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ABSTRACT

Heterogeneous computing creates a need for transparent communication between

distributed software components. Transparent communication is often handled

by preexisting low-level communication software packages. A high-level abstract

communication architecture leverages o� of a pre-existing low-level communication

software package to facilitate the creation of distributed software components and

to provide simple methods for their integration into distributed applications.

BORG is a high-level abstract communication architecture that fosters the

evolution of legacy systems into an object model by providing tools that simplify

the creation, acquisition and use of distributed software components within that

legacy system. A distributed bulletin board assists applications in obtaining and

integrating distributed software components which have been created from the

legacy system. Distributed software components can be crafted from the legacy

system via tools that abstract and encapsulate the functionality provided by the

low-level communication software package.
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CHAPTER 1

INTRODUCTION

There is a need in today's distributed and heterogeneous computing world for

transparent software communication. It may be necessary for one piece of software

to communicate with others, whether they are currently executing or not, and

whether or not they execute on a local or remote machine. The user should see a

seamless interaction between the separate pieces of software, while invisible layers

of communication code handle the technical aspects of their interaction.

It is no longer necessary or adaquate for an entire application to run in one

process and on one processor. Applications should be dynamic and exible in

their execution, allowing multiple processes to handle the job formerly reserved

for the old monolithic application. Moreover, these processes no longer need to

be con�ned to a single processor. With a host of machines at one's disposal, it

is advantageous to \farm out" the work load of an application to other available

machines, processing in separate parallel processes, parts of the application that

can be executed independently[6].

The ability of an application to run in multiple processes bene�ts the user

through scalability and composeability[1]. The individual processes that constitute

a multi-process application can be thought of as objects interacting with one an-

other to form a single application. These objects are a division of the application's

work load into smaller, more manageable parts. Individually, the objects provide

one particular service. Yet, composing them can produce arbitrarily large and

complex applications. For example, an object that provides an input/output service

and an object that provides a geometric model viewing service may be composed

to form an application that can display a geometric model that has been read from
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disk. The individual objects can also be replicated to enhance their power for a given

application. For example, an object that performs a matrix multiplication could

be used multiple times by an application that is computing large transformations.

If the objects that make up an application are actually separate processes, they

may be executed on multiple processors to bene�t the user in terms of performance

optimization. Objects that can be executed in separate processes are referred to

as distributed objects. An application that is comprised of one or more distributed

objects is termed a distributed application. Distributed applications that must

perform large computations can \farm out" individual parts of the computation

to multiple distributed objects executing on separate processors. A distributed

application that has several unique distributed objects can execute the objects

individually on separate processors in order to tune performance to an acceptable

level.

The user requires that the individual objects of a distributed application com-

municate seamlessly. Users do not want to be, nor should they be subjected to

anything more than a simple transparent command or click. All of their actions

should ow smoothly from one object to another, never concerning the users with

the fact that the objects may be executing in separate processes on machines all

over the world rather than contained in one large local process[6].

Whereas the user focuses only on the top level seamlessness of a distributed

application, the programmer must be concerned with a broad spectrum of issues,

ranging from low-level communication aspects such as sockets and marshaling,

to the di�culties of high-level transparent interaction. The programmer must

deal with writing low-level communication software, integrating it into high-level

application code and �nally making the user visible interaction appear seamless.

Fortunately, due to reusable object-oriented software, a programmer may not

have to rewrite every aspect of a distributed application from scratch. There are

many di�erent systems and products that have abstracted and encapsulated the

low-level communications necessary to help create distributed software. Imple-

mentations of the Object Management Group's (OMG) Common Object Request
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Broker Architecture (CORBA)[10] and Douglas Schmidt's ADAPTIVE Communi-

cation Environment (ACE)[18] are examples of these distributed system software

packages which help programmers focus on the design and implementation of a

high-level abstract communication architecture.

A high-level abstract communication architecture facilitates the writing of dis-

tributed applications by providing a simple method for the creation of distributed

objects and for their integration into a distributed application. An application

programmer is presented with tools for creating new distributed objects and for

combining those objects with others to form an arbitrarily complex distributed

application. The tools use preexisting distributed system software packages and

provide the programmer with a large degree of exibilitywhile requiring only limited

knowledge of the tools' underlying structure.

This thesis will examine the aspects of one such high-level abstract commu-

nication architecture; BORG. Written for use by the Alpha 1 Geometric Mod-

eling and Manufacturing Software System, the BORG System contains tools for

creating distributed applications from legacy code. The BORG System employs a

distributed bulletin board which helps applications obtain and integrate distributed

objects that have been created from the legacy code. The BORG System tools

take advantage of the abstracted and encapsulated functionality provided by a

distributed system software package, namely an implementation of the Common

Object Request Broker Architecture (CORBA). An application programmer can

use the tools to create specialized distributed objects that are crafted from the

legacy code, and ready for use in an application. The application programmer

can also use preexisting distributed objects as part of the implementation of a

distributed application in the BORG System.

The legacy code that is assimilated by the BORG System is software that

performs useful tasks or actions for the user, but could bene�t from being updated

with more state-of-the-art software engineering methods. The tasks or actions

performed by the legacy code are called services. BORG System tools convert such

legacy code services into BORG System service providers. These service providers
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place an object-oriented interface on legacy code services that are not necessarily

object-oriented. The BORG System tools produce service providers that can be

used as distributed objects and composed into a distributed application.

The BORG System bulletin board allows applications to gain access to service

providers. Applications that request access to a service provider through the

bulletin board may use that access to employ the service or send a message to

it. Applications will use descriptive tokens as quali�ers in their requests. Tokens

describe the service providers whose access is sought or the set of service providers

to which an application may wish to send a message.

Chapter 2 describes work related to the BORG System. This includes discus-

sions of distributed system software packages as well as current methods of service

composition with in the Alpha 1 System. Chapter 3 presents a general overview

of the BORG System while also exposing its components. Chapters 4 through 7

explain the details of individual BORG System components and Chapter 8 presents

the results of this work.



CHAPTER 2

RELATED WORK

The BORG System is based on concepts from arti�cial intelligence and dis-

tributed application programming environments. The \bulletin board" concept

is similar to the AI HEARSAY-II blackboard system[2], whereas the high-level

communication architecture has its roots in distributed programming environments

such as ACE[18], OLE[5], CORBA[9] and OpenDoc[11].

2.1 Blackboard Systems

Blackboard systems were �rst developed for the HEARSAY-II project between

1971 and 1976 at Carnegie-Mellon University[2]. HEARSAY-II was a speech recog-

nition system that used the blackboard approach to construct the meaning of a

spoken sentence and perform the requested action. It was designed to be task

independent, depending on the vocabulary and semantic speci�cations, but for

experimentation purposes was instructed to respond to queries of a database con-

taining arti�cial intelligence abstracts.

Blackboard systems consist of three parts: knowledge sources, a blackboard,

and control structures. For each application, the domain of knowledge is split into

small parts called knowledge sources, each of which contains a portion of the total

information from the domain. These knowledge sources are independent entities,

not aware of any of the other knowledge sources in the system. As such, they need

only communicate with the blackboard and not with each other.

The blackboard is a globally accessible repository containing data produced by

knowledge sources. It consists of multiple levels that express the di�erent stages

of hypothesis formation for the given domain. Thus, for the HEARSAY-II project

which was designed for speech recognition, the blackboard levels were the wave form
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of the spoken command, sound segments, syllable classes, words, word sequences

and phrases[15].

The control structure or scheduler determines when an individual knowledge

source should become active, applying its knowledge to the current state of the

blackboard. When the blackboard has been altered, it is the job of the control

structure to determine which knowledge source or sources should next be applied

to the blackboard and in what order. The control structure must have some basic

information concerning the individual knowledge sources, as well as the general

outline of a solution path in order to make decisions as to the order of knowledge

source activation.

The general ow of a blackboard system begins with the input of data from an

outside source into the lowest level of the blackboard. The control structure then

determines which knowledge source should be applied in order to make the best

gains toward a solution. The chosen knowledge source will then examine the current

data on the blackboard and alter that data based on its speci�c knowledge of the

domain. A �nal solution is obtained when the control source determines that there

are no appropriate knowledge sources to apply to the current blackboard data.

The base design of the BORG System relates closely to the design of HEARSAY-

II. Much like HEARSAY-II, the BORG System uses individual entities (BORG: ser-

vice providers, HEARSAY-II: knowledge sources) which communicate with a com-

mon repository (BORG: bulletin board, HEARSAY-II: blackboard). The BORG

System combines HEARSAY-II's blackboard and control structure into a central lo-

cation, called the bulletin board, which ultimately controls the use of the individual

service providers in the system.

2.2 ACE

The ADAPTIVE Communication Environment (ACE)[18], developed at Wash-

ington University by Dr. Douglas Schmidt, is an object-oriented framework de-

signed to ease the development of distributed applications.
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By reusing the C++ wrappers and frameworks provided by ACE, develop-

ers are freed from spending their time reinventing solutions to commonly

recurring tasks. In turn, this enables them to concentrate on the key

higher-level functional requirements and design concerns that constitute

particular applications.[18, p. 13]

The ACE wrappers abstract and encapsulate into an object-oriented frame-

work the low-level UNIX system functionality that is used to create distributed

applications. General categories of C++ classes abstract the following low-level

services[18]:

� Event demultiplexing and service dispatching;

� Local and remote IPC mechanisms;

� Memory-mapped �les;

� System V IPC mechanisms;

� Multi-threading and synchronization mechanisms;

� Explicit dynamic linking mechanisms.

Object classes from these categories may be combined in applications to obtain

the required functionality. By using the object-oriented C++ interfaces, ACE is

able to monitor the problematic type checking of ambiguous system variables at

compile-time, rather than at run-time.

The ACE wrappers are used by the ADAPTIVE Service eXecutive (ASX) frame-

work to simplify the creation of distributed applications. ASX provides common de-

sign patterns for development, while separating them into application independent

and application speci�c concerns. The greatest bene�t of ASX is that it \encourages

the development of standard communication-related components by decoupling

processing functionality from the surrounding framework infrastructure."[18, p. 14]



8

ACE is a mid-level communication system that has abstracted low-level com-

munication functionality. The BORG System is a high-level communication archi-

tecture that uses a preexisting communication subsystem, such as ACE, to handle

the more mundane aspects of the underlying communication code.

2.3 OLE

Object Linking and Embedding (OLE)[5], developed by the Microsoft Corpora-

tion for its Windows based applications, is a standard set of object services. OLE

allows a document to consist of objects produced from many di�erent applications.

These objects can be anything from text to graphics to video. The programmer

can incorporate these objects into an application using the OLE application pro-

gramming interface.

Objects contain two types of data: presentation data and native data. Presenta-

tion data is that data necessary to display the object in a window. Native data are

that data necessary for editing the object. As the Object Linking and Embedding

name implies, objects can be either linked or embedded into a document. When

an object is linked, only its presentation data are physically in the document. The

object's native data are accessed via a link to its place of \permanent" residence

(e.g., a �le or disk). Alternatively, both the presentation and native data of

an embedded object reside wholly in the document. Linked objects have the

disadvantage that the document in which they are used cannot be transported

outside the local �le system, whereas embedded objects enlarge the document size

since the whole object must be stored therein.

OLE supports visual \in-place" editing. This capability allows the user to

activate and edit an object, whether inside the document or inside another object,

without having to start a completely new application. Objects may be transfered

between documents or between objects via \drag and drop" capabilities provided

by OLE. Objects may even be converted from one application's format to another.

Additionally, OLE allows programmers to de�ne operations for an application

that are accessible to other applications. For instance, a document containing
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a spreadsheet table can send a macro to a spreadsheet program, requesting that it

sort and recalculate the table[5].

The BORG System gleans from OLE the concept of separate objects that are

combined to construct one document. The BORG System's individual service

providers can be combined to form a large application. Thus, just as OLE objects

can be used in multiple documents to create a standard appearance, BORG service

providers can be used in multiple applications to take advantage of pre-existing

functionality.

2.4 CORBA

The Object Management Group (OMG) is a nonpro�t consortium of industry

leading software companies, vendors and individuals, who have come together in

a joint e�ort to propose standards for an object-oriented application development

environment based on object technology and distributed computing. The Object

Management Architecture (OMA)[3] is the central outline of the OMG's work,

dividing all object systems into four constituent parts for which the OMG will

propose standards. These areas are [7]:

� Object Request Broker (ORB)

� Object Services (OS)

� Common Facilities (CF)

� Application Objects (AO)

The ORB is the central component of any object system, handling the commu-

nication between all objects in the system, regardless of their location, platform

or implementation. The OMG's proposed standard for an ORB is the Common

Object Request Broker Architecture (CORBA).

