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Abstract. We present an efficient and robust algorithm for computing continu-
ous visibility for two- or three-dimensional shapes whose boundaries are NURBS
curves or surfaces by lifting the problem into a higher dimensional parameter
space. This higher dimensional formulation enables solving for the visible re-
gions over all view directions in the domain simultaneously, therefore providing
a reliable and fast computation of the visibility chart, a structure which simulta-
neously encodes the visible part of the shape’s boundary from every view in the
domain. In this framework, visible parts of planar curves are computed by solving
two polynomial equations in three variables (t and r for curve parameters and θ
for a view direction). Since one of the two equations is an inequality constraint,
this formulation yields two-manifold surfaces as a zero-set in a 3-D parameter
space. Considering a projection of the two-manifolds onto the tθ-plane, a curve’s
location is invisible if its corresponding parameter belongs to the projected re-
gion. The problem of computing hidden curve removal is then reduced to that of
computing the projected region of the zero-set in the tθ-domain. We recast the
problem of computing boundary curves of the projected regions into that of solv-
ing three polynomial constraints in three variables, one of which is an inequality
constraint. A topological structure of the visibility chart is analyzed in the same
framework, which provides a reliable solution to the hidden curve removal prob-
lem. Our approach has also been extended to the surface case where we have two
degrees of freedom for a view direction and two for the model parameter. The
effectiveness of our approach is demonstrated with several experimental results.

1 Introduction

A major part of rendering is related to the hidden surface removal problem, i.e., display
only those surfaces which should be visible. The main contribution of this work can be
summarized as follows:

– The exact boundary between visible and hidden parts of planar curves or surfaces is
computed by solving a set of polynomial equations in the parameter space without
any piecewise linear approximations.

– All possible view directions in the domain are considered, simultaneously, by lifting
the problem into a higher dimensional space and solving a continuous visibility
problem. This higher dimensional framework provides a reliable solution to the
computation of the visibility chart.
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– The algorithm is easy to implement and robust by mapping the problem in hand
to a zero-set solving that exploits the convex hull and subdivision properties of
NURBS. Topological analysis of the visibility chart makes it easier to compute the
global structure of the visibility chart.

Research into solving the hidden surface removal problem is one of the earliest areas
of activity in computer graphics, computer-aided design and manufacturing, and many
different algorithms have been developed [24,1,9,18,14,19]. Usually they are developed
for polygonal data, so curved surfaces have traditionally been preprocessed and approx-
imated as large collections of polygons [22,17]. In this paper, we present an algorithm
for eliminating hidden curves or surfaces directly from freeform models without any
polygonal approximations. Visibility computations of sculptured models have various
applications not only in the area of rendering but also in such areas as mold design,
robot accessibility, inspection planning and security.

Given a view direction, the hidden surface removal problem refers to determining
which surfaces are occluded from that view direction. Most of the earlier algorithms in
the literature are for polygonal data and hidden line removal [8,20,24]. In their work,
because the displayed edges of the polygons are linear edges, the displayed curves, such
as the silhouettes of an object viewed from a view direction, are not smooth. Curves
can be displayed more smoothly by increasing the number of polygons used for the
approximation, but this results in memory and computational expense.

Algorithms to resolve the hidden surface removal problem can be classified into those
that perform calculations in object-space, those that perform calculations in image-
space, and those that work partly in both, list-priority [24]. Object space techniques use
geometric tests on the object descriptions to determine which objects overlap and where.
Initiated by Appel’s edge-intersection algorithm [1], the idea of quantitative invisibility
which determines visible and invisible regions in advance was developed [9,18,11]. Im-
age space approaches compute visibility only to the precision required to decide what
is visible at a particular pixel, exemplified by [2]. Catmull develops the depth-buffer
or z-buffer image-precision algorithm which uses depth information [4]. Also, Weiler
and Atherton [25] and Whitted [26] develop ray tracing algorithms which transform the
hidden surface removal problem into ray-surface intersection tests.

