,'Measure XY plane'
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F(XYPlane)=FEAT/PLANE,CART,0.0,0.0,0.0,0.0,0.0,1

MEAS/PLANE,F(XYPlane),3

ENDMES

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/FA(XYPlane)

WKPLAN/ZXPLAN

TEXT/OPER,'Measure ZX plane'

F(ZXPlane)=FEAT/PLANE,CART,0.0,0.0,0.0,0.0,1,0.0

MEAS/PLANE,F(ZXPlane),3

ENDMES

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/FA(ZXPlane)

WKPLAN/YZPLAN

TEXT/OPER,'Measure YZ plane'

F(YZPlane)=FEAT/PLANE,CART,0.0,0.0,0.0,1,0.0,0.0

MEAS/PLANE,F(YZPlane),3

ENDMES

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/FA(YZPlane)

CONST/LINE,F(OrigLine),INTOF,FA(XYPlane),FA(ZXPlane)

CONST/POINT,F(Origin),INTOF,FA(YZPlane),FA(OrigLine)

D(PCS)=ROTATE/XAxis,FA(XYPlane),ZDIR

D(PCS)=ROTATE/YAxis,FA(XYPlane),ZDIR

D(PCS)=ROTATE/ZAxis,FA(YZPlane),-XDIR

D(PCS)=ROTATE/ZAxis,FA(ZXPlane),-YDIR

D(PCS)=TRANS/XOrig,FA(Origin)

D(PCS)=TRANS/YOrig,FA(Origin)

D(PCS)=TRANS/ZOrig,FA(Origin)

DISPLY/STOR,DMIS

SAVE/D(PCS)

MODE/MAN

TEXT/OPER,'Get proper clearence'

MODE/AUTO,PROG,MAN

FILNAM/COORD,'part.crd',INPUT

RECALL/D(MCS)

S(home)=SNSDEF/PROBE,INDEX,POL,90.0,0.0,0,0,-1,5.35433,0.23622

SNSLCT/S(home)

FEDRAT/POSVEL,MPM,9.2

GOTO/15,15,20

ENDFIL



APPENDIX E

INSPECTION FILE

The inspection �le for the part in Appendix A will look as follows:

DMISMN/'CBore1-1.ins 3.22'

FILNAM/'ON'

FILNAM/COORD,'part.crd',INPUT

FILNAM/DATA,'CBore1-1.dat',OUTPUT,OVERWR

WKPLAN/XYPLAN

PRCOMP/ON

FINPOS/OFF

UNITS/INCH,ANGDEC

MODE/PROG,MAN

FEDRAT/POSVEL,MPM,9.2

GOTO/15,15,20

DISPLY/STOR,DMIS

SAVE/D(MCS)

MODE/AUTO,PROG,MAN

RECALL/D(MCS)

S(home)=SNSDEF/PROBE,INDEX,POL,90.0,0.0,0,0,-1,5.74803,0.19685

SNSLCT/S(home)

FEDRAT/POSVEL,MPM,9.2

GOTO/20,40,20

RECALL/D(PCS)

TEXT/OPER,'insert stylus bcf !'

FILNAM/SENS,'bcf.sns',INPUT

GOTO/0,0,7.84646

RECALL/S(0_0)

SNSLCT/S(0_0)

SNSET/APPRCH,0.0656168

SNSET/RETRCT,0.0656168

SNSET/SEARCH,0.5

SNSET/CLRSRF,0.5

SNSET/DEPTH,0.0712598
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FEDRAT/POSVEL,MPM,9.2

GOTO/0.0,0.0,2.5

GOTO/0.0,0.0,0.5

FEDRAT/POSVEL,MPM,1.5

FEDRAT/MESVEL,MPM,0.48

MODE/PROG,MAN

F(B1A1)=FEAT/CYLNDR,INNER,CART,0.0,0.0,-0.12126,0.0,0.0,1.0,0.6

MEAS/CYLNDR,F(B1A1),10

PTMEAS/CART,0.3,0.0,-0.19252,-1.0,0.0,0.0

PTMEAS/CART,0.0927051,0.285317,-0.19252,-0.309017,-0.951057,0.0

PTMEAS/CART,-0.242705,0.176336,-0.19252,0.809017,-0.587785,0.0

PTMEAS/CART,-0.242705,-0.176336,-0.19252,0.809017,0.587785,0.0

PTMEAS/CART,0.0927051,-0.285317,-0.19252,-0.309017,0.951057,0.0

PTMEAS/CART,0.3,0.0,-0.05,-1.0,0.0,0.0

PTMEAS/CART,0.0927051,0.285317,-0.05,-0.309017,-0.951057,0.0

PTMEAS/CART,-0.242705,0.176336,-0.05,0.809017,-0.587785,0.0

PTMEAS/CART,-0.242705,-0.176336,-0.05,0.809017,0.587785,0.0

PTMEAS/CART,0.0927051,-0.285317,-0.05,-0.309017,0.951057,0.0

ENDMES

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/F(B1A1)