ORBs, and speci�cally CORBA compliant ORB implementations (that is to say,

an ORB that has been implemented to comply with all of the speci�cations of the

CORBA standard), handle the messages passed between objects. All interobject



10

messages in the system will move from the sending (client/stub) object, through

the ORB internals and on to the receiving (server/skeleton) object.

A CORBA object is de�ned as an object-oriented service plus a CORBA proxy

object. Object-oriented services are contained within a CORBA server process.

Typically, a client application will want to invoke an operation of some object-

oriented service. CORBA handles this invocation with the use of a CORBA proxy

object. A proxy provides access to other objects for the purposes of encapsulation

or distribution. A CORBA proxy object is made up of a client side, the ORB,

and a server side. The client side will receive the invocation request from the

client program. Using the ORB, the client side will send the invocation message

to the server side of the CORBA proxy object. The server side is connected to

the actual object-oriented service and will invoke the appropriate operation of that

object-oriented service (see Figure 2.1).

Since the client and server sides of the CORBA proxy object are often not located

within the same process space, the ORB must handle any low-level communication

requirements that may be necessary for their interaction such as delivery services,

activation and deactivation of remote objects, method invocation, parameter en-

ORB
Message

Object Server

Object
Implementation

Server Skeleton

Operation Invocation

Message

Client Stubs

Client Program

Operation Invocation

Figure 2.1. CORBA Invocation Roadmap
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coding, synchronization, and exception handling. The client program is also not

concerned with any of the system issues related to the internals of the CORBA

proxy object, such as the location of the client and server sides, the programming

language used to implement the object-oriented service, or what type of machine

the object-oriented service is running on. All are handled transparently by the

operation of the CORBA proxy object.

CORBA objects are de�ned using the OMG's Interface De�nition Language

(IDL). IDL is a language-neutral way of describing the public interface to an object-

oriented service. An IDL description of an object-oriented service is similar to the

declaration of a C++ class in that it contains the elements of the interface that

will be publicly visible to clients. Using an IDL interface description, an IDL

compiler will generate a CORBA proxy object (stubs and skeleton functions) in

one of the languages speci�ed in the OMG's IDL language binding. The client

side of the CORBA proxy object is used in clients as a representation of the actual

instantiation of the object-oriented service. Clients may interact with the client side

of the CORBA proxy object as if it were a local instantiation of the object-oriented

service. The interaction passes from the client stub, through the ORB and up to the

server skeleton and the actual instantiation of the object-oriented service. Thus,

through the use of IDL and CORBA proxy objects, a client is shielded from any of

the ORB controlled system aspects of the client-object communication.

CORBA implementations abstract the low-level communication code necessary

for transparent distributed object computing through the use of IDL and CORBA

proxy objects. The BORG System uses a CORBA implementation as a tool for

the creation, acquisition, and use of its distributed objects. By using CORBA as

its distributed system software package, distributed objects in the BORG System

communicate seamlessly and transparently.

2.5 OpenDoc

Component Integration Laboratories (CI Labs) is a vendor-neutral industry

association sponsored by companies such as Adobe Systems, Apple, IBM, and
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Novell. CI Labs is the owner and distributor of OpenDoc, a vendor-neutral standard

for compound documents[11]. Compound documents are those fashioned with dis-

tributed, cross-platform component software. The component software are elements

of a document such as text, graphics, spreadsheet cells, or buttons. The compound

document scheme allows each of the components of the document to be edited \in

place," simply by changing the focus. It does not require a new application to be

started for each di�erent component, but instead allows each type of component to

do its own editing.

Each OpenDoc document consists of a shell and any number of individual

components. The shell holds the components and dispatches any events to the

currently active component. When any component type becomes active, usually

via a single activation click, the editing tools (such as menus and tool bars) switch

to ones useful for editing this type of component. All events will be handled by

the editing methods of the active component type. For example: a text component

will have editing tools to allow changing characteristics such as font size or line

spacing. Events generated while a text component is active will be sent to the

text component type methods that change the font size or line spacing. The text

component will then redraw itself and wait for more events.

OpenDoc supports an e�cient compound document storage mechanism. The de-

fault storage subsystem is Bento, the standard container for multimedia interchange

adopted by the Interactive Multimedia Association, but can be replaced with any

other applicable storage system that implements the OpenDoc meta-format[13].

Additionally, OpenDoc supports scripting based on the Open Scripting Architec-

ture (OSA) standard that allows application-independent scripting. The scripting

feature permits component types to transparently use OSA compliant scripting

languages in their user interface design.

The Object Management Services of OpenDoc are based on the System Object

Model (SOM)[8]. SOM handles dynamic object linking, giving OpenDoc multiple

language and distributed object services support. SOM is also CORBA compliant,

allowing OpenDoc to communicate with other distributed object systems that are
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also CORBA compliant. This means that an OpenDoc document may contain

distributed components, running on machines other than the one holding the main

shell. The BORG System uses this same idea for the creation of distributed

applications. A BORG application may contain many service providers, each of

which may be executing on a processor other than the one executing the main

application.

2.6 Alpha 1

The BORG System attempts to facilitate the assimilation of the Alpha 1 Ge-

ometric Modeling and Manufacturing System into a distributed object model.

Alpha 1, developed at the University of Utah, is a B-spline modeling software

system, whose models can be converted into numerically controlled (NC) machining

code and realized as manufactured physical parts. Alpha 1 models are generated

through the Shape edit Command Language (SCL) and an associated interpreter,

c_shape_edit.

Alpha 1 currently uses an Inter Process Communication (IPC) scheme based

on UNIX sockets to connect its c_shape_edit SCL interpreter and programs that

display its models such as tk3d and motif3d. A user creates models with the

c_shape_edit interpreter usually running within the GNU emacs environment. A

model viewer can be connected to the c_shape_edit interpreter. When the SCL

command show is called on a model, the c_shape_edit interpreter uses a UNIX

socket connection to send the model to the viewer for display.

In this approach, the instance of the model in the c_shape_edit interpreter is

serialized into a byte stream and written to the UNIX socket. The model viewer

is continually checking that socket for any incoming data. When data arrive, they

will be read in and converted back into the model instance. The viewer can then

display the model.

This IPC scheme is limited in that it is only used within the c_shape_edit/tk3d

environment. Most programs interact by saving their output to a �le where other

programs can access it. For example, the c_shape_edit interpreter allows a model
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to be saved to a �le. A viewer program can read that �le later and display the

model. As another example, the c_shape_edit interpreter can save a model in a

�le. A user can read and display that model in a viewer which can create another

�le containing a viewing matrix. The model �le and the viewing matrix �le can be

piped into the render program in order to generate a rendered image.

The BORG System allows the services provided by Alpha 1 programs such as

c_shape_edit, tk3d, and render to be used by applications in an object-oriented

manner. These services can be running as separate CORBA servers which an

application can treat as normal objects. Instead of manually writing socket code

to make a connection, applications are free to make member function invocations

on these objects, transparently passing data between the individual processes as

parameters and return values.



CHAPTER 3

SYSTEM ARCHITECTURE

This chapter discusses the overall architecture of the BORG System. We will

�rst discuss the general concept of BORG, followed by a high level examination of

the system architecture and its individual components.

3.1 What is the BORG System?

The BORG System is a software architecture that promotes the conversion of

legacy systems into distributed systems. Legacy systems are old software that is

still in use, but could bene�t from reengineering using more modern methods.

Distributed systems are collections of objects whose interaction (i.e., whose decom-

position into objects, processes and processors) is transparent to the user. The

objects of a distributed system are themselves distributed (distributed objects) and

their interaction is also transparent to the user. The BORG System attempts

to foster the evolution of legacy code into an object model by providing tools that

simplify the creation, acquisition and use of distributed objects in the legacy system.

3.2 System Overview

The BORG System consists of a set of services, a set of clients, and an Agency.

Clients use the Agency to request access to services. The Agency responds by

contacting providers of a service and establishing a connection between the client

and the service provider (see Figure 3.1). The provider of a service is referred to in

the BORG System as a functionality engine.

A functionality engine de�nes an object-oriented interface to a service, and is

often implemented as a C++[19] class. Functionality engines range from simple

to complex, yet always provide only one speci�c service. For example, a simple
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functionality engine may only provide a basic service, such as multiplying two

matrices. A complex functionality engine may provide a more sophisticated service

such as geometric model viewing. This larger, more complex type of functionality

engine may use smaller functionality engines as helpers in providing the service.

In the case of a geometric model viewing service, it could use the base matrix

multiplication functionality engine as a helper in its model viewing transformations.

The services provided by BORG System functionality engines are encapsulations

of those found in the legacy system. BORG System functionality engines foster the

conversion of legacy services into an object model by providing programmers with

access to these services through object-oriented interfaces (see Figure 3.2). The

object-oriented interface may be just an encapsulation of an underlying function

based program, or it may be the interface to a class in an object-oriented system.

Once encapsulated within the object-oriented interface of a functionality engine,

the legacy service may be used as an object, even if the underlying code is not

object-oriented.

The BORG System provides tools that allow functionality engines to be created

and used as distributed objects. By using these tools, a functionality engine may

be executed as a separate process while being composed with others to form a

distributed application. The tools require only limited knowledge of the distributed

system software package upon which they are based. The BORG System tools were

created using CORBA as the distributed system software package. An instantiation

of the C++ class that implements a functionality engine is embodied as a CORBA

server and can be used in applications via a handle, also known as a CORBA proxy

object. An instantiation of the C++ class that implements a functionality engine

will be referred to as a functionality engine instance, or FEI. CORBA proxy objects

provide applications with transparent access to FEIs through the use of an ORB.

Clients obtain handles to FEIs in order to employ their service. Clients are

applications or functionality engines that use, as part of their implementations,

the services provided by functionality engines. A client may be completely com-

posed of functionality engines, or it may use them sparingly, possibly in only one
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circumstance.

The Agency is a functionality engine whose service is to provide clients with

access to other functionality engines. Its service includes providing clients with

handles to FEIs as well as passing messages from clients to groups of FEIs. All

clients in the BORG System have access to the Agency as it is the only way for a

client to initiate contact with an FEI.

When a BORG System client needs the service provided by a functionality

engine, it will contact the Agency and request that it be provided with an FEI.

The request is made by passing to the Agency a token that names and describes

the functionality engine. The Agency will use the ORB to �nd an FEI speci�ed

by the token and respond to the request by returning a handle (CORBA Proxy) to

that FEI (see Figure 3.3). A BORG System client may also need to broadcast a

message to a group of FEIs. In this case it will contact the Agency, requesting that

it send a noti�cation message to a group of FEIs. This request is made by passing

to the Agency a token describing the group of FEIs and a descriptor of the message

to be passed to them. The Agency will respond to the request by contacting all of

the FEIs in the group and delivering the message to them (see Figure 3.4).

3.3 System Components

The components of the BORG System are the functionality engines, the Agency

that provides access to the functionality engines, the tokens that describe func-

tionality engines, and the clients that use the functionality engines. All of these

components are essential to the creation of a distributed application in the BORG

System.

First and foremost among the BORG System components are functionality en-

gines. A functionality engine is a provider of a service and places an object-oriented

interface on that service. The underlying service is part of the legacy system that

is being assimilated by the BORG System and is not necessarily object-oriented.

The object-oriented interface placed on a legacy service is implemented as a C++

class. Using tools provided by the BORG System, the functionality engine can be

created and used as a distributed object. The BORG System tools use CORBA as
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the underlying distributed system software package, creating CORBA servers and

CORBA proxy objects as part of the implementation of each functionality engine.

The CORBA servers are embodiments of an instantiation of the C++ class that

implements the object-oriented interface of a functionality engine. A CORBA proxy

object is used as a handle to a CORBA server and using an ORB, encapsulates

all of the code necessary for transparent interaction with the FEI embodied in the

CORBA server.

The Agency is a functionality engine whose service is to provide access to other

functionality engines. It was created using BORG tools and will almost always be

used as a distributed object. Its CORBA server is executed as a daemon process on

every machine in the BORG System. The Agency functionality engine's CORBA

proxy object provides transparent access to its CORBA server. Clients wishing to

use the Agency will access it via an instantiation of the local_agency, a C++

class that is a proxy to the CORBA proxy object of the Agency.

The Agency's service provides access to other functionality engines through

requests made by clients. The requests have two forms: the request for the services

provided by an FEI and the request to send a message to a group of FEIs. Requests

for the services provided by an FEI require the use of a descriptive token detailing

the requested instance. The Agency responds to this form of request by returning a

CORBA proxy object that provides access to the requested FEI. Requests to send

a message to a group of FEIs require the use of a descriptive token that details the

group of FEIs to whom the message should be sent, as well as a descriptor of the

message. The Agency responds to this form of request by contacting all of the FEIs

in the group and delivering the message to each of them.