Given a model composed of algebraic or parametric surfaces, it can be polygonized
and hidden lines can be removed from the polygonized surfaces [22,17]. However, the
accuracy of the overall algorithm is limited by the accuracy of the polygonal approxi-
mation. Further, in both methods [22,17], visibility is determined for the endpoints of
straight lines and hence, they fail to detect invisibility occurring in the interior region
of a line when both endpoints are visible. To remove hidden lines from curved surfaces
without polygonal approximation, Hornung et al. [11] extended the idea of quantita-
tive invisibility to bi-quadratic patches, and Newton’s method was employed to solve
for intersections between curves. Elber and Cohen [7] applied Hornung’s technique to
nonuniform rational B-splines and extended it to treat trimmed surfaces. In particu-
lar, Elber and Cohen [7] extract the curves of interest by considering boundary curves,
silhouette curves, iso-parametric curves and curves along C1 discontinuity based on
2D curve-curve intersections. Nishita et al. [21] used their Bezier Clipping technique
for the hidden curve elimination. These methods [11,7,21] are aimed at eliminating
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the hidden curves from line drawings of surfaces (not shaded drawings). Krishnan and
Manocha [16] presented an algorithm for the elimination of hidden surfaces using a
combination of symbolic techniques and results from numerical linear algebra.

Elber et al. [6] presented an algorithm for computing two-dimensional visibility
charts for planar curves. The visibility charts, however, are constructed by discretiz-
ing a continuous set of view directions [6]. Our algorithm is an extension of that work
into the computation of continuous visibility charts. Krishnan and Manocha [16] solves
the hidden surface removal problem for a discrete set of view directions only.

Our approach is unique in that of solving the visibility problem for all view direc-
tions in the domain, simultaneously.

Summary of Our Approach
We reduce the solution to the visibility problem to the problem of finding the zeros
of a set of polynomial equations in the parameter space. For the curve case, visible
curve locations are computed by solving 2 polynomial equations in 3 variables (t and r
for curve parameters and θ for a view direction). Since one of the two equations is an
inequality constraint, this framework yields 2-manifold surfaces as a 0-set in a 3-D pa-
rameter space. A curve’s location is invisible if its corresponding parameter belongs to
the projected region of the two-manifolds onto the tθ-plane. The problem for comput-
ing hidden curve removal is then reduced to that of computing the projected region of
the zero-set in the tθ-domain. We recast this problem of computing boundary curves of
the projected regions into that of solving three polynomial constraints in three variables,
one of which is an inequality constraint.

The presented approach for the hidden curve removal can be extended to the surface
case where we have 2 degrees of freedom (dof) for a view direction and two for sur-
face parameters. Similarly to the curve case, visible surface’s locations are computed
by solving 3 polynomial equations in 6 variables, one of which is an inequality con-
straint. Assuming a freeform surface S(u, v) is used to parameterize for all possible
view directions V(θ, ϕ), the 0-set of the 3 equations is constructed as four-manifolds in
a 6-dimensional parameter space, and its projection into the uvθϕ-domain prescribes
the hidden parts of the surface S(u, v). A surface’s location, S(u0, v0), is invisible from
viewing direction V(θ0, ϕ0) if its corresponding parameter, (u0, v0, θ0, ϕ0), belongs to
the projected region of the 0-set. The boundary of the projected region is computed
by introducing one more equation to the set of 3 equations, therefore generating 3-
manifolds in the 4-dimensional parameter space. The visibility charts for the surface
case are then constructed using the 3-manifolds in the uvθϕ-parameter domain. A par-
ticular visibility query, which specifies θ and ϕ for a view direction, is resolved by
extracting one-manifold curves in the surface’s uv-parameter domain. Those curves in
the uv-domain trim away hidden surface regions and thus only the visible surfaces are
rendered from that view direction.

The topological structure of the visibility chart is further analyzed in the same frame-
work, which provides a reliable solution to the computation of the visibility chart. The
number of connected curve segments that delineate the hidden parts from the visible
ones changes at critical points where the global topology changes in the visibility chart.
Aspect graphs [3] are used in computer vision to topologically analize the visibility
problem. In this paper, algebraic constraints for these critical points are derived as a set
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of 3 polynomial equations in 3 variables for the curve case and precomputed for the
global analysis of the visibility chart. Based on this topological information, it becomes
easier to analyze the global arrangement of the visibility chart, avoiding the computa-
tion of complex combinatorial curve-curve intersections.

The rest of this paper is organized as follows. In Section 2, the hidden curves re-
moval algorithm is discussed for planar curves. Section 3 presents its extension to the
elimination of hidden surfaces. Some examples are presented in Section 4 and finally,
in Section 5, this paper is concluded.