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/FA(B1A1)

GOTO/0.0,0.0,0.5

RECALL/S(0_0)

SNSLCT/S(0_0)

SNSET/APPRCH,0.0656168

SNSET/RETRCT,0.0656168

SNSET/SEARCH,0.5

SNSET/CLRSRF,0.5

SNSET/DEPTH,0.325

FEDRAT/POSVEL,MPM,9.2

GOTO/0.0,0.0,0.5

FEDRAT/POSVEL,MPM,1.5

FEDRAT/MESVEL,MPM,0.48

MODE/PROG,MAN

F(B1A2)=FEAT/CYLNDR,INNER,CART,0.0,0.0,-0.675,0.0,0.0,1.0,0.5

MEAS/CYLNDR,F(B1A2),10

PTMEAS/CART,0.25,0.0,-1.0,-1.0,0.0,0.0

PTMEAS/CART,0.0772542,0.237764,-1.0,-0.309017,-0.951057,0.0

PTMEAS/CART,-0.202254,0.146946,-1.0,0.809017,-0.587785,0.0

PTMEAS/CART,-0.202254,-0.146946,-1.0,0.809017,0.587785,0.0

PTMEAS/CART,0.0772542,-0.237764,-1.0,-0.309017,0.951057,0.0
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PTMEAS/CART,0.25,0.0,-0.35,-1.0,0.0,0.0

PTMEAS/CART,0.0772542,0.237764,-0.35,-0.309017,-0.951057,0.0

PTMEAS/CART,-0.202254,0.146946,-0.35,0.809017,-0.587785,0.0

PTMEAS/CART,-0.202254,-0.146946,-0.35,0.809017,0.587785,0.0

PTMEAS/CART,0.0772542,-0.237764,-0.35,-0.309017,0.951057,0.0

ENDMES

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/F(B1A2)

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/FA(B1A2)

GOTO/0.0,0.0,0.5

RECALL/S(0_0)

SNSLCT/S(0_0)

SNSET/APPRCH,0.02

SNSET/RETRCT,0.02

SNSET/SEARCH,0.5

SNSET/CLRSRF,0.5

MODE/PROG,MAN

FEDRAT/POSVEL,MPM,9.2

GOTO/0.0,0.0,0.5

FEDRAT/POSVEL,MPM,1.5

FEDRAT/MESVEL,MPM,0.48

F(B1B)=FEAT/CONE,INNER,CART,0.0,0.0,0.0,0.0,0.0,1.0,90

MEAS/CONE,F(B1B),6

PTMEAS/CART,0.305,0.0,-0.045,-0.707107,0.0,0.707107

PTMEAS/CART,-0.1525,0.264138,-0.045,0.353553,-0.612372,0.707107

PTMEAS/CART,-0.1525,-0.264138,-0.045,0.353553,0.612372,0.707107

PTMEAS/CART,0.345,0.0,-0.005,-0.707107,0.0,0.707107

PTMEAS/CART,-0.1725,0.298779,-0.005,0.353553,-0.612372,0.707107

PTMEAS/CART,-0.1725,-0.298779,-0.005,0.353553,0.612372,0.707107

ENDMES

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/F(B1B)

DISPLY/COMM,DMIS,STOR,DMIS

OUTPUT/FA(B1B)

GOTO/0.0,0.0,0.5

FEDRAT/POSVEL,MPM,9.2

GOTO/0.0,0.0,2.5

FEDRAT/POSVEL,MPM,9.2

GOTO/0.0,0.0,8.87008

MODE/AUTO,PROG,MAN

FILNAM/COORD,'part.crd',INPUT

RECALL/D(MCS)
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S(home)=SNSDEF/PROBE,INDEX,POL,90.0,0.0,0,0,-1,5.74803,0.19685

SNSLCT/S(home)

FEDRAT/POSVEL,MPM,9.2

GOTO/15,15,20

ENDFIL
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