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Abstract

We present an efficient and robust algorithm for computing the min-
imum distance between a point and freeform curve or surface by
lifting the problem into a higher dimension. This higher dimen-
sional formulation solves for all query points in the domain simul-
taneously, therefore providing opportunities to speed computation
by applying coherency techniques. In this framework, minimum
distance between a point and planar curve is solved using a single
polynomial equation in three variables (two variables for a position
of the point and one for the curve). This formulation yields two-
manifold surfaces as a zero-set in a 3D parameter space. Given a
particular query point, the solution space’s remaining degrees-of-
freedom are fixed and we can numerically compute the minimum
distance in a very efficient way. We further recast the problem of
analyzing the topological structure of the solution space to that of
solving two polynomial equations in three variables. This topolog-
ical information provides an elegant way to efficiently find a global
minimum distance solution for spatially coherent queries. Addi-
tionally, we extend this approach to a 3D case. We formulate the
problem for the surface case using two polynomial equations in five
variables. The effectiveness of our approach is demonstrated with
several experimental results.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Splines
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1 Introduction

Minimum distance queries on computer models are one of the most
important geometric operations in simulation [Baraff 1990], hap-
tics [II et al. 1997], robotics [Quinlan 1994], registration [Pottmann
et al. 2003], and distance volume computation [Breen et al. 1998].
Often, efficiency and robustness are important for these applica-
tions, yet prior formulations have not been able to combine the
efficiency of numerical solutions with robustness and global con-
vergence. In this article, we develop an algorithm for reliable and
efficient minimum distance queries from a point to a spline model
by casting the problem into a higher-dimensional space parameter-
ized not only by the curve or surface, but also by potential positions
of the query point.

The minimum distance between a point and a spline model can be
computed either symbolically or numerically. Symbolic approaches
are robust and can find a global minimum solution but are relatively
slow. Because the underlying equations change when the query
point changes, symbolic approaches have not been able to exploit
spatially coherent queries to accelerate their solution. On the other
hand, numerical methods depend on spatial coherency to yield rapid
solutions to distance queries, but often can be unreliable since they
typically search only for local solutions and miss global solutions
that may “jump” from one branch of the model to another. In this
paper, a symbolic-numeric hybrid approach is presented to exploit
both advantages.

Our higher-dimensional approach symbolically represents the dis-
tance between a spline model and all query points in a bounded
domain. Given a planar curve C(t) and a parameterization of all
possible points in the plane P(x,y), minimum distance queries be-
tween them are solved using a single polynomial equation. Using
this single equation in three variables, the two-dimensional solution
space is constructed as a zero-set in the xyt-parameter space. A pa-
rameter point (x,y,t) located on the solution space is mapped to a
distance extrema for C(t) in the real space. Thus, a search for the
distance extrema can be reduced to finding a solution point on the
two-dimensional zero-sets in the parameter space.

After performing one minimum distance query using a symbolic ap-
proach, repeated queries can be updated using fast numerical meth-
ods. Since we have a two-dimensional solution space implicitly
defined by a single polynomial equation, spatially coherent queries
can be solved by numerically tracing the solution manifolds. In the
parameter space, this marching technique computes solution points
for the next query point based on the previous ones, which results
in a very fast computation of minimum distances.

Local searches using the numerical tracing method may not guaran-
tee that they find all the solutions, one of which may be the global
minimum. A new component of the solution space may appear
or an existing one disappear when the point encounters a global
changes in the higher-dimensional topological structure. We recast
the problem of analyzing global topology of the solution space to
that of solving two polynomial equations in the parameter space –
this part of the algorithm is further accelerated through preprocess-
ing of the higher-dimensional space. This topology information
supports the local numerical method to efficiently find a global so-
lution for spatially coherent queries.

The approach developed for curves in the plane can be extended
to freeform surfaces in a 3D space. For the surface case, a higher-
dimensional solution space is implicitly defined by two polynomial
equations in five variables. Experimental results show the robust-
ness of the approach and the speed advantage for coherent queries.
We are able to achieve simultaneous tracking of multiple extrema
for global minimum distance thousands of times per second for
curves and hundreds of times per second for surfaces.

The rest of this paper is organized as follows. In Section 2, some
related works are discussed. Section 3 presents an algorithm for
computing minimum distance between a point and planar curve, an
approach that is based on the dimensionality lifting scheme in the



parameter space. In Section 4, the minimum distance algorithm
is extended to freeform surfaces in a 3D space. Some examples
are presented in Section 5, and finally, in Section 6, this paper is
concluded.