BORG tokens are used within a client for describing functionality engines. Often,

tokens are used to describe a set of FEIs, as when they are used in conjunction with

the Agency. A token instantiation can describe a unique FEI, or a set of FEIs.

Tokens are implemented as C++ classes. A hierarchy of tokens exists that

is rooted at the base token class. The token class constructors initialize the

member data of a token instance so that it uniquely represents a set of FEIs.
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Each functionality engine of the BORG System has an associated token class that

is ultimately derived from the base token class. The derived class constructors will

call parent constructors that initialize the instance to represent the desired set of

FEIs.

BORG clients are any piece of code that uses an FEI. Clients are normally either

applications or functionality engines and use FEIs as part of the implementation of

some part of their design. An application may be a client if, for instance, it uses a

FEI as part of the implementation of an internal function. A functionality engine

may also be a client if it uses a FEI as part of the implementation of its service.

A client must use the Agency to initiate any interaction with other functionality

engines. Interaction with the Agency is initiated by the client instantiating the

local_agency class, since it is a proxy for the Agency functionality engine. The

client may instantiate tokens and use them as descriptors in requests made of the

Agency through the local_agency. Apart from the local_agency, clients will

access functionality engines through CORBA proxy objects. The client may use

the CORBA proxy as if it were the actual FIE the proxy provides access to.

The chapters following will look in depth at these components of the BORG

System. Chapter 4 will examine functionality engines. Chapter 5 will look at

tokens, and Chapter 6 will peer into the workings of the Agency. Finally, Chapter 7

will discuss the \how, what and why" of the clients that use the BORG System.



CHAPTER 4

FUNCTIONALITY ENGINES

This chapter examines the BORG System functionality engines. We will �rst

discuss what a functionality engine is, followed by detailing the relationship between

functionality engines and the OMG's IDL, and concluding with a look at speci�c

examples of functionality engines in the BORG System.

4.1 What is a Functionality Engine?

Functionality engines encapsulate services provided by the legacy code being

assimilated by the BORG System. Functionality engines attempt to coerce the

services o�ered by the legacy system into an object model by placing an object-

oriented interface on each service (see Figure 3.2). Functionality engines can be

simple or complex, but provide only one service. They are built using tools of the

BORG System that allow their use as distributed objects and provide for their

transparent interaction within a distributed system.

For example, a large legacy system, such as the Alpha 1 Geometric Modeling

and Manufacturing System, contains complex services such as interactive modeling,

rendering, and visual display applications. Each of these services is contained

within an individual program that is executed from the command line with its

output and execution customized through command line arguments. Outside of

the BORG System, the services provided by these programs may be composed

only via UNIX pipes. But, within the BORG System, these services have been

encapsulated into functionality engines. Each service may be accessed via the

object-oriented interface provided by the functionality engine. Thus, inside an

application, the services that once could only be used as stand-alone programs may

now be accessed programmatically via the functionality engine.
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Functionality engines are implemented as C++ classes. By using BORG tools

that leverage o� of a distributed system software package, an FEI may be used as

a distributed object. FEIs may then be composed to become part of a distributed

application. The distributed system software package upon which the BORG

tools leverage is CORBA. FEIs become CORBA servers that may be accessed

transparently within a distributed application via a CORBA proxy object.

4.2 Functionality Engines and IDL

The BORG tools leverage o� of CORBA to create, acquire, and use FEIs as

distributed objects. The fulcrum used for this leveraging is the OMG's Interface

De�nition Language (IDL). IDL provides a standard, language-neutral means of

describing the public interface of an object. The object-oriented interface placed

upon a legacy system service by a functionality engine is described in IDL. An

IDL complier will take a functionality engine's IDL description and generate a

CORBA proxy object that is used for remote communication with the CORBA

server containing the FEI.

4.2.1 Describing Functionality Engines in IDL

IDL is a purely descriptive language which supports a subset of ANSI C++ with

additional keywords introduced to support distribution concepts [10]. This section

will discuss only selected parts of IDL that are generally relevant to describing

functionality engines. Interested readers are referred to [10] for the complete

grammar speci�cation of IDL.

Object-oriented interfaces are described in IDL using the interface construct.

An IDL interface contains the publicly accessible parts of an object-oriented

interface. All elements of the interface are described in a language neutral way so

that CORBA proxy objects may be generated in various programming languages.

The IDL compiler used in the implementation of this thesis generates CORBA

proxy objects in C++.

The most important element of an IDL interface description is the operation. An

operation declaration \speci�es the operations that the interface exports and the
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format of each including operation name, the type of data returned, the types of all

parameters of an operation, ...and contextual information which may a�ect method

dispatch." [10, p.62] Operation declarations of an interface can be thought of as

being equivalent to member function declarations of a C++ class with the addition

of a few IDL speci�c keywords such as oneway, which speci�es the operation's

method of dispatch to be asynchronous (i.e., the operation will not wait for a

return value after being dispatched.)

All data types used in an IDL interface de�nition (these are most notably

a operation's return types and parameter types) must be either the IDL basic

types (short, long, float, boolean....), IDL template types (sequences, strings,

arrays), or IDL constructed types (structs, unions, enums). This is important to

note when creating IDL interfaces for functionality engines that are encapsulations

of legacy code. One cannot expect to use an arbitrary C++ class or C struct found

in the legacy code as the parameter or return type of an IDL operation. The class

or struct must have some sort of corresponding IDL template or constructed type

previously declared which is used in place of the class or struct in the de�nition

of an IDL interface. The IDL type will be converted by an IDL compiler into

a class or struct de�ned in the OMG's IDL language binding. When used in a

functionality engine that implements a legacy service, the struct or class generated

by the IDL compiler must be converted into the original legacy class or struct. This

has direct impact on the implementation of BORG System tokens which are used

as parameters to the request operations of the Agency functionality engine and

on the use of Alpha 1 objects as parameters and return types to operations. See

Chapter 5, for a complete discussion of tokens and Section 4.3.2 for a discussion of

Alpha 1 objects in IDL.

Every functionality engine of the BORG System is described by a corresponding

IDL interface. For example, Figure 4.1 shows an IDL interface for a generic math-

ematical functionality engine. The compute_sqr operation takes as its parameter

a pass-by-value oat representing the value to square and returns its square as

a oat. The multiply operation takes two pass-by-value oats representing the
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values to multiply and returns their product as a oat. The increment operation

takes a pass-by-reference long and increments it by one, but does not return a

value as indicated by the void return type.

An IDL interface description does not contain executable code. It is only a

descriptive declaration of the interface. Thus, it is up to the implementor of the

interface to decide how to implement its operations. In the case of Figure 4.1,

implementations of the compute_sqr, multiply and increment operations of the

generic_math functionality engine must be provided. BORG System functionality

engines are implemented as C++ classes with member functions corresponding to

the operations declared in the IDL interface. A �rst step towards creating the C++

class implementing the functionality engine is for an IDL compiler to generate a

CORBA proxy object from the functionality engine's IDL interface.

4.2.2 The CORBA Proxy Object

BORG System tools allow an FEI to be used as a distributed object. A dis-

tributed object is an instantiation of a class (object) and its proxies. The object

often executes within its own separate process. The proxy provides access to the

object, encapsulating the low-level technical aspects of the interprocess communi-

cation between the process using the distributed object and the process containing

the object. By using a CORBA IDL compiler, a CORBA proxy object is generated

from the IDL interface description of a functionality engine (see Figure 4.2). An

FEI executes within a CORBA server process and access to it is provided by a

CORBA proxy object.

Not all functionality engines need to run as distributed objects. A client, which

is any code that uses a functionality engine, may choose to instantiate the class

that implements a functionality engine within its own process space where it can

be interacted with locally, instead of through a CORBA proxy object. This option

is useful for clients who do not wish to incur any of the performance penalties

inherent to interprocess communication.

Normally though, functionality engines will be used as distributed objects, in

which case the functionality engine will consist of a CORBA server and a CORBA
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interface generic_math

{

float compute_sqr( in float val );

float multiply( in float val1, in float val2 );

void increment( inout long val );

};

Figure 4.1. Generic Mathematical Functionality Engine IDL Declaration
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Figure 4.2. IDL Interface De�nition to CORBA Proxy Object
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proxy object. A CORBA server is a process in which the implementation class of

a functionality engine has been instantiated. The CORBA proxy object consists

of a client side (stub), an ORB, and a server side (skeleton). When a client uses a

CORBA proxy object to access an FEI, the client's messages travel from the client

side of the CORBA proxy, to the server side via the ORB, and up to the FEI (see

Figure 2.1). The ORB component of the CORBA proxy object transparently han-

dles all of the minor subtleties of this communication including, dynamic delivery

services, method invocation, parameter encoding, synchronization and exception

handling. The CORBA proxy object acts as the mediator between the client

initiating the communication and the FEI that the client is communicating with.

The implementation of the internal structure of a CORBA proxy is dependant

upon the CORBA implementation being used, but always provides transparent

and seamless interaction between the client and the FEI. The BORG System uses

ORBeline[14], a CORBA implementation from PostModern Computing.

4.2.3 The Implementation of a Functionality Engine

After the IDL interface has been de�ned for a functionality engine, the im-

plementor of the functionality engine must provide a C++ class that implements

the that interface. Generally, the elements of the IDL interface become the

public section of the resulting implementation class. The implementor is required

to provide an implementation of the class and its member functions.

The implementation class of the functionality engine need only include the

operations that were described in the IDL interface. The implementor must

provide the actual code that implements these operations before the functionality

engine can be used by a client. A client will have access to the functionality engine

only through the operations described in the IDL interface. The implementation

class of the functionality engine may have protected and private sections as well,

but these are not described in IDL and thus are useful only for the purposes of

the implementation. Figure 4.3 shows a C++ class that could be used as the

implementation of the generic math functionality engine whose IDL interface
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/*

* C++ implementation class of the

* generic_math functionality engine.

*/

class Generic_math

{

public:

generic_math();

~generic_math();

/* Methods that implement the generic_math interface. */

float compute_sqr( float val );

float multiply( float val1, float val2 );

void increment( int & val );

};

Figure 4.3. C++ Implementation Class of the generic math Functionality Engine

appears in Figure 4.1.

The only public member functions, other than the object constructors and

destructors, are the three that implement the operations of the IDL interface:

compute sqr, multiply, and increment. The class may have other protected

and private sections, but since they only pertain to how the class was implemented,

they are not shown here. The OMG provides language bindings for IDL that specify

how IDL types such as long map to language speci�c types such as C++ ints.

Currently, the OMG has de�ned language bindings for C, C++, and Smalltalk.

A single IDL interfacemay have many implementations. Each implementation

can be di�erent from the others, but must contain the operations described by the

IDL interface in the public section of the implementation class. Conversely, an

implementation may be suitable for use as the implementation of many interfaces

as long as all of the operations declared in the interfaces are contained in the public

section of the implementation class. Implementors are free to switch interfaces

and implementations around as suits their needs, as long as the set of operations

declared in the IDL interface is completely contained within the public section

of the implementation class.
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An instantiation of a class that implements the IDL interface of a function-

ality engine is called a functionality engine instance (FEI). FEIs reside within

CORBA servers which execute on speci�c machines in the BORG system and

may be identi�ed by names given them when they are created. For instance,

a generic_math FEI, executing on a machine named Centauri may be named

\Centauri generic math", where as a generic_math FEI executing on a machine

named Gemini may be named \Gemini generic math".

4.2.4 Connecting the Proxy and Implementation

ORBeline provides an IDL compiler that generates CORBA proxy objects from

IDL interface de�nitions. The CORBA proxy objects are generated in C++,

using the OMG's IDL to C++ language binding. There are three elements to

the ORBeline CORBA proxy object: the client side, an ORB, and a server side.

Working together they allow for a transparent interaction between clients and FEIs.

The client side of an ORBeline CORBA proxy object is implemented as a C++

class. It contains member function declarations that are the C++ language binding

equivalent of the operations described in the IDL interface. The client side class

is derived from an ORBeline de�ned, CORBA_Object, so that it has access to basic

member functions inherent to all CORBA proxy client side objects. Figure 4.4

shows the client side stub class generated for the generic math functionality engine.

When a client uses a CORBA proxy as a stand in for a FEI, it is actually

class generic_math: public virtual CORBA_Object

{

// ...

virtual CORBA::Float compute_sqr( CORBA::Float val );

virtual CORBA::Float multiply( CORBA::Float val1,

CORBA::Float val2 );

virtual void increment( CORBA::Long& val );

// ...