2 Continuous Visibility for Planar Curves

Let V(θ) be a one-parameter family of viewing directions. The visibility for a planar
curve C(t) is then solved by lifting the problem into a higher dimension, where the
answer is represented using simultaneous solution of two polynomial equations.

Lemma 1. A planar curve point C(t) is visible if and only if it satisfies the following
two polynomial equations for all r,

F(t, r, θ) = V(θ) × (C(t) − C(r)) = 0,

G1(t, r, θ) = 〈V(θ),C(t) − C(r)〉 ≤ 0.

Proof. Two equations, F(t, r, θ) = 0 and G1(t, r, θ) ≤ 0, are satisfied only if C(t)
is closer to the view source than C(r) while two curve points are on the same line to
the view direction V(θ). Therefore, there may be no other curve point C(r) that blocks
C(t) from V(θ) if C(t) satisfies the above two equations for all r, which implies that
C(t) is visible from the viewing direction. �
Figure 1 demonstrates Lemma 1. Given a viewing direction V , two curve points C(t)
and C(r) in Figure 1(a) satisfy the first equation F(t, r, θ) = 0. This means that the
vector from C(t) to C(r) is parallel to the view direction. The second condition is
satisfied only if C(t) is closer to the view source than C(r). Thus, the curve point
C(t) is visible for the view direction V , while C(r) is not. For the curve point C(t)
to be visible, G1(t, r, θ) ≤ 0 should be satisfied for all r. This implies that if there is
any value of r such that G1(t, r, θ) > 0, then the curve point C(t) is not visible. In
Figure 1(b), C(t) is potentially visible from V if one considers the curve point C(s) as
its corresponding pair. The point C(t), however, is not visible since there exists another
curve point C(r) that fails at the second constraint of Lemma 1.

Elber et al. [6] solves two polynomial equations in two variables for a discrete set of
view directions. If V is one such direction,

C′(t) × V = 0,

(C(t) − C(r)) × V = 0.

Solution points of these two equations prescribe the visible portion of C for each V ,
providing only a discrete solution. In this paper, we solve the problem of computing
visible regions for all possible view directions V(θ) in the domain, simultaneously,
providing a continuous solution to the visibility problem.

For the clarity of explanation, we consider invisible curve segments instead.
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Fig. 1. (a) Given a viewing direction V , a planar curve point C(t) is visible while C(r) is not. (b)
A point C(t) has another curve point C(r) which makes it invisible from the view direction V .

Corollary 1. A planar curve point C(t) is invisible if and only if there exists another
curve point C(r) such that the following two polynomial equations hold

F(t, r, θ) = V(θ) × (C(t) − C(r)) = 0, (1)

G2(t, r, θ) = 〈V(θ),C(t) − C(r)〉 > 0. (2)

Now, any r for which G2(t, r, θ) > 0 holds renders curve point C(t) invisible. As this
second equation, G2(t, r, θ) > 0, is an inequality constraint, the solution of both con-
straints is a 2-manifold in 3-D parameter space. Furthermore, the solution is symmetric
with respect to the t = r plane so, we can consider one more inequality constraint,
t > r, to speed up the equation-solving process by purging half the solution domain.

Denote by M the solution of Equations (1) and (2) that determines the hidden parts
of the planar curve C(t). The projection of M into the tθ-plane characterizes the re-
gions where the curve is not visible. That is, if a parameter (t, θ) falls into the projected
region of M, then the corresponding curve point C(t) is not visible for the viewing
direction V(θ). Its complement, the uncovered region (under this projection) in the tθ-
plane, determines all the visible sections of C along continuously varying view direc-
tions. Figure 2 shows an example of such a visibility chart. Gray regions in Figure 2(a)
represents the 2D projection of M for the planar curve C(t). Given a viewing direction
V , one can extract a set of visible curve segments from the uncovered (white) regions
(see Figure 2(b)).

As one can see from Figure 2(b), visibility queries are resolved by extracting cor-
responding white regions from the visibility chart. Thus, solving the visibility problem
for planar curves can be reduced to that of finding boundary curves of the projected
regions of M in the parameter space. Since the projection is performed to the tθ-plane,
the boundary of the projected region under this projection occurs either at the bound-
aries of the zero-set M or at its local extrema. Since M is continuous and closed, it
has no boundary and hence, the visibility problem reduces to finding r-extrema of the
zero-set M which are the r-directional silhouettes of M.