2 Related Works

Distance query solution methods tend to vary depending on the type
geometric primitive being used. For discrete geometry, such as tri-
angular models, the predominant approaches accelerate queries us-
ing bounding volume hierarchies. In this case, research has focused
on more efficient bounding primitives. For continuous geometry,
such as spline surfaces, the distance equations can be directly for-
mulated and solution approaches have used numerical or symbolic
techniques to find distance minima.

2.1 Polygonal Models

An early hierarchical approach to distance queries used bounding
spheres to prune away portions of the model further away than
an upper bound on distance [Quinlan 1994]. In [Larsen et al.
2000], swept spheres volumes proved more efficient at pruning than
spheres for near contact cases. More recently, [Ehmann and Lin
2001] has used temporal coherence on hierarchies of convex sur-
face patches to accelerate distance queries.

These techniques all used Euclidean space bounds to find a global
minimum. Hierarchical bounds on surface normals were used in
[Johnson and Cohen 2001] to efficiently find local minima in dis-
tance for polygonal models as well as spline models [Johnson and
Cohen 2005].

2.2 Spline Models

The basic approach of formulating equations that reflect the ex-
trema of a distance function have been well-known and available in
textbooks for some time [Mortensen 1985]. Research issues have
been in improving robustness and speed of convergence. Baraff
used distance measures on convex smooth models as an efficient
collision test [Baraff 1990]. Snyder used an interval Newton’s
method to robustly update model penetration [Snyder 1993b]. A
combination of numerical methods solved for the closest point on a
space curve in [Wang et al. 2002].

Subdivision of constraint spaces have been used as more robust,
yet slower, alternatives to numerical methods. Interval methods
searched the four dimensional parameter space representing the dis-
tance between two parametric surfaces in [Snyder 1993a]. Elber
[Elber 1992] represented the distance equation and its derivatives as
NURBS surfaces and used subdivision along with numerical meth-
ods to search for solutions.

2.3 Distance Transform

The distance transform is a mapping between point position and a
minimum distance to a model. Often, this transform is represented
as a distance volume, which is a discrete sampling of point positions
with their minimum distances to a model stored in a volumetric ar-
ray. Distance volumes have the advantage of being extremely fast,
since finding a distance is just looking up the appropriate value in a
table [Museth et al. 2005]. They have the disadvantage of requiring

large storage and of being a fixed, usually crude, resolution. Our
approach is analogous to a continuous version of a distance vol-
ume, since we can quickly find a minimum distance for any point
position in a bounded domain. Distance field computations are also
explored in many papers [Frisken et al. 2000; Sigg et al. 2003; Sud
et al. 2004]. We present a continuous representation of points and
parameters that satisfy a local distance extremum solution, while
distance fields are discrete representations of the global minimum
distance.

2.4 Problem Reduction to Parameter Space

A variety of geometric problems involving freeform curves or sur-
faces can be reduced to the single question of finding the zero-set
of a system of non-linear polynomial equations in the parameter
space of the original curves or surfaces [Elber et al. 2001; Seong
et al. 2004; Seong et al. 2005]. Techniques for solving a set of
polynomial equations are developed and applied to various geomet-
ric problems as a primitive tool [Sherbrooke and Patrikalakis 1993;
Elber and Kim 2005; Dokken 1985; Grandine et al. 2000]. The
minimum distance algorithm employed in this paper also operates
on the same premise as taken in [Kim and Elber 2000; Patrikalakis
and Maekawa 2002].

3 Distance from a Point to Planar Curve

In this section, we present a dimensionality lifting approach for
computing minimum distances between a point and planar curve.
Considering all the possible position of the point, we lift the prob-
lem into a 3D parameter space and construct a solution space for the
minimum distance problem. In the higher dimension, we find that
the solution is simplified and it becomes easy to analyze the topo-
logical structure of the solution space. This topology information
makes it possible to search the global solution in a very efficient
way.

3.1 Computing a High Dimensional Solution
Space

Given a planar curve C(t) and a point in the plane, P, the squared
distance

D2(t) = 〈C(t)−P,C(t)−P〉

is represented as a B-spline scalar function. The minimum of D2(t)
can be found by computing all its extrema and choosing the small-
est. Assuming that C(t) is C1-continuous, extrema of D2(t) occur
where its derivative is zero, which in turn we seek the zeros of the
scaled extremal equation E(t),

E(t) =
〈

C(t)−P,C′(t)
〉

.