};

Figure 4.4. Client Side Stub C++ Class
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interacting with an instantiation of the client side class of the CORBA proxy. The

client will interact with the client side class instantiation as if it were the FEI. The

member functions declared for the client side class are the same as those declared

for the functionality engine implementation class. The member functions of the

client side class are referred to as stubs. Stubs are invoked by the client program

in lieu of the operations of the FEI. They marshal the invocation request and its

arguments, send it to the server side with the help of the ORB component of the

CORBA proxy and then wait for a response. Once a response has been received,

the stub unmarshals the return parameters and returns to the client program. The

interprocess communication necessary for an operation invocation is transparent to

the client. Figure 4.5 shows the code generated by the ORBeline IDL compiler to

implement the multiply stub member function.

The server side of a CORBA proxy object is connected to an FEI. Functions

on the server side are often referred to as skeletons, with a skeleton function

corresponding to each operation declared in the IDL interface. The skeleton

receives invocation requests sent from the client stubs. The skeleton will unmarshal

a request and invoke the corresponding member function of the FEI. When the

member function returns, the skeleton will marshal the return parameters and,

with the help of the ORB component of the CORBA proxy, send them back to the

client side stub. ORBeline uses a server side class as a place holder for the skeleton

functions which are then declared as static member functions of the server side

class. Figure 4.6 shows the skeleton functions declarations that are generated by

the ORBeline IDL compiler for the generic math functionality engine. The parent

class of the _sk_generic_math class is the client side stub class of the CORBA

proxy object. Figure 4.7 shows the code generated as the implementation of the

skeleton multiply function.

ORBeline has two programming strategies for the connection between the server

side skeletons and the FEI: the inheritance strategy and the delegation or TIE

strategy. In the inheritance strategy, the implementation class of the functionality

engine inherits from a server side class generated by the IDL compiler as part of
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CORBA::Float generic_math::multiply( CORBA::Float val1,

CORBA::Float val2 )

{

CORBA::Float _ret = (CORBA::Float)0;

CORBA::MarshalStream *_strm = _create_request( "multiply",

1, 9001);

*_strm << val1;

*_strm << val2;

try {

_invoke();

}

catch (const CORBA::TRANSIENT& ) {

return multiply( val1, val2 );

}

*_strm >> _ret;

_strm->flushRead();

return _ret;

}

Figure 4.5. IDL Compiler Generated Stub Member Function Implementation
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class _sk_generic_math : public generic_math

{

// Skeleton Operations implemented automatically

// by IDL compiler.

static void _compute_sqr( void *obj,

CORBA::MarshalStream &strm,

CORBA::Principal_ptr principal,

const char *oper,

void *priv_data );

static void _multiply( void *obj,

CORBA::MarshalStream &strm,

CORBA::Principal_ptr principal,

const char *oper,

void *priv_data );

static void _increment( void *obj,

CORBA::MarshalStream &strm,

CORBA::Principal_ptr principal,

const char *oper,

void *priv_data );

};

Figure 4.6. Server Side Skeleton Functions
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void _sk_generic_math::_multiply( void *_obj,

CORBA::MarshalStream &_strm,

CORBA::Principal_ptr ,

const char *,

void *_priv_data )

{

generic_math *_impl = (generic_math *)_obj;

CORBA::Float val1;

CORBA::Float val2;

_strm >> val1;

_strm >> val2;

_strm.flushRead();

CORBA::Float _ret = _impl->multiply( val1, val2 );

_impl->_prepare_reply( _priv_data );

_strm << _ret;

_strm.sendMessage();

}

Figure 4.7. IDL Compiler Generated Server Side Skeleton Function Implementa-
tion
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the CORBA proxy object. The server side class contains pure virtual member

functions that are the C++ language binding equivalent of the operations declared

in the functionality engine's IDL interface. Since the implementation class of

the functionality engine inherits from this server side class, it must provide an

implementation of the pure virtual member functions. The skeleton functions

receive invocation requests from the client stubs. They unmarshal a request and

invoke the corresponding member function of the server side class. Since this

invocation is of a virtual function, the invocation is passed up to the corresponding

method of the functionality engine's implementation class. Figure 4.8 shows the

server side class generated by the ORBeline IDL compiler for the generic math

functionality engine. Figure 4.9 shows the implementation class of the generic math

functionality engine that uses the inheritance approach.

In the delegation or TIE strategy, the implementation class of the functionality

engine does not inherit from any server class in the CORBA proxy object. The

implementation class of the functionality engine may have its own inheritance

structure based upon legacy system classes, or none at all. The only requirement

is that it have member functions corresponding to the operations declared in its

IDL interface. A wrapper class delegates the invocation requests received from

the server side skeletons up to the FEI. The ORBeline IDL compiler generates a

C++ template class as the wrapper. The constructors of the template class take

a reference to an object as a parameter. The template class contains member

class _sk_generic_math : public generic_math

{

// The following operations need to be implemented

// by the server.

virtual CORBA::Float compute_sqr(CORBA::Float val) = 0;

virtual CORBA::Float multiply(CORBA::Float val1,

CORBA::Float val2) = 0;

virtual void increment(CORBA::Long& val) = 0;

};

Figure 4.8. IDL Compiler Generated Inheritance Approach Server Side Class.
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class Generic_math : public _sk_generic_math

{

public:

Generic_math();

~Generic_math();

/* Methods that implement the generic_math interface. */

virtual CORBA::Float compute_sqr( CORBA::Float val );

virtual CORBA::Float multiply( CORBA::Float val1,

CORBA::Float val2 );

virtual void increment( CORBA::Long & val );

};

Figure 4.9. generic math Functionality Engine Implementation Class Using
Inheritance Approach

functions that correspond to the operations declared in the IDL interface of the

functionality engine. The implementation of these member functions invokes the

corresponding member functions of the object reference. Figure 4.10 shows the

TIE template server side class generated by the ORBeline IDL compiler for the

generic math functionality engine. Figure 4.11 shows the implementation class of

the generic math functionality engine that uses the TIE approach.

The delegation strategy is useful for converting legacy class hierarchies into

distributed objects. Since there is no need to inherit from a class generated by

the IDL compiler, any class that implements the operations declared in the IDL

interface may be used as the implementation class. The inheritance strategy is

more intuitive, but is also more di�cult to use when assimilating legacy classes.

Ultimately the inheritance strategy wrappers legacy classes with an implementation

class that inherits from the server class of the CORBA proxy. Figure 4.12 shows the

inheritance hierarchy for an ORBeline CORBA proxy object and implementation

classes.
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template <class T>

class _tie_generic_math : public generic_math

{

public:

_tie_generic_math(T& t, const char *obj_name=(char*)NULL) :

generic_math(obj_name),

_ref(t) {

_object_name(obj_name);

}

_tie_generic_math(T& t, const char *service_name,

const CORBA::ReferenceData& id)

:_ref(t) {

_service(service_name, id);

}

~_tie_generic_math() {}

CORBA::Float compute_sqr(CORBA::Float val) {

return _ref.compute_sqr(

val);

}

CORBA::Float multiply(CORBA::Float val1,

CORBA::Float val2) {

return _ref.multiply(

val1,

val2);

}

void increment(CORBA::Long& val) {

_ref.increment(

val);

}

private:

T& _ref;

};

Figure 4.10. IDL Compiler Generated TIE Approach Server Side Class
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class Generic_math

{

public:

Generic_math();

~Generic_math();

/* Methods that implement the generic_math interface. */

virtual CORBA::Float compute_sqr( CORBA::Float val );

virtual CORBA::Float multiply( CORBA::Float val1,

CORBA::Float val2 );

virtual void increment( CORBA::Long & val );

};

Figure 4.11. generic math Functionality Engine Implementation Class Using TIE
Approach

CORBA_Object

generic_math
(client/stub)

_tie_generic_math _sk_generic_math

Generic_mathGeneric_math

(server/skeleton)

(object implementation)

Figure 4.12. Inheritance Hierarchy for ORBeline CORBA Proxy Objects and
Implementation Classes
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4.3 BORG Functionality Engines

IDL allows for inheritance among its interfaces. The BORG System takes

advantage of this by inheriting all of its functionality engine IDL interfaces from

a single base interface. This section discusses several of the functionality engines

currently implemented in the BORG System.

4.3.1 The Base Functionality Engine Interface

The IDL interface construct allows for interface inheritance. An interface

can be derived from a parent interface, inheriting all of the operations de�ned in

the parent. Multiple inheritance among interfaces is also supported in IDL. The

BORG System takes advantage of inheritance among interfaces by deriving all func-

tionality engine IDL interfaces from a base functionality engine IDL interface,

called the employee. One exception to this rule is the Agency functionality engine

which is not derived from any IDL interface. Figure 4.13 shows the inheritance

hierarchy of the BORG System functionality engines.

The employee interface contains standard operations that are available for use

with all functionality engines in the BORG System. The implementation class

of each functionality engine IDL interface that derives from the employee in-

terface must have its own implementation for each of the operations de�ned in

the employee IDL interface. Figure 4.14 shows the IDL interface de�nition for

the Employee functionality engine. The this token operation returns a base

representation of the token associated with this functionality engine. The values

contained in the base representation de�ne the speci�c characteristics of a particular

set of FEIs. Tokens and their base representations will be discussed at length in

Chapter 5.

The message operation takes a base message structure as a parameter and

interprets the message it describes. The implementation of the operation will

handle any types of messages it knows about. All Employees know how to handle

a deactivate message, but more speci�c functionality engines will also know how

to handle more speci�c messages. Section 5.4 will discuss BORG messages at

length. The IDL oneway keyword is used to declare the message operation to be



39

Employee

Viewer Model
Repository Controller SCL Render

Figure 4.13. BORG System Functionality Engine Inheritance Hierarchy

// employee IDL interface definition.

interface employee

{

base_token this_token();

oneway void message( in base_msg msg );

};

Figure 4.14. Employee Functionality Engine IDL Interface
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asynchronous. Thus, a client will invoke this operation via a CORBA proxy object,

but will not wait for the operation to return before continuing to execute.

4.3.2 The Model Repository Functionality Engine

The Model Repository is a functionality engine whose service is to provide

clients with Alpha 1 models. Figure 4.15 shows the IDL interface of the Model

Repository functionality engine. The Model Repository uses a hash table containing

information about known Alpha 1 models. Clients may query the model repository

using a speci�c model name. If the Model Repository hash table contains an entry

for the model, it will be returned to the client. The model_rep interface inherits

from the employee interface and so requires that its implementation class provide

member functions for the operations declared in its IDL interface as well as for

those operations declared in the employee interface. Figure 4.16 shows the C++

class that implements the model_rep IDL interface. Note that Model_rep is derived

from the server class of the CORBA proxy object and that it provides member

functions that implement the employee IDL operations as well as the model_rep

IDL operations. Figure 4.17 shows the implementation of the model_rep's query

member function.

Figure 4.15 shows that the return type of the query and read �le operations

as well as a parameter of the add model operation are of type a1_object. The

interface model_rep : employee

{

a1_object query( in string model_name );

void add_location( in string model_name,

in string location );

void add_model( in string model_name,

in a1_object a1obj );

void remove( in string model_name );

a1_object read_file( in string file_name );

};

Figure 4.15. Model Repository IDL Interface
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class Model_rep : public _sk_model_rep

{

public:

Model_rep( local_agency* age );

~Model_rep();

/*

* Public CORBA interface member functions.

*/

/* Member functions implementing the employee IDL interface. */

virtual base_token* this_token() {

return new base_token( t_.base() );

}

virtual void message( const base_msg & msg );

/* Member functions implementing the model_rep IDL interface.*/

virtual a1_object * query( const char * model_name );

virtual void add_location( const char * model_name,

const char * location );

virtual void add_model( const char * model_name,

const a1_object & a1obj );

virtual void remove( const char * model_name );

virtual a1_object * read_file( const char * file_name );

// . . .

};

Figure 4.16. C++ Implementation Class of Model Repository IDL Interface
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a1_object *

Model_rep::query( const char * model_name )

{

/* Look up the model name in the hash table. */

model_rep_key mrk( ( const char * )model_name );

model_rep_elm *mre = models_.lookup( model_rep_key( mrk ) );

if ( mre == NULL )

{

/* Generate an error message if model name is not found

* in table.