Definition 1. Given a one-parameter family of viewing directions V(θ), a C1-
continuous planar curve C, and the solution manifold M of Equations (1) and (2)
for C;
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Fig. 2. (a) Given a planar curve C(t), the gray region in the tθ-plane represents hidden curves of
C. (b) Visible curve segments can be extracted from the uncovered (white) regions.

1. The r-directional silhouette curves, Sr, comprise the set of points on M whose
r-directional partial derivative vanishes (bold lines in Figure 3(a) shows the pro-
jection of Sr in the tθ-plane).

2. Denote by Sr
I ⊂ Sr the set of points that falls in the interior of the projection

of M, among the set of r-directional silhouettes Sr (see dotted line segments in
Figure 3(b)).

Then, the sought boundary of M, ∂M, that delineates the visible segments of C from
all possible views, can be computed using the two sets Sr and Sr

I as:

∂M = Sr − Sr
I .

Figure 3(c) presents ∂M in bold lines and M as a shaded region.
The r-directional silhouette curves, Sr, of M can be computed by finding the simul-

taneous solution of Equations (1), (2) and (3), where

∂F
∂r

(t, r, θ) = 0. (3)

Having two equality equations in three variables, solutions of the three equations are
curves in the trθ-parameter space. As F and G2 are piecewise rational functions, the
solution can be constructed by exploiting the convex hull and subdivision properties of
NURBS, yielding a highly robust divide-and-conquer computation [5]. The solver [5]
recursively subdivides rational functions along all parameter directions until a given
maximum depth of subdivision or some other termination criteria is reached. At the
end of the subdivision step, a discrete set of points are numerically improved into a
highly precise solutions using a multivariate Newton-Raphson iterative stage. Finally,
these discrete points are connected into a set of piecewise linear curves in the parameter
space (See [23] for more details).

An entire curve segment or any portion of the curve segment in Sr can fall inside the
projected region of M (see Figure 3(a)). We need to trim away Sr

I from Sr since they
correspond to interior curve segments. An efficient and robust algorithm for purging Sr

I

away is presented in this section and is based on the analysis of a topological change
in the visibility charts. Given a continuous one parameter family of view directions
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Fig. 3. (a) r-direction silhouette curves Sr projected into the tθ-plane. (b) Dotted line segments
represent Sr

I and (c) ∂M = Sr − Sr
I is shown in bold. Critical points are computed using a

topological analysis and shown in (b). Their corresponding curve points and view directions are
also shown in (a).

V(θ), a topological change (i.e. a change in the number of connected components) can
occur either globally or locally. Global topological changes occur where the viewing
direction is parallel to a bi-tangent line segment of C connecting two (or more) points.
Topological changes occur locally where the viewing direction is parallel to the tangent
direction of C, at an inflection point.

The bi-tangent line segment of C touches tangentially the curve at two or more
different points. Bi-tangent directions can be computed by simultaneously solving the
following three equations, in three variables:

F(t, r, θ) = 0,

∂F
∂t

(t, r, θ) = 〈V(θ), N(t)〉 = 0, (4)

∂F
∂r

(t, r, θ) = 〈V(θ), N(r)〉 = 0. (5)

Equations (4) and (5) constrain the viewing direction V(θ) to touch C tangentially
at two different points C(t) and C(r), respectively. The bi-tangent direction of C it-
self can be computed using two polynomial equations in two variables. In this context,
however, the viewing direction V(θ), which is parallel to the bi-tangent direction, must
be computed for further processing. Inflection points of a planar curve occur at points
where the sign of the curvature, a rational form if C is rational, changes. Solution points
of t = r clearly satisfy all the above equations and must be purged away.

Let T be a set of points (t, r, θ) in the trθ-parameter space that correspond to ei-
ther bi-tangents or inflection points. We constrain point (t, r, θ) ∈ T to be outside the
projected region. The black bold dots in Figure 3(b) represents these critical points, at
which the topological structure of the visibility chart changes. Thus, the r-directional
silhouette curves, Sr, are trimmed at such critical points (t, r, θ) ∈ T . The curve seg-
ments Sr

I (Dotted line segments in Figure 3(b)) can be determined using a simple vis-
ibility check of a single point, testing whether the segment falls inside the projected
region of M or not. Figure 3(c) shows the visible boundaries ∂M of the projected
regions as a set of piecewise curves.
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3 Continuous Visibility for