Considering all the possible position in the plane, the point P can
be parameterized by P(x,y). Then, a foot-point of P(x,y) onto the
curve C(t) can be defined by lifting a distance extremal equation
E(t) into a 3D space,

Definition 1 A foot-point of P(x,y) onto the planar curve C(t) sat-
isfies the following polynomial equation:

F (x,y,t) =
〈

C(t)−P(x,y),C′(t)
〉

= 0. (1)
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Figure 1: (a) A curve point A is a foot-point of P(x,y) since C′

A(t)
is orthogonal to the directional vector A−P(x,y). Two foot-points
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Figure 2: Given a planar curve C(t) in (a), a zero-set surface of
Equation (1) is represented using a red-colored surface in the xyt-
parameter space (b).

In Figure 1(a), a curve point A is a foot-point of P(x,y) since C′
A(t),

the tangent vector evaluated at the point A, is orthogonal to the di-
rectional vector (A−P(x,y)). A general freeform curve may have a
set of foot-points, C(ti), i = 0,1, · · · ,n, from the point P(x,y) (Fig-
ure 1(b) shows two of them). Then, the problem for computing a
minimum distance from the point P(x,y) to the planar curve C(t)
can be posed as

find min ‖P(x,y)−C(ti)‖
2,

where C(ti), i = 0,1, · · · ,n, are foot-points of P(x,y) onto the curve
C(t).

The solution space to this minimum distance problem is constructed
in the higher dimensional parameter space. Denoted by M , a zero-
set of Equation (1) is a two-manifold surface in the xyt-parameter
space. Given a C1-continuous curve C(t), M is continuous and
closed in the domain. The surface M , in the parameter space, im-
plicitly represent the solution space for the problem of minimum
distance queries. A parameter point (x,y,t) located on M corre-
sponds to a foot-point C(t) from P(x,y) in the real world. Fig-
ure 2(a) shows a planar curve C(t). Assuming that the plane is
parameterized by P(x,y), Figure 2(b) represents a zero-set of Equa-
tion (1) using a red-colored surface in the xyt-parameter space.
Please note that the solution space M is constructed implicitly
as a zero-set of the single polynomial equation in three variables,
while the polynomial equation itself is explicitly represented using
a NURBS function.

3.2 Solving for Single Queries

Given a specific position of the point P(x0,y0), finding a minimum
distance to the planar curve C(t) is considered. Having a solution
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Figure 3: (a) Given a zero-set M of Equation (1), its intersec-
tion points with a ray staring at (x0,y0,0) and directing positive t-
direction correspond to foot-points of P(x0,y0) onto the curve C(t).
When the point dynamically moves to the next position, an appro-
priate numerical marching process is shown in (b).

space M in the parameter space, one can imagine intersections of
M with a ray of positive t-direction starting at (x0,y0,0). A set
of such intersection points, {(x0,y0,ti)}, i = 0,1, · · · ,n, between the
ray and the solution space M corresponds to foot-points, C(ti), i =
0,1, · · · ,n, from P(x0,y0). Figure 3(a) shows the solution space
M and its intersection with the ray in the xyt-parameter space. A
problem of computing a minimum distance between a point and
planar curve can then be reduced to that of intersecting such a ray
with the solution space M .

The abstract idea of intersecting the ray with the zero-set M is
computed by symbolically solving zeros of Equation (1) at a given
parameter (x0,y0) without an explicit representation of M . Since
F (x,y,t) is a piecewise rational function, the zero-set can be con-
structed by exploiting the convex hull and subdivision properties of
NURBS, yielding a highly robust divide-and-conquer zero-set com-
putation that is reasonably efficient (see [Elber and Kim 2005] for
details). The subdivision process continues until a given maximum
depth of subdivision or some other termination criteria is reached.
At the end of the subdivision step, a leaf node of the subdivision tree
contains a single solution point and a set of these discrete points are
improved using multivariate Newton-Rapson method into a highly
precise solutions.