*/

fprintf( stderr, "Model '%s' not found in repository.\n",

model_name );

return NULL;

}

else

/* Read the object from the file. */

return read_model_file( mre->location() );

}

Figure 4.17. Implementation of Model Repository query Member Function
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a1_object type is the IDL type corresponding to any Alpha 1 C++ class that

inherits from the Alpha 1 base object class, object_type. Figure 4.18 shows the

IDL de�nition of the a1_object. The Alpha 1 Software System contains hundreds

of C++ classes, all of which we would like to be able to use in declarations of

IDL interfaces. As mentioned before, types used in IDL cannot be C++ classes.

Nevertheless, there must be an IDL type corresponding to each C++ class or struct

in order to use it within an IDL interface. Thus, the most obvious solution is to

create an IDL type (struct or interface) for each Alpha 1 C++ class that we

wish to use in an IDL interface. Apart from the large amounts of time, e�ort and

disk space that would be required to implement this solution, other non-trivial

problems arise. The IDL struct construct cannot be used since structs do not

support inheritance and thus the Alpha 1 object hierarchy would not be represented

properly. IDL interfaces do support inheritance, but instances of the interfaces

translate to CORBA servers. Thus, every time an application wished to pass an

Alpha 1 object, either as a parameter or return value, that object would have to be

executing as a CORBA server. The performance of this solution is problematic in

terms of memory usage and execution speed, expecially for applications that create,

use and pass large numbers of Alpha 1 objects.

The solution implemented by the BORG System maintains the Alpha 1 class

hierarchy while also accounting for performance issues. Most Alpha 1 C++ classes

derive from the base Alpha 1 class, object_type. object_type provides member

functions that allow an instance of any class derived from object_type to serialize

itself into a byte stream, either for transmission to another process via a UNIX

socket or for recording on a persistent storage device. This serialization process is

assisted by the Alpha 1 a1_stream_type class. The IDL template type sequence

is mapped by an IDL compiler to a C++ class that is essentially a container class

for a large array of chars. The BORG System implements a new Alpha 1 class,

a1_corba_stream, which allows an object_type instance to write itself to an IDL

sequence. The sequence object may then be used as a parameter or return value of

a member function corresponding to an operation of an IDL interface. A sequence
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may also be converted back to an instance of the original Alpha 1 C++ class.

4.3.3 The Alpha 1 Render Functionality Engine

The Render functionality engine provides a rendering service to BORG clients.

Figure 4.19 shows the IDL interface description of the Render functionality engine.

The implementation class encapsulates the capabilities of Alpha 1's stand-alone

render program, placing an object-oriented interface on a non-object-oriented legacy

program. Render's IDL interface declares only one operation, render to �le. The

operation takes two parameters: an a1_object and a �le name. The a1_object

parameter is a scene of objects including viewing matrices and camera objects.

The �le name speci�es where the Render functionality engine should place the

rendering output. The output is a Run Length Encoded (RLE) �le containing the

rendered view of the scene. The render to �le operation was declared with the

oneway keyword. This speci�es an asynchronous invocation. In an asynchronous

invocation, the client stub will not block and wait for a response from the FEI.

The client is free to continue executing other code while the Render functionality

engine executes the render to �le operation. When the render to �le operation

is invoked, the render functionality engine will pop up an information window telling

the user that the rendering is taking place. When the rendering is completed, the

window will inform the user and change the window so that it contains an OK

button. When the user clicks on the OK button, the window will close and the

Render functionality engine will be deactivated (see Figure 4.20). The Render

functionality engine could easily be extended with operations to return the rendered

image or to render without the graphical information dialog box.

A special implementation feature of the Render functionality engine as well as

several other functionality engines is that it is multithreaded. Multithreading is

necessary in functionality engines that require a graphical interface. Functional-

ity engines are implemented as CORBA servers and are communicated with via

CORBA proxy objects. The CORBA server is a separate process that contains

an instantiation of the implementation class of a functionality engine. The main
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typedef sequence< char > a1_object;

Figure 4.18. Alpha 1 Object IDL Representation.

interface render : employee

{

// Asynchronous invocations. (Specified by keyword "oneway")

oneway void render_to_file( in a1_object a1obj,

in string file_name );

};

Figure 4.19. Render Functionality Engine IDL Interface

Figure 4.20. Render Functionality Engine Graphical Interface
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thread of execution in a CORBA server runs a CORBA event loop which processes

invocation requests made by clients on the FEI.

The BORG System uses Tcl/Tk[12] to produce graphical interfaces. Tcl/Tk

(like any graphical interface system) requires a way to process events generated by

the user. Normally this is done in an event loop running in the process's main

thread of execution. This is not possible in a CORBA server since the main thread

of execution is already running the CORBA event loop.

The BORG System's solution is to create a new thread of execution that runs an

event loop to processes user generated Tcl/Tk events. Thus, the render functional-

ity engine has two threads of execution, one running the CORBA event loop, and

the other running a Tcl/Tk event loop. This means that FEIs may have a graphical

user interface just like other applications, while also processing invocation requests

made by clients. This is an essential requirement for functionality engines such as

the Render functionality engine where a Tcl/Tk event loop is required to manage

the information window while the CORBA event loop renders the scene.

4.3.4 Creating a BORG Functionality Engine

Figure 4.21 is a owchart diagram outlining the steps required to create a

new BORG functionality engine. A programmer will start the design of a new
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Figure 4.21. Functionality Engine Contruction Flow Chart
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functionality engine by �rst determining what interface it will support (i.e., what

are its publicly available operations). The fully de�ned interface is then described

in IDL using the IDL interface construct. The IDL interface is used by an

IDL compiler to generate a CORBA proxy object. The implementation of the

functionality engine is unimportant and irrelevant to the client application. The

client application will only interact with an FEI via the CORBA proxy object, and

so does not need to know anything about the functionality engine except its IDL

interface.

The programmer must provide an implementation class for the functionality

engine as well as an implementation of that class and its methods. Additionally,

the programmer must create a token that will be associated with the functionality

engine (see Chapter 5 for a discussion of BORG tokens). This token will be used

by clients when sending requests to the Agency (see Chapter 6). The functionality

engine and its associated token must then be registered with the Agency before the

Agency can provide a client with access to that functionality engine. Section 6.3.3

discusses registering tokens and functionality engines with the Agency. Once the

CORBA proxy object has been created, the implementation of the functionality

engine and its associated token have been completed, and the functionality engine

and its token have been registered with the Agency, clients are free to use the service

provided by the functionality engine.



CHAPTER 5

TOKENS

This chapter discusses the BORG System's tokens and messages. First, we will

explain the purpose of tokens, followed by how and where tokens are used as well

as examining the structural implementation of a token. The concluding section

discusses BORG System messages, their use and implementation.

5.1 Purpose of Tokens

Tokens are used to represent functionality engine instances. They can uniquely

represent any set of FEIs, whether those particular FEIs exist or not. This makes

tokens useful as a means of describing a speci�c FEI to a client or other functionality

engine.

A token is implemented as C++ class which represents a functionality engine.

There is a token class associated with every functionality engine. For exam-

ple, the render_token class represents the Render functionality engine, and the

model_rep_token class represents the Model Repository functionality engine. An

instance of a token class will be referred to simply as a token.

A token speci�es a set of FEIs. Tokens can be created with varying degrees of

information concerning the set of FEIs they represent. At the broadest, a token

can represent the entire set of FEIs associated with that token's class. At the

narrowest, a token can represent one unique FEI associated with the token's class.

If two tokens are equal, they represent equivalent sets of FEIs.

5.2 Using Tokens

The special nature of tokens that allows them to represent a set of FEIs provides

for their use as quali�ers in messages passed between clients and functionality
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engines in the BORG System. A client may send a token to a functionality engine as

part of any message that requires the speci�cation of a set of FEIs. The set of FEIs

that the token represents can be used for anything from noti�cation operations to

client request operations.

During execution, a client may instantiate the token class representing a func-

tionality engine. The constructors of a token class provide for the speci�cation of

all of the possible varying degrees of information concerning the set of FEIs that

this token will represent. The client will decide, based on its current needs, how

speci�c a set of FEIs this token will represent.

Di�erent operations require di�erent degrees of FEI set speci�cation. Broad set

speci�cation can often be used for operations such as noti�cation. For example,

a client may wish to send a noti�cation message to all of the FEIs executing on

a speci�c host. A token can be instantiated with the proper parameters so that

the set of FEIs it represents contains all FEIs running on the speci�c host. Once

instantiated, the token may be passed to the Agency functionality engine as part

of its noti�cation operation.

A narrow FEI set speci�cation may often be used for operations such as the

request operation. For example, if a client wishes to use a functionality engine as a

speci�c element of its implementation, it may instantiate a token representing that

functionality engine. As part of the instantiation process, the client may specify

very explicit parameters so that the set of FEIs that this token represents is very

small and speci�c. Having instantiated the token, the client may pass the instance

to the Agency as part of the operation requesting access to an FEI. The Agency

will return a proxy to an FEI contained in the set of FEIs represented by the token.

5.3 Token Implementation

Tokens have two representations, each serving a distinct purpose. A token's

external representation is that seen and used by a client program and is implemented

as a C++ class. Internally, a token is represented as an IDL struct.
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5.3.1 External Token Representation

Externally, tokens are represented as a C++ class which is only a container

class for the internal representation of a token. All token classes are derived from

a single base token class, which does not describe any functionality engine. The

token class is declared to contain a data member that is an instance of the internal

representation of a token. Classes derived from the token class are declared without

any data members, but use and initialize the data contained in the token class.

The data contained in the token can be set only through the token's constructors.

Figure 5.1 shows the C++ class declaration of the token.

Classes derived from the token class represent functionality engines. Instantia-

tions of these classes represent FEIs. Using the proper constructors and providing

pertinent parameters to them, the client has the freedom to instantiate a token

class so that the token represents a speci�c set of FEIs. Clients will deal only with

the derived token classes and not with the token's internal representation, for which

the derived token classes are only a container.

Figure 5.2 is an example of a derived token class. Note that it is derived from

the token class and that its interface consists only of constructors that invoke the

constructors of the parent class. This derived token class represents the Employee

functionality engine described in Section 4.3.1. Instantiations of this class represent

Employee FEIs. Since all BORG functionality engines derive their IDL interfaces

from the IDL interface of the Employee functionality engine, all FEIs may be

considered Employee FEIs. Thus, employee_tokens may be used to specify a

broad set of FEIs, and in the limit, specifying all FEIs in the BORG System.

Figure 5.3 shows the C++ class declaration of the model_rep_token which

represents the Model Repository functionality engine. Note that model_rep_token

is derived from employee_token and that it contains only constructors that invoke

the constructors of the parent employee_token. The other currently derived tokens

of the BORG System, the controller_token, render_token, scl_token and

viewer_token, are declared in a parallel manner. Figure 5.4 shows a diagram

of the token inheritance hierarchy.
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/* Base class of the BORG token hierarchy */

class token

{

public:

token( const token & t ) : base_( t.base() ) {

*this = t;

}

token( const base_token & bt ) : base_( bt ) {

*this = bt;

}

token( const char *obj = NULL,

const char *mach = NULL );

token( const char *obj,

host_machine_enum e );

~token() {}

// . . .

/* Overloaded operators. */

inline int operator==( const token & t ) const;

inline int operator!=( const token & t ) const;

inline token & operator=( const token & t );

inline token & operator=( const base_token & b );

/* Accessor member functions for private data. */

const base_token & base() const { return base_; }

protected:

/* Constructor used by derived classes to pass on the type

* name of their derived token. */

token( const char *type,

const char *obj,

host_machine_enum mach );

private:

/* Internal representation of a token. CORBA struct. */

base_token base_;

};

Figure 5.1. Token C++ Class Declaration
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/* Token class representing the Employee Functionality Engine */

class employee_token : public token

{

public:

employee_token( const employee_token & t ) :

token( t.base() ) {}

employee_token( const base_token & b ) :

token( b ) {}

employee_token( const char *obj = NULL,

const char *mach = NULL ) :

token( "employee", obj,

token::parse_host( mach ) ) {}

employee_token( const char *obj,

host_machine_enum e ) :

token( "employee", obj, e ) {}

~employee_token() {}

protected:

/* Constructor used by derived classes to pass on the type

* name of their derived token. */

employee_token( const char *type,

const char *obj,

host_machine_enum mach ) :

token( type, obj, mach ) {}

};

Figure 5.2. Example of a Derived Token Class
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/* Token class representing the Model Repository

* functionality engine.

*/

class model_rep_token : public employee_token

{

public:

model_rep_token( const model_rep_token & t ) :

employee_token(t.base()) {}

model_rep_token( const base_token & b ) :

employee_token( b ) {}

model_rep_token( const char *obj = NULL,

const char *mach = NULL ) :

employee_token( "model_rep", obj,

token::parse_host( mach ) ) {}

model_rep_token( const char *obj,

host_machine_enum e ) :

employee_token( "model_rep", obj, e ) {}

~model_rep_token() {}

protected:

/* Constructor used by derived classes to pass on the type

* name of their derived token. */

model_rep_token( const char *type,

const char *obj,

host_machine_enum mach ) :

employee_token( type, obj, mach ) {}

};

Figure 5.3. Model Repository Functionality Engine Token Class
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Figure 5.4. Token Inheritance Hierarchy

5.3.2 Internal Token Representation

Internally, every token instance contains a compact structure that stores the

speci�c data that allows for the speci�cation of a set of FEIs. This structure is called

a base_token and is generated as the implementation of the IDL struct construct

(see Figure 5.5). As a generic structure, the base_token does not represent any

functionality engine, but, once initialized, can be used to represent any FEI in the

BORG System.

The base_token has slots for all of the data elements needed to specify a unique

set of FEIs.

� type : The type name of this token (i.e., \model rep token", \render token").

This places a textual representation of the token's class name into the generic

// Base token IDL definition.

struct base_token

{

string type; // Type name of this token.

string obj; // Object name of requested server.

short machine; // Machine on which associated

// functionality engine runs.

short host_machine;// Machine on which this token was created.

};

Figure 5.5. IDL Declaration of the base token
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base token structure. Since the base token structure does not represent a

functionality engine, this data slot initializes and sets the boundaries of the

set of FEIs represented by the base token.

� obj : The object name of all the FEIs contained in the set of FEIs represented

by this token. The object name can be very speci�c, such as \Alpha1 1 Model

Repository" or \Centauri generic math", limiting the set to a small number of

elements. On the other hand, the object name does not have to be speci�ed,

whereupon the set of FEIs could be quite large.

� machine : The host machine for the all of the FEIs contained in the set of

FEIs represented by this token. This is an enumerated type with possible

values:

{ ANY

{ HOST

{ CENTAURI CS UTAH EDU

{ GEMINI CS UTAH EDU

{ OBTUSE CS UTAH EDU

{ SANCTUM CS UTAH EDU

{ NONE

The ANY value speci�es all of the FEIs executing on all the machines in the

BORG System, potentially creating a large set. The HOST value speci�es all

of the FEIs executing on the current host machine, whereas the other values

specify speci�c machines in the BORG System. The enumerated type can

be expanded to include any additional machine added later to the BORG

System. An enumerated type was chosen for this data slot due to its ease

of implementation. A more complex implementation, such as a dynamic

namespace, may provide the base_token with more exibility.
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� host machine : The host machine on which this token was instantiated. This

is also an enumerated type whose domain of values is the same as that of the

machine slot. This data slot does not limit the set of FEIs associated with

this token.

The base_token structure encapsulates the unique data of a token in a structure

that is the implementation of the IDL struct construct. Using an IDL struct

to de�ne the base_token structure allows the BORG System to use tokens as

parameters and return values of the operations of a functionality engine's interface.

The interface to a functionality engine is de�ned using the IDL interface

construct. All types used in an IDL interface de�nition must be either IDL

basic types, IDL template types or IDL constructed types. It is not possible to

use C++ classes or structures in IDL. This precludes the use of the C++ class

representation of a token within an IDL de�nition.

This does not mean that tokens cannot be used in the operations of functionality

engines. The data of a token are encapsulated within a C struct that implements the

IDL base_token structure. The IDL struct can be used within the IDL interface

de�nition of a functionality engine, and its corresponding C struct can be used

in the implementation of the IDL interface. Thus, since base_tokens are the IDL

embodiment of a token, the BORG System has a way of sending messages containing

tokens between clients and functionality engines.

Whereas one would like to use a token in the description of an IDL interface,

the IDL base_token structure must be used instead, without the loss of any of the

speci�c data of an individual token. One of the functionality engines that bene�ts

from this design is the Agency. Chapter 6 peers into the workings of the Agency

and how this design of tokens is used in practice.

5.4 Messages

BORG System messages represent signals passed from a client to a set of FEIs.

These signals can be anything from a signal to deactivate an FEI, to a signal that a

�le has changed on disk. Like tokens, messages are implemented as a class hierarchy,
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with each class representing a unique message.

Messages are used in the Agency's noti�cation operation. Clients will specify a

set of FEIs and a message to send to them. The set of FEIs is determined by a

token, and the message to be sent is determined by a message instance.

A C++ class hierarchy is used to represent messages. The class message is the

base class of the hierarchy and does not represent any speci�c message. Classes

derived from the message class represent speci�c types of BORG System messages.

For example, the deactivate_msg represents the deactivate signal available for use

with all FEIs.

Like tokens, the message class contains member data that determine the speci�c

message represented by this class. A derived class constructor will set the member

data to specify the message this object represents. The member data of a message

is an instance of the base_msg struct. The base_msg struct is the C++ structure

generated from an IDL struct. It encapsulates the data of a message in an IDL

structure and allows messages to be used within IDL operations. Figure 5.6 shows

the IDL declaration of the base_msg.

Currently, the base_msg struct contains only the variable, msg, of type short.

msg is an enumerated type representing the speci�c type of message. Currently,

only a deactivate message is de�ned in the BORG System. An FEI that receives the

deactivate message is no longer available for use by clients. The FEI is deleted and

its CORBA server process is killed. Future expansions of the message capabilities

of the BORG System may enrich the data contained within the base_msg struct,

and enlarge the domain of de�ned messages.

struct base_msg

{

short msg; // Enumerated type of the message.

// More data can be encapsulated here if needed.

};

Figure 5.6. IDL Declaration of the base msg
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THE AGENCY

This chapter discusses the BORG System's Agency functionality engine. We

will �rst explain the purpose of the Agency, followed by how and where the Agency

might be used, and concluding with an examination of the Agency's implementa-

tion.

6.1 Purpose of the Agency

The Agency is a functionality engine that handles information exchanges among

clients in the BORG System. By acting like a bulletin board, the Agency mediates

requests for access to FEIs that are made by clients. This mediation encapsulates

and abstracts the underlying distributed system software package that is necessary

for the exchange of information between clients and functionality engines in the

BORG System.

The service provided by the Agency is the mediation of requests made by

clients. Clients in the BORG System must use the Agency as an intermediary

when interacting with FEIs. A client is unable to communicate with an FEI unless

it uses the Agency as a catalyst or as a disseminator (see Figure 3.3 and 3.4).

As a catalyst, the Agency is used by clients when they are in need of the service

provided by a functionality engine. The client will request that the Agency provide

it with an FEI. The Agency will either �nd an existing FEI or create a new one,

returning a CORBA proxy to a FEI in response to the request made by the client.

As a disseminator, the Agency is used by clients to send noti�cation messages

to a speci�ed group of FEIs. Clients will contact the Agency, requesting it to send

a speci�c noti�cation to a set of FEIs. The Agency will then �nd all the speci�ed

FEIs, and send the noti�cation to them.
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The Agency encapsulates and abstracts the underlying distributed system soft-

ware package that is necessary to provide its service. The Agency was designed so

that BORG System application programmers need only limited knowledge of the

underlying distributed system software package.

6.2 Using the Agency

The Agency is used for requesting access to functionality engine instances and

for requesting the sending of noti�cation messages to sets of functionality engine

instances. These bulletin board characteristics are available to all clients through

the use of a special proxy class called the local agency. The client can use the

bulletin board features provided by the Agency anywhere they are required, via an

instantiation of the local_agency class.

6.2.1 Agency as Catalyst

A client may use the service provided by a functionality engine. Clients obtain

an FEI by sending a request to the Agency via the local_agency proxy. The

Agency will �nd an appropriate FEI and return a CORBA proxy object for that

instance.

Clients specify what FEI they require access to by using tokens. A client will

instantiate a token that represents the FEI it wishes to use. The token will specify

either a speci�c FEI or a general set of FEIs from which any element would be

appropriate. The token is passed to the Agency, via the local_agency proxy, as a

parameter of the operation.

6.2.2 Agency as Disseminator

A client may also �nd it useful to send a message to a set of FEIs. This is

accomplished by sending a noti�cation request to the Agency via the local_agency

proxy. The Agency will �nd the appropriate FEIs and send the noti�cation message

to them.

Clients specify to whom the message should be sent by using tokens. The token

may specify one speci�c FEI, or it may specify a broad category of FEIs. The
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message to be sent is determined by an instance of a message descriptor class.

There is a message descriptor class for every prede�ned message in the BORG

System. The message descriptor and the token are sent to the Agency via the

local_agency proxy, as parameters of the Agency's noti�cation operation.

6.2.3 Current Limitations of a Dissemination

Currently, there is only one message descriptor class de�ned in the BORG Sys-

tem. This message descriptor represents the deactivatemessage (see Section 5.4).

When a client sends this message, all FEIs that receive it automatically shut down

and are no longer available for use by clients. The deactivate message can be sent

to any FEI.

Other message descriptors may be de�ned that can be sent only to speci�c

FEIs. For instance, a model repository functionality engine may de�ne a message

descriptor that says the repository of models has been updated. A model repository

FEI that receives this message descriptor may interpret it as a signal that its internal

database of models is out of date and needs to be reloaded using the repository of

models on disk.

Currently, the bounds of the Agency's implementation limit the size of the set

of FEIs to which a message will be sent. A token may represent a large set, but

currently, the message will only be sent to a single FEI within that set. This is

due to CORBA's lack of message broadcasting support. CORBA is a point-to-

point communication system, whereas noti�cation is a broadcast communication

operation. Thus, an intricate algorithm would be needed to ensure complete

broadcast coverage. The Agency does not implement such an algorithm and as

such, dissemination is most useful when a message must be sent to a speci�c FEI.

6.3 Implementation of the Agency

The Agency acts as a catalyst and a disseminator while encapsulating and

abstracting the underlying distributed system software package. Clients interact

with the Agency via a proxy object called the local_agency.
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6.3.1 The local agency

The local_agency is a proxy object of the Agency functionality engine. It

provides clients with transparent access to the Agency. The local_agency is

designed to encapsulate the interface of the Agency and provide a general interface

based solely on BORG System constructs.

The local_agency is declared as a C++ class (see Figure 6.1). Clients will

use an instance of the class where ever there is a need for access to the Agency.

The constructors of the local_agency class will obtain a CORBA proxy object

that is connected to the Agency FEI by using the CORBA communication infras-

tructure (see Section 6.3.2). The request and notify member functions of the

local_agency class provide access to the Agency's CORBA proxy object and its

operations. Internally, the request and notify member functions take the token

that they receive as an argument, and pass on a reference to its base_tokenmember

data as a parameter to the Agency's operations. The notify member function also

takes a message as an argument, and passes on a reference to its base_message

member data as a parameter to the Agency's operation.

For example, if a client needs to use the Model Repository, it may instan-

tiate a model_rep_token and pass it as a parameter to the invocation of the

local_agency's request member function. Figure 6.2 shows code that describes

how the local_agency can be used to request access to a functionality engine.

Here we have instantiated the local_agency class and the model_rep_token class.

The local_agency constructor obtains a CORBA proxy object for the Agency

functionality engine. The model_rep_token constructor uses default arguments

to initializes the set of Model Repository FEIs represented by this token. Then,

passing the model_rep_token instance to the local_agency's request member

function, the Agency contacts a Model Repository FEI and returns its proxy to

the client. The narrow function of the model_rep class that is used in Figure 6.2

is a static member function that type casts the employee CORBA proxy returned

by the local_agency to a model_rep type. ORBeline implements this member

function as part of its run-time type inheritance system.
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class local_agency

{

public:

local_agency(); /* Stand alone client. */

local_agency( int & argc, char * argv[] ); /* Functionality

* engine client. */

~local_agency();

/* Member functions that encapsulate operations of the Agency

* interface.

*/

employee * request( const token & t,

find_enum find );

void notify( const token & t,

const message & m );

/* General object member functions. */

int bind_to_agency();

/* Accessor member functions or private data. */

const char * name() const { return name_; }

const int corba() const { return corba_; }

const int persistent() const { return persistent_; }

const int bound() const { return bound_; }

private:

agency * a_; /* CORBA proxy of the Agency FEI. */

// . . .

};

Figure 6.1. local agency Class Declaration

{

local_agency agency;

model_rep_token mt;

model_rep * repository;

repository = model_rep::_narrow( agency.request( mt ) );

}

Figure 6.2. Using the local agency
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6.3.2 Binding To FEIs

In previous sections we have mentioned that clients use the Agency to contact

FEIs and that the local_agency is used to contact the Agency FEI. This contacting

is done with the help of the ORB. The Agency and its proxy, the local_agency,

encapsulate and abstract the ORB and the FEI connection process.