3.3 Solution to Consecutive Queries

Without spatial coherency, solving a minimum distance query re-
quires an evaluation and subdivision of the solution space M to be
performed for every new position of the point. But, a point may
move continuously in the plane and the distance query can be refor-
mulated for a consecutive position of the point. In such a case, we
present an efficient numerical marching method, which traces the
solution space M in the parameter space. Let’s assume that a point
P(x0,y0) in the plane moves to the next point P(x1,y1) and that two
points are close enough to each other. Then, in the xyt-parameter
space, the corresponding solution point (x0,y0,t0) needs to be up-
dated to the next point (x1,y1,t1), while the new point should be on
the zero-set manifold M . We compute new solution point using an
iterative marching method. The point (x0,y0,t0) first proceeds to
the point (x1,y1,t ′) located on the tangent plane, T , of the zero-set
at (x0,y0,t0):

(x1,y1,t
′) = (x0,y0,t0)+∆P−∇F 〈∇F ,∆P〉 ,

where ∆P = (x1,y1,0)− (x0,y0,0). Here, we use the normal vector
of the zero-set surface M , ∇F , that is normalized to a unit vec-
tor. We now project the point (x1,y1,t ′) back onto the manifold M
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Figure 4: When a point P moves dynamically, new components of
the solution manifold M may appear (a) or an existing one may
disappear (b).

using a high-dimensional Newton’s method. We do this process it-
eratively until the point (x1,y1,t ′) is placed on the solution space
M . Figure 3(b) shows the zero-set manifold M and the marching
process over M . Experimental results show that two or three iter-
ations are enough for the convergence of the numerical projection
operation.

3.4 Symbolic Analysis of the Topology

A continuous change of the position P(x,y) may require a global
analysis of the topological structure of the solution space. For con-
secutive distance queries, a numerical marching method may fail
since it considers only the local properties of the solution space.
Figure 4 shows a one-dimensional analogy to such a case. In Fig-
ure 4(a), when the point P moves to P1, a new component of the
zero-set M appears. Similarly, a proceeding toward P2 causes an
event such that an existing component of the zero-set disappears
(see Figure 4(b)). These critical events need to be properly handled
for a global solution to a distance query. Considering the case that
a new component appears (Figure 4(a)), a new part of the planar
curve may contribute to a minimum distance. Local tracing algo-
rithms have difficulties in searching for a global solution since the
global solution jumps from one part of the curve to another. On the
other hand, the projection of the new solution point onto the zero-
set manifold may not converge if it encounters the second case of
the critical events (Figure 4(b)), as the existing component disap-
pears.

In this section, the problem for computing critical positions where
such global changes occur is reduced to that of solving two polyno-
mial equations in three variables. As presented in Section 3.1, the
zero-set surface of Equation (1) determines the solution space for
querying minimum distances from all the possible positions of the
point to planar curve. Since the point moves continuously in the
xy-plane, critical events occur at points where the t-component of
the normal vector of M vanishes. We, therefore, reformulate the
problem for computing topological changes to that of solving the
following two polynomial equations:

F (x,y,t) = 0,

G (x,y,t) =
∂F

∂ t
(x,y,t) = 0. (2)

Having two equations in three variables, the simultaneous zeros
of Equations (1) and (2) are one-dimensional curves in the xyt-
parameter space. By projecting them onto the xy-plane, a set of
critical curves that causes the topological change can be obtained.
The plane is then decomposed into several small sub-regions having
boundaries at the critical curves. Inside the connected sub-region,
the topology (i.e. the number of foot-points) does not change.
Given the set of critical curves, one can easily detect such events
that bring a global change to the topology of the solution space.

We check whether a point crosses one of the critical curves by sim-
ply subdividing each of the two B-spline functions F (x,y,t) and
G (x,y,t) at the appropriate position and evaluating their bounding
boxes in the parameter space. When the point crosses the critical
curves, the corresponding event needs to be considered: new foot-
points should be inserted into the set of candidate solutions in the
case of Figure 4(a) or existing one is deleted encountering the case
of Figure 4(b).

A geometric interpretation of the critical curves shows an interest-
ing relationship between those curves and the curve evolute of the
given planar curve. Equation (2) expands to

∂F

∂ t
(x,y,t) =

〈

C′(t),C′(t)
〉

+
〈

C(t)−P(x,y),C′′(t)
〉

= 0.

The locus of the points P(x,y) at which the above equation is satis-
fied can be written as

P(x,y) = C(t)+
1

κ(t)
N(t),

where κ(t) is the curvature and N(t) is the normal vector of the
curve C(t) [Bruce and Giblin 1992; Johnson 2005]. Therefore, a
critical point P(x,y), computed by solving Equations (1) and (2)
simultaneously, lies at the center of the osculating circle at C(t), the
locus of which form a possibly discontinuous curve called the curve
evolute.