The Agency and the local_agency use the ORB to obtain handles or CORBA

proxies to FEIs. These handles are instantiations of the client side stub class of the

CORBA proxy object and provide transparent access to the FEI via the process

described in Section 4.2.2 and shown in Figure 2.1.

Handles are obtained through a binding process that uses the ORB to locate

and establish a connection to an FEI. A bind static member function is generated

by the ORBeline IDL compiler as part of each client side stub class. The bind

member functions uses the ORB to locate and connect to an FEI. Figure 6.3 shows

the declaration of the bind static member function of the employee client side

stub class. The parameters of the bind member function can be used to specify

a speci�c FEI to which to bind. The parameter, object name, can specify the

name of the desired FEI, and the host name parameter can specify the name

of the host machine where this FEI is executing. The CORBA::BindOptions

parameter is discussed in [14]. If the parameters to the bind member function

are ambiguous, such that there is more than one FEI that �ts their description,

internal algorithms of the speci�c ORB implementation in use will choose the FEI

with which to connect.

Figure 6.1 shows the local_agency declaration. The local_agency normally

binds to the Agency FEI during its instantiation by invoking the bind to agency

member function. Accessor member functions of the local_agency can be used

to determine if a connection has been made to an Agency FEI. A private data

member, a , is a pointer to the instantiation of the client side stub class of the

Agency obtained via the bind process. Figure 6.4 shows the code that implements

the bind to agency member function. The parameter to the bind function is

the value of the environment variable, HOST. This speci�es that the Agency FEI
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class employee : public virtual CORBA_Object

{

// . . .

static employee * _bind(const char *object_name = NULL,

const char *host_name = NULL,

const CORBA::BindOptions* opt = NULL);

// . . .

};

Figure 6.3. bind Function Declaration Generated by the ORBeline IDL Compiler

int

local_agency::bind_to_agency()

{

if ( ! bound_ )

{

/* Connect to the Agency FEI via the bind function. */

a_ = agency::_bind( getenv( "HOST" ) );

if ( a_ )

bound_ = 1;

}

return bound_;

}

Figure 6.4. Binding to the Agency Within the local agency
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that we wish to connect to is located on the current host machine.

6.3.3 The Agency

The Agency is a functionality engine of the BORG System that is generally used

as a distributed object. Normally, the Agency will run as a daemon process on every

machine in the BORG System. Clients will use the local_agency to connect to

and interact with the Agency daemon on the current host. Clients do not need to

be aware that the Agency functionality engine is running as a daemon process, nor

will they invoke its methods directly.

Figure 6.5 shows the IDL interface representing the Agency functionality

engine. The Agency's IDL interfacedescribes the request and notify operations.

Both operations take a base_token as a parameter, and the notify operation

takes an additional base_message. The base_tokens are used by the Agency's

implementation to bind to FEIs. Once bound, in the case of the request operation,

a CORBA proxy representing the FEI is returned. In the case of the notify

operation, the FEIs are noti�ed with the message represented by the message

descriptor parameter.

Figure 6.6 shows the implementation class of the Agency functionality engine.

It declares member functions that implement the operations of its IDL interface, as

well as a member function, register fe, that registers tokens and functionality

engines within an internal data structure. This internal data structure is the

employees private data member. employees is a template hash table whose

buckets contain an instance of the token_emp_bind class, shown in Figure 6.7. The

hash table contains a bucket for each functionality engine that has been registered.

The buckets contain a token representing the functionality engine and a pointer to

a function which is used to bind to an FEI. For example, a bucket for the employee

functionality engine would contain an employee_token and a pointer to a function

that binds to an Employee FEI. Figure 6.8 shows the function that binds to an

Employee FEI and is registered in the Agency's hash table. The function forwards

the bind request to the _bind member function. This extra layer is provided to

abstract any code that may be speci�c to the ORB implementation being used.
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// BORG System's Agency IDL definition.

interface agency

{

employee request( in base_token bt, in short find );

void notify( in base_token bt, in base_message bm );

};

Figure 6.5. The Agency Functionality Engine IDL Interface

class Agency : public _sk_agency

{

public:

Agency();

~Agency() {}

/* Public member functions. */

virtual void register_fe( const token & t,

employee * (*bfp)(const char*) );

/*

* Public CORBA interface member functions.

*/

/* Member functions implementing the agency IDL interface. */

virtual employee * request( const base_token & bt,

CORBA::Short find );

virtual void notify( const base_token & bt,

const base_msg & msg );

// . . .

private:

/* Private member data. */

hash_table<token_emp_bind> employees_;

};

Figure 6.6. The Agency Functionality Engine Implementation Class
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class token_emp_bind

{

public:

token_emp_bind( const base_token &bt,

employee* (*bfp)(const char*) );

~token_emp_bind() {}

/* Public member functions. */

employee* bind( const base_token &bt );

/* Accessor member functions for private data. */

const token &tok() const { return t_; }

private:

/* Private Data. */

token t_;

/* Private member functions. */

/* This is a pointer to a function used to bind to an FEI. */

employee * (*bind_fn_ptr)(const char*);

};

Figure 6.7. Agency's Hash Table Bucket Class Declaration

employee *

Employee_bind_to( const char *obj )

{

return employee::_bind( obj );

}

Figure 6.8. Function Registered with the Agency for Binding an Employee
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Figure 6.9 shows the Agency's registration process that takes place in the main

function of the CORBA server containing the Agency's FEI.

When it is necessary for the Agency to contact an FEI, either because of a request

or notify operation invocation, the agency will look up the speci�ed functionality

engine in the hash table. If a bucket is retrieved by the lookup, the Agency will use

the bucket to obtain a handle to a speci�c FEI. Figure 6.10 shows the code used by

the Agency to lookup and contact an FEI. The base_token_key used in the lookup

takes a base_token and converts it into a key that is used in the lookup. Once

a bucket has been retrieved, the bind member function of the token_emp_bind is

called to obtain the handle to the FEI speci�ed in the base_token. The Agency's

request operation will return the handle to the client. The notify operation will

invoke the employee message operation on this handle (see Section 4.3.1 for a

description of the employeemessage operation).

By incorporating tokens, messages and the local_agency into their design,

BORG clients are able to access any FEI in the system. In Chapter 7 we will

look in depth at these clients, examining several current examples from the BORG

System.
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/* agencysrv.C */

#include <agency.H> /* Agency; Agency functionality

* engine implementation class.

*/

/* Token includes. */

#include <employee_token.H> /* Declares employee_token and

* Employee_bind_to

*/

// . . .

int main( int argc, char *argv[] )

{

// . . .

/* Instantiate the Agency functionality engine's

* implementation class (Agency FEI).

*/

Agency a;

/* Instantiate the derived token classes. */

employee_token et;

// . . .

/* Register tokens and their bind functions with

* the Agency.

*/

a.register_fe( et, &Employee_bind_to );

// . . .

}

Figure 6.9. The Registration Process of the Agency
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{

/* bt is a const base_token &, received as a parameter to

* the Agency's request or notify operation.

*/

// . . .

token_emp_bind *teb = employees_.lookup( base_token_key( bt ) );

/* Bind to an employee. */

employee * e = teb->bind( bt );

// . . .

}

Figure 6.10. Lookup and Binding in the Agency
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CLIENTS

This chapter discusses clients of the BORG System. We �rst examine what

constitutes a client, followed by what parts of the BORG System are available to

clients, �nishing with some examples of current clients of the BORG System.

7.1 What Is a Client?

BORG clients are programs or processes that use one or more FEIs to accomplish

speci�c elements of their design. Theses clients may be software applications or

functionality engines.

Applications are clients if they use an FEI as part of their implementation. For

example, an application that computes the visibility of objects in a scene may

be required to render the scene after completing the visibility computation. A

functionality engine that de�nes a rendering service may be used by the visibility

application in order to complete the application's required action of rendering the

scene.

Functionality engines are also considered to be BORG System clients if part

of the service they de�ne is implemented using a service provided by an FEI. For

example, a functionality engine that de�nes an interactive modeling service may

use a functionality engine that de�nes a model viewing service in order to display

the models it creates. Since the Agency is a functionality engine, a client that

uses the Agency is a BORG client whether or not it uses the service of any other

functionality engine.



72

7.2 The Structure of a Client

The �rst functionality engine that any client will interact with is the Agency.

A client will use an instance of the local_agency class as a proxy to the Agency

functionality engine. Figure 7.1 shows code that a client might use when requesting

the services of the Render functionality engine. Figure 7.2 shows code a client might

use when sending a message to a set of Viewer functionality engines.

A BORG System application client will often use the services of the Agency

as part of the implementation of a local function. For instance, Figure 7.3 shows

an example of an application that requests the services of the model repository

in a function called get_model. In get_model, the local_agency is instantiated

along with a model_rep_token. The token is then passed to the local_agency

as a parameter to the request member function. The request member function

returns a handle to a Model Repository FEI, which is then queried for a speci�c

model.

Functionality engines are always BORG clients. Each FEI has, as part of the

private member data section of its C++ implementation class, an instantiation of

the local_agency. The local_agency can be used to help implement the service

de�ned for the functionality engine by requesting or notifying FEIs.

7.3 Examples of Functionality Engines

This section describes three BORG System functionality engines. They are the

Controller, the Scl, and the Viewer. The Controller funnels the actions from a user

interface to appropriate functionality engines. The Scl is an Alpha 1 c shape edit

modeling interpreter, and the Viewer displays Alpha 1 geometric models.

7.3.1 The Controller Functionality Engine

The Controller is a functionality engine with a graphical user interface that

passes events to functionality engines such as the Viewer, the Model Repository

and the Scl. Figure 7.4 shows the default interface of the Controller. This interface

is written with Tcl/Tk and can easily be con�gured to allow for additional features.

Figure 7.5 shows the IDL interface declaration for the Controller functionality
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{

. . .

local_agency agency; // Instantiate local_agency.

render_token rt; // Instantiate render_token.

. . .

/* Use agency to request a Render FEI. */

render *rend = agency.request( rt, EXISTING_OR_NEW );

. . .

}

Figure 7.1. Client Code to Request the Services of a Functionality Engine

{

. . .

local_agency agency; // Instantiate local_agency.

viewer_token vt; // Instantiate viewer_token.

deactivate_msg dm; // Instantiate deactivate_msg.

. . .

/* Use agency to notify Viewer FEIs to deactivate. */

agency.notify( vt, dm );

. . .

}

Figure 7.2. Client Code to Notify a Set of FEIs
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a1_object * get_model( char * model_name )

{

local_agency agency; // Instantiate the local_agency.

model_rep_token mt; // Instantiate a model_rep_token.

/* Request a handle to a Model Repository FEI using the

* local_agency.

*/

model_rep * repository = agency.request( mt, EXISTING_OR_NEW );

/* Query the Model Repository FEI for a specific model. */

return repository->query( model_name );

};

Figure 7.3. Function get model Using the Service of the Model Repository
Functionality Engine

Figure 7.4. Graphical Interface of the Controller Functionality Engine

interface controller : employee

{

// Declared asynchronous to avoid blocking.

oneway void eval_tcl_code( in string tcl_code );

};

Figure 7.5. Controller Functionality Engine IDL Interface
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engine. The sole operation declared for the Controller is eval tcl code. This

operation allows a Controller FEI to be used as an enhanced Tcl/Tk interpreter.

The Controller will evaluate Tcl/Tk code, as well as special \controller" events. The

\controller" events signal actions unique to the Controller functionality engine. For

example, Figure 7.6 shows the Tcl/Tk code that creates the \Start SCL" button.

The button's command is \controller" and has an argument, \start scl". When

this command is interpreted, the Controller will request an Scl FEI through the

Agency. All subsequent events that require the processing of SCL code will be sent

to that Scl FEI.

Figure 7.7 shows the implementation class of the controller functionality engine.

The public section of the class declares member functions that implement the

employee IDL interface as well as member functions that implement the Controller

IDL interface. The private member data contain handles to FEIs used by the

Controller as well as a local_agency and an a1_corba_stream.

7.3.2 The Scl Functionality Engine

The Scl is a functionality engine that interprets the Alpha 1 Shape edit Com-

mand Language (SCL) via the Alpha 1 c shape edit interpreter. It uses the Viewer

functionality engine to visually display the generated models. Figure 7.8 shows the

IDL interface of the Scl functionality engine. Clients can use the Scl functionality

engine to interpret SCL code (eval code), obtain the SCL code that generated

a speci�c model (model code), obtain the SCL model type name of a model

(type name), or get all of the models created by this Scl functionality engine

(all models). The Scl functionality engine can be used in any BORG client,

but has a convenient graphical user interface through the Controller functionality

engine.

button .startscl -text "Start SCL" -command {controller start_scl}

pack .startscl -in .newabframe -side right

Figure 7.6. Tcl/Tk Code for the Controller \Start SCL" Button
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class Controller : public _sk_controller

{

public:

Controller( local_agency * age );

~Controller();

/* General object member function.