Figure 5(a) shows a planar curve and its curve evolute. In Fig-
ure 5(a), the curve evolute is represented in gray-colored lines,
which is computed symbolically using the formula, C(t)+ 1

κ N(t).
The evolute is possibly discontinuous at inflection points of the
original curve, resulting in multiple curve sections (see Figure 5(a)).
The zero-set of Equation (1) is shown as a red-colored surface and
the critical curves are shown in green-colored lines in Figure 5(b).
As one can see from Figure 5(c), the projection of critical curves
onto the xy-plane matches with the curve evolute of Figure 5(a).

We now consider the combination of the global topology informa-
tion with the previous numerical marching method for consecutive
distance queries. Assuming F (x,y,t) in Equation (1) as a single
variate function with t variable, its Jacobian becomes a matrix con-
taining a single component ∂F

∂ t (x,y,t). For the case of finding roots
of Equation (1), an iteration of Newton’s method becomes degen-
erate when the determinant of its Jacobian vanishes:

det(J) = det([Ft ]) =
∂F

∂ t
(x,y,t) = 0.

This shows that the meaning of Equation (2) can be reviewed from
the Jacobian of Equation (1), which determines the degeneracy con-
dition of the Newton’s method. Thus, the critical curves provide an
elegant way not only to efficiently find the global solution but also
to support the numerical method even in its degenerate cases.

To get an efficient system for the minimum distance queries, a hi-
erarchical subdivision of the plane is implemented. We first pre-
compute critical points by symbolically solving Equations (1) and
(2) with a rough tolerance. Four or five level of subdivision is used
along each parameteric axes for the hierarchical subdivision in the
examples of Section 5. Complex geometry of the original curve
may require high level of subdivision. Each sub-region of the subdi-
vided plane contains a list of critical points which are located inside
the region. More precisely speaking, they maintain a set of bound-
ing boxes, at which the critical point resides, of the size of the given
tolerance used from the symbolic computation. Figure 5(d) shows
a planar curve and the critical points with their bounding boxes.
Since it is relatively expensive to test whether the point crosses one
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Figure 5: (a) A planar curve is shown in bold lines togethered with
its curve evolute. (b) A zero-set of Equation (1) is represented in
red-colored surface and critical curves are shown in green and bold
lines. (c) The projection of the critical curves onto the xy-plane
matches with the curve evolute of C(t). A set of bounding boxes are
shown in (d) with their center at the corresponding critical point.

of the critical curves, the system checks the crossing only when the
point moves into one of the bounding boxes of the critical points.
Hierarchical subdivision of the plane prunes away the movement
of the point using a simple bounding box test. Experimental re-
sults show that this grid-based approach makes the performance of
querying system about ten times faster.

4 Minimum Distance Queries Between a
Point and Freeform Surface

The algorithm for computing minimum distances between a point
and planar curve can be extended to the 3D case: distance queries
from a point to freeform surface. For the surface case, a high-
dimensional solution space is constructed by two polynomial equa-
tions in five variables. We therefore solve and update the distance
query by tracing the solution space numerically in five-dimensional
parameter space. Furthermore, we reduce the problem for analyz-
ing the global topology of the solution space to that of solving three
polynomial equations in five variables. Based on the topology in-
formation, we get a reliable tracing algorithm to find global minima.

4.1 Computing a High Dimensional Solution
Space

Similarly to the curve case, the squared distance from a point in a
3D space, P, to a freeform surface S(u,v)

D2(u,v) = 〈S(u,v)−P,S(u,v)−P〉

is represented by B-spline scalar function. The minimum of
D2(u,v) can be found by computing all its extrema and choosing
the smallest. Assuming that S(u,v) is C1-continuous, extrema of
D2(u,v) occur where its partial derivatives with respect to u and
v become zero simultaneously. Using scaled extremal equations
E1(u,v) and E2(u,v)

E1(u,v) = 〈S(u,v)−P,Su(u,v)〉

E2(u,v) = 〈S(u,v)−P,Sv(u,v)〉 ,

where Su/v is u/v-partial derivative of S(u,v), we find their simul-
taneous zeros.

Given a parameterization of a point in a 3-D space, P(x,y,z), we
define a foot-point of P(x,y,z) onto the surface S(u,v) by lifting
extremal distance equations E1(u,v) and E2(u,v) into a five variate
functions,

Definition 2 A foot-point of the point P(x,y,z) onto freeform sur-
face S(u,v) satisfies the following two polynomial equations:

H (x,y,z,u,v) =

〈

S(u,v)−P(x,y,z),
∂S
∂u

(u,v)

〉

= 0, (3)

I (x,y,z,u,v) =

〈

S(u,v)−P(x,y,z),
∂S
∂v

(u,v)

〉

= 0. (4)

A general freeform surface may have a set of foot-points,
S(ui,vi), i = 0,1, · · · ,n, from the point P(x,y,z). Then, the problem
for computing a minimum distance from P(x,y,z) to S(u,v) can be
posed as

find min ‖P(x,y,z)−S(ui,vi)‖
2,

where S(ui,vi), i = 0,1, · · · ,n, are foot-points of P(x,y,z) onto the
surface S(u,v).

The solution space to the minimum distance problem for the sur-
face case is now constructed using Equations (3) and (4). Having
two equations in five variables, one gets three-dimensional man-
ifolds, Z , as their simultaneous zero-set in five-dimensional pa-
rameter space. A parameter point (x,y,z,u,v) located on Z corre-
sponds to a foot-point S(u,v) from P(x,y,z) in the real world. Thus,
two polynomial equations implicitly define the solution space Z in
five-dimensional parameter space.

4.2 Computing Minimum Distances

As the solution space to the Equations (3) and (4) has three degrees-
of-freedom, specifying a point (x,y,z) yields discrete set of zero-
dimensional solution points. For a specific point P(x0,y0,z0), one
can imagine a hyperplane in the xyzuv-parameter space. Then, in-
tersection points between the hyperplane and the three-dimensional
solution space are mapped to a set of foot-points and one can choose
one of them having the smallest distance to P(x0,y0,z0). Similarly
to the curve case, the intersection points are computed using a mul-
tivariate constraint solver [Elber and Kim 2005].

Solving for a single query requires an evaluation and subdivision
of B-spline functions for every new query. However, a spatially
coherent movement of a space point P(x,y,z) yields an efficient nu-
merical algorithm by utilizing a higher dimensional solution space,
Z . Assuming that a set of solution points, {(x0,y0,z0,ui,vi)}, i =
0,1,2, · · · ,n, is given at current time step, a minimum distance
query for the next position is solved numerically by extending the
tracing algorithm presented in Section 3.3 to that of five dimen-
sional space. When the point P(x0,y0,z0) moves to P(x1,y1,z1),



we numerically march each solution points {(x0,y0,z0,ui,vi)} in
the parameter space to the next point located on the solution space
Z . For the simplicity of the explanation, we consider a single solu-
tion point (x0,y0,z0,u0,v0) in the parameter space. Then, the point
(x0,y0,z0,u0,v0) proceeds to the point (x1,y1,z1,u′,v′) located on
the hyperplane which is tangent to Z at (x0,y0,z0,u0,v0),

(x1,y1,z1,u
′,v′) = (x0,y0,z0,u0,v0)+∆P−∇H 〈∇H ,∆P〉

−∇I 〈∇I ,∆P〉 .

Here, ∆P = (x1,y1,z1,0,0)− (x0,y0,z0,0,0) and we use two gra-
dient vectors, ∇H and ∇I , that are orthonormal to each other.
Finally, the point (x1,y1,z1,u′,v′) is projected onto the manifold
using a high dimensional Newton’s method. Note, however, that
we project the point onto the manifold while keeping the xyz com-
ponents of the point unchanged. We do this process iteratively until
the point (x1,y1,z1,u′,v′) is placed on the solution space Z .

4.3 Analysis of the Topology

As a logical extension from the curve case, we provide a global
analysis on the topology of the solution manifold for the surface
case and show how this topology information helps the numeric
marching method especially in degenerate cases where the numer-
ical method fails. A geometric interpretation of the critical points
also shows its relationship with the focal set of the surface.

Similar to the curve case, the global structure of the solution space
changes when the space point P(x,y,z) crosses critical points. Since
the solution space Z is determined by two five-variate Equa-
tions (3) and (4), a condition for the critical point becomes

K (x,y,z,u,v) = det

[

∂H

∂u
∂H

∂v
∂I

∂u
∂I

∂v

]

= 0. (5)

Having three Equations (3), (4) and (5) in five variables, one gets
two-manifold surfaces as their simultaneous zero-set. By projecting
them onto the xyz-space, a set of critical surfaces that causes the
topological change can be obtained. Figure 6(a) shows a freeform
surface and the set of critical points.