* This member function is required in order to use

* the Tcl/Tk interface.

*/

static int controllercmd( ClientData clientData,

Tcl_Interp * i,

int argc, char *argv[] );

/*

* Public CORBA interface operations.

*/

/* Member functions implementing the employee IDL interface. */

virtual base_token* this_token() {

return new base_token( t_.base() );

}

virtual void message( const base_msg & msg );

/* Member functions implementing the controller IDL

* interface.

*/

virtual void eval_tcl_code( const char * tcl_code );

private:

/* Private Member Data. */

local_agency * a_; // local_agency.

a1_corba_stream * acs_; // For serializing Alpha_1 objects.

viewer * v_; // Viewer FEI.

model_rep * m_; // Model Repository FEI.

scl * s_; // Scl FEI.

};

Figure 7.7. Controller Functionality Engine Implementation Class
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interface scl : employee

{

void set_viewer( in viewer v );

string eval_code( in string scl_code );

string model_code( in string model_name );

string type_name( in string model_name );

a1_object all_models();

};

Figure 7.8. Scl Functionality Engine IDL Interface

Figure 7.9 shows the declaration of the corba_scl_obj class, the implementation

class of the Scl functionality engine. It should be noted that the corba_scl_obj

class does not inherit from the server side skeleton class of the CORBA proxy

object. It has its own inheritance hierarchy and as such, uses the TIE approach to

skeleton-implementation class connection. See Section 4.2.4 for a discussion of the

TIE approach.

Figure 7.10 shows the implementation of the eval code operation. eval code is

basically a forwarding function that passes its invocation up to the parent scl_obj

and returns that result. Figure 7.11 shows the implementation of the all models

operation. Here, the parent scl_obj member function, get all models is called.

The return value Alpha 1 model_list_obj is serialized into a byte stream by the

a1_corba_stream, which then returns an a1object to the client. Section 4.3.2

discusses a1_corba_stream and the a1object.

7.3.3 The Viewer Functionality Engine

The Viewer is a functionality engine that visually displays Alpha 1 geometric

models. Figure 7.12 shows the IDL interface of the Viewer functionality engine.

Clients may send Tcl/Tk commands (such as those that change the current view) to

the Viewer via the eval script operation. Alpha 1 objects, such as those obtained

from the Model Repository, can be viewed in a Viewer FEI with the show obj

operation. A client may even query the Viewer for a list of the models that have

been selected in the Viewer's display window (get selected models).
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class corba_scl_obj : public scl_obj

{

public:

corba_scl_obj( local_agency * age );

~corba_scl_obj();

// . . .

/*

* Public CORBA interface operations.

*/

/* Member functions implementing the Employee IDL interface. */

virtual base_token * this_token() {

return new base_token( t_.base() );

}

virtual void message( const base_msg & msg );

/* Member functions implementing the Scl IDL interface. */

virtual void set_viewer( viewer * v );

virtual char * eval_code( const char * scl_code );

virtual char * model_code( const char * model_name );

virtual char * type_name( const char * model_name );

virtual a1_object * all_models();

private:

/* Private member data. */

local_agency * a_; // local_agency

a1_corba_stream * acs_; // For serializing Alpha_1 objects.

viewer * v_; // Viewer FEI.

/* Static member data for initialization of the SCL

* interpreter.

*/

static model_pkg_type * pkgs_[];

static int n_pkgs_;

};

Figure 7.9. The SCL Functionality Engine Implementation Class
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corba_scl_obj::eval_code( const char * scl_code )

{

/* Forward invocation to parent scl_obj. */

char* res = scl_obj::eval_scl_code( scl_code );

/* Return result. */

return res;

}

Figure 7.10. Implementation of SCL Functionality Engine eval code Operation

a1_object*

corba_scl_obj::all_models()

{

/* Forward invocation to parent scl_obj. */

model_list_obj* mlo = scl_obj::get_all_models();

/* Instantiate the a1_corba_stream used to serialize Alpha_1

* objects.

*/

if ( acs_ != NULL )

delete acs_;

acs_ = new a1_corba_stream();

/* Serialize model_list_obj into byte stream contained in

* a1_corba_stream. The serialization takes place below the

* surface using acs_.

*/

mlo->dp_obj();

/* Since we are now done serializing the object, we can

* delete it.

*/

delete mlo;

/* Return an a1object. */

return acs_->a1obj_to_ORB();

}

Figure 7.11. Implementation of SCL Functionality Engine all models Operation
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interface viewer : employee

{

void show_obj( in a1_object a1obj, in short hint );

void eval_script( in string script );

a1_object get_selected_models();

void connect_to_controller( in controller c );

};

Figure 7.12. Viewer Functionality Engine IDL Interface

Figure 7.13 shows the implementation of the show obj operation. The a1obj

parameter of the show obj operation is a list of Alpha 1 objects that has been

serialized into a byte stream in the client application. The objects to be shown

are read from the a1obj via the a1_corba_stream and displayed in the Viewer's

canvas. The hint parameter tells how the objects should be displayed.

The Viewer is also a multithreaded functionality engine like those described in

Section 4.3.3. This permits direct interaction with the functionality engine via the

mouse or keyboard. Like the Scl functionality engine, the Viewer functionality

engine can be used in any BORG client, but the Controller functionality engine

provides a convenient graphical user interface.
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void

Viewer::show_obj( const a1_object & a1obj, CORBA::Short hint )

{

/* Instantiate the a1_corba_stream used to serialize Alpha_1

* objects. Initialize it with the a1obj so that we can

* read the objects contained in a1obj. */

if ( acs_ != NULL )

delete acs_;

acs_ = new a1_corba_stream( a1obj );

object_type * obj = NULL;

/* Use the a1_corba_stream to get the objects from a1obj. */

while ( obj = acs_->read_obj() ) {

/* Show, highlight, unshow or unhighlight to object */

switch ( hint ) {

case H_SHOW:

canvas_->win()->show( obj->dl_obj() );

break;

case H_HIGHLIGHT:

canvas_->win()->highlight( obj->dl_obj() );

break;

case H_UNSHOW:

canvas_->win()->unshow_from_all( obj->get_seg() );

break;

case H_UNHIGHLIGHT:

canvas_->win()->unhighlight( obj->get_seg() );

break;

case H_NONE:

default:

break;

}

obj = NULL;

}

/* Process all display events and redraw the scene in the

* window if necessary. */

dlm.flush_dev();

}

Figure 7.13. Implementation of the Viewer Functionality Engine show obj Oper-
ation



CHAPTER 8

RESULTS, CONCLUSIONS AND FUTURE

WORK

Modern software technology allows distributed software components to transpar-

ently communicate. Technologies such as ACE, CORBA and OpenDoc abstract the

low-level network communication infrastructure to provide the application program-

mer with an encapsulated distributed object communication system. Unfortunately,

many legacy systems are not component based and cannot readily bene�t from the

advantages a�orded by distributed object computing. Under these conditions, a

certain amount of restructuring and even reengineering is often necessary.

The BORG System facilitates the conversion of a legacy system into a distributed

object model. Services of the Alpha 1 Software System are identi�ed and molded

into BORG functionality engines. BORG provides tools that permit functionality

engines to be used as distributed objects. Through a bulletin board, or Agency,

applications are able to obtain handles to functionality engines which can then be

exploited for the service they provide.

BORG was written using CORBA as the basis for transparent communication

between the distributed functionality engines and a client application. BORG

functionality engines are implemented as CORBA servers. Client applications

interact with a functionality engine via a CORBA proxy object. The service

provided by a functionality engine is used by clients via an interface de�ned in

IDL. The IDL interface wraps the legacy service in an object-oriented interface.

As an abstract concept, the conversion from legacy system to distributed object

model is fairly simple. Each legacy service is thought of as an object that provides

a speci�c interface and can be transparently used in an application. In practice
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however, it is slightly more di�cult. The interface of a functionality engine may be

easy to design, yet the implementation proves to be more di�cult.

For example, Alpha 1 services often translate into a natural object-oriented

interface. Yet, these services tend to pull functionality from throughout the software

system making it a complex operation to wrap legacy code into the object-oriented

interface. In the case of the Render functionality engine, the old Alpha 1 render ser-

vice was divided among several directories and libraries. The Render functionality

engine takes the main render program and splits its code into di�erent sections of

the object-oriented interface. It is essentially a shell that provides object-oriented

access to the legacy service below.

Functionality engines like the Model Repository were easier to create since there

was no corresponding legacy program. Functionality segments were grafted from

the legacy system into the object-oriented interface. All of the Model Repository's

functionality is completely contained within its C++ implementation class and

relies only on the legacy system for library support.

Other di�culties arise in the conversion from legacy system to distributed object

model due to the semantic mismatch between IDL and C++. C++ combines

data and operations into one structure, the class. IDL separates the concepts of

data and operations into structs and interfaces respectively. Interfaces support

inheritance and are instantiated as CORBA servers, but structs do not support

inheritance and are translated to C structures. Thus, one cannot directly map

from a C++ class to a combination of IDL interfaces and structs since IDL has no

way of representing the polymorphic nature of the data contained in a C++ class

hierarchy. Legacy systems that wish to directly translate C++ classes into IDL

must provide workarounds on a case by case basis to circumvent this shortcoming.

CORBA is still an emerging standard. There are several implementations on the

market, including ORBeline, that advertise compliance with the recent CORBA 2.0

standard. Part of the 2.0 standard was the Internet Inter-ORB Protocol (IIOP)

which allows ORBs produced by di�erent vendors to interoperate. IIOP may have

the e�ect of moving CORBA object technology down into the the operating sys-
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tems of workstations[4] which would provide worry free CORBA object interaction

across all platforms, regardless of the ORB. Such industry support for the CORBA

standard ensures the future of distributed object technology.

With industry support will come improved CORBA implementations. Current

CORBA implementations are slower on the ttcp[20] protocol benchmarking tool

for end-to-end data transfer throughput than are traditional C sockets[16]. This is

mostly due to the overhead incurred bymost CORBA implementations in areas such

as fragmentation/reassembly, marshaling, and demarshaling[16]. For large data

transfer systems such as those used in multimedia applications, increased overhead

can result in diminished performance. Future advancements and enhancements to

the CORBA standard and its implementations will certainly make it a viable option

for all types of applications.

As future work, functionality engines designed and implemented for this thesis

can be expanded and enhanced while other services of the Alpha 1 System can

be outlined and converted into BORG functionality engines. As an example, the

Viewer functionality engine could be enhanced to provide more than one viewing

window on more than one machine. Multiple users could then interact with one

Scl functionality engine that was connected to this \Multi-Viewer" functionality

engine, producing a design environment where multiple users collaborate in the

design of a model.

Several companies, including ORBeline, have or are now working on connecting

CORBA objects with the Java language. This facilitates the use of CORBA objects

in World Wide Web browsers such as Netscape while presenting new possibilities

for interaction and collaboration. For example, Alpha 1 functionality engines could

be made available to modelers and designers in the Science and Technology Center

(STC) for Computer Graphics and Scienti�c Visualization. Collaborative projects

might occur where users at the di�erent STC sites can combine and use the services

provided by the other sites via the World Wide Web.

The implementation of the BORG System in this thesis consists of 7 functionality

engines, each described by an IDL interface. Three other IDL �les were created
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to describe the a1object, the base_token and the base_msg structures. In total,

about 150 lines of IDL description were written. The BORG System also consists

of about 4000 lines of C++ code that was speci�cally written for this thesis. Some

of this C++ code converts legacy system services into distributed object models

and as such, replicates certain segments of the legacy code.

Distributed object computing has many bene�ts including composeability and

scalability[1], collaboration, performance, and reliability[17]. The BORG system

attempted to bring these advantages into the Alpha 1 Geometric Modeling and

Manufacturing Software System. By de�ning legacy services and converting them

into BORG functionality engines, Alpha 1 application programmers are able to

utilize these services in a \plug and play" fashion. Complex applications, like the

Controller functionality engine, are easily created, while new services can be cleanly

integrated into any existing application.

On a broader scale, this thesis has shown that CORBA is a viable solution for any

software system wishing to take advantage of the power of distributed computing.

In addition, functionality engines have been shown to be an appropriate tool for

legacy systems that could bene�t from conversion to an object model. In the

future, this kind of distributed component software design, use, and reuse will be

the cornerstone of all software development.
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