A hierarchical subdivision of the xyz-space to efficiently maintain a
set of critical points is constructed like the curve case. First, critical
points are precomputed by symbolically solving Equations (3), (4)
and (5) with a rough tolerance. Since the symbolic solver computes
critical points by recursively subdividing the parameter space, we
can get a hierarchical subdivision of the xyz-space without any other
costs, which contains a critical point at the end of the subdivision
stage. Figure 6(b) shows a set of critical points with its bounding
box of the size of the given tolerance. In Figure 6(b), critical points
are evaluated only along one of the iso-curves for the simplicity of
the representation.

A geometric meaning of critical points shows that intrinsic prop-
erties of a surface, such as the principal curvatures of a surface,
characterize the topological structure of the solution space, Z .
Since critical points satisfy Equations (3) and (4), we can restrict
the points to be on the normal line of a surface. Then, the direc-
tional vector (S(u,v)−P(x,y,z) can be replaced by `N(u,v), where
N(u,v) is a normal vector of S(u,v) and ` is some real variable.
Plugging in this to Equation (5) results in

det

[

〈`N(u,v),Suu〉+S2
u 〈`N(u,v),Suv〉+ 〈Su,Sv〉

〈`N(u,v),Suv〉+ 〈Su,Sv〉 〈`N(u,v),Svv〉+S2
v

]

= 0. (6)

(a) (b)

Figure 6: (a) A freeform surface and a set of critical points. (b)
shows a set of critical points with its bounding box of the size of
given tolerance. Critical points are evaluated only along one of the
iso-curves for the simplicity of the representation.

Zeros of Equation (6) can be interpreted in terms of the principal
curvatures at S(u,v), κ1 and κ2, after a simple substitution of Equa-
tion (6) using the first and second fundamental forms. These deriva-
tions provide a rewriting of Equation (6) as

`2κ1κ2 + `(κ1 +κ2)+1 = 0,

and the zeros are just

` = −
1
κ1

and ` = −
1

κ2
.

Therefore, the critical point P(x,y,z) is a distance along the normal
equal to one of the principal radii of curvature of the closest point
on the surface S(u,v). Compare this geometric interpretation of the
critical point to that of the curve case.

5 Experimental Results

Several examples of computing minimum distances between a point
and planar curve or freeform surface are now presented. First, some
examples for minimum distance queries to planar curve are shown.
Figure 7 presents an example of a curve with a trajectory of the
moving point. In Figure 7(a), the planar curve is shown in bold
lines with a trajectory curve in gray. For each sampled position
of the moving point, the corresponding curve point which gives
the minimum distance to the point is connected using a line seg-
ment. Figure 7(b) shows a higher dimensional solution space us-
ing a red-colored surface in the xyt-parameter space. Minimum
distance points in real Euclidean space have their corresponding
points in the higher dimensional parameter space. In Figure 7(b), a
yellow-colored sphere represents a parameter point corresponding
to each of the minimum distance query shown in Figure 7(a). One
more example is presented in Figure 8. The planar curves presented
in these experimental examples are represented by cubic NURBS
having about 10-20 control points. In these experimental examples,
a tolerance of 0.05 (planar curves’ dimensions span about a unit
length) is used for the preparation of the critical points. And about
90% of distance queries are pruned away during the test of crossing
the critical curves.

Figure 9 presents two more complex examples of minimum dis-
tance queries for planar curves. Here, planar curves are shown
in bold lines and a trajectory curve for the moving point in gray.
200 positions of the trajectory curve are sampled for the minimum
distance queries. With the aid of the higher dimensional solution



(a) (b)

yx

t

Figure 7: (a) A planar curve is shown in bold lines togethered with
a trajectory curve for the moving point. For a sampled point of the
trajectory curve, a line segment connects its corresponding curve
point which gives a minimum distance to the curve. (b) A higher di-
mensional solution space is represented in red-colored surface and
solution point in the parameter space, which is corresponding to the
minimum distance, is shown in yellow sphere.
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Figure 8: (a) A planar curve is shown in bold lines togethered with
a trajectory curve for the moving point. For a sampled point of the
trajectory curve, a line segment connects its corresponding curve
point which gives a minimum distance to the curve. (b) A higher di-
mensional solution space is represented in red-colored surface and
solution point in the parameter space, which is corresponding to the
minimum distance, is shown in yellow sphere.

space, global solutions to the minimum distance queries are com-
puted and shown in Figure 9 using line segments. Having the hi-
erarchical subdivision of the plane and early pruning technique,
the computation time for these results for the curve case are about
the same, 10000 distance queries took about 1.2 to 1.4 seconds.
Please note that we take all the solution points of local minima be-
ing tracked to yield a global solution. Thus, a single query contains
multiple distance extrema computations. Testing was done on a
Pentium IV 2GHz desktop machine.

Continuing to examples of computing minimum distance for
freeform surfaces, Figure 10 shows two examples. In Figure 10(a),
the same surface as in Figure 6 is used for computing a minimum
distance. As one can see from Figure 6(a), the minimum distance
point jumps to a different part of the surface when the moving point
crosses the critical points. With the aid of global analysis on the
topology of the solution space, our approach properly traces the
global solution. The freeform surfaces presented in these experi-
mental examples are represented by bicubic NURBS having about
50-70 control points. A symbolic computation of the critical points
used a tolerance of 0.1 (freeform surfaces’ dimensions span about
a unit length) and the symbolic computation time for these exam-
ples are within a minute including a construction of the hierarchi-

(a) (b)

Figure 9: A planar curve is shown in bold lines togethered with a
trajectory curve for the moving point. For a sampled point of the
trajectory curve, a line segment connects its corresponding curve
point which gives a minimum distance to the curve.

cal bounding boxes, which were used in early pruning of distance
queries. On a 2GHz Pentium IV machine, about 300 to 500 queries
were computed in a second.

Figure 11 shows two more complex examples. Here, freeform sur-
faces are shown in bold lines and the trajectory curve for the mov-
ing point in gray. 200 positions of the trajectory curve are sampled
for the minimum distance queries. In Figure 11(b), our minimum
distance search is applied to a collection of surfaces that form a
teapot. It is quite straightforward to extend our approach to such a
scene that has multiple objects. Obviously, distance computations
between a point and boundary curves of each surface patch may
be taken into consideration to handle multiple objects, while that
doesn’t need to be invoked in the example of Figure 11(b).

6 Conclusion

A robust and efficient algorithm for computing minimum distances
between a point and planar curve or freeform surface has been pre-
sented. The presented approach is based on the dimensionality
lifting of the problem into a higher-dimensional parameter space.
This higher dimensional formulation solves for all query points in
the domain simultaneously, which provides opportunities to speed
computation by applying coherency techniques. For the curve case,
a higher dimensional solution space is defined by a single equation
in three variables. This formulation yields two-manifold surfaces
in the parameter space, from which a minimum distance query is
solved numerically in a very efficient way. Global convergence is
assured by detecting changes in the higher-dimensional topologi-
cal structure. We reduced this problem of analyzing the topological
structure of the solution space to that of solving two polynomial
equations in three variables. The topology information supports lo-
cal searches in the numerical tracing algorithm to guarantee that
it finds all the solutions and finally gives a global minima. This
symbolic computation part of the algorithm is accelerated through
preprocessing of the higher-dimensional space. The approach de-
veloped for curves in the plane has been extended to freeform sur-
faces in a 3D space. For the surface case, a higher-dimensional
solution space is implicitly defined by two polynomial equations in
five variables.

A variety of hierarchical space subdivision techniques can be ap-
plied to the current system for computing minimum distances. An
efficient integration of the hierarchical technique is expected to
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Figure 10: A freeform surface is shown in bold lines togethered with a trajectory curve for the moving point. For a sampled point of the
trajectory curve, a line segment connects its corresponding surface point which gives a minimum distance to the surface.

(a) (b)

Figure 11: A freeform surface is shown in bold lines togethered with a trajectory curve for the moving point. For a sampled point of the
trajectory curve, a line segment connects its corresponding surface point which gives a minimum distance to the surface.

yield a distance querying algorithm of higher performance. The
presented approach may easily be applicable to a trimmed model.
Solution points for the local distance extrema only need to be tested
whether they are located inside the valid parameter domain or not
in the case of trimmed models. We are also working to extend the
presented approach to the computation of minimum distances for
the curve-curve or surface-surface case. To this end, we need to
deal with even higher-dimensional solution spaces.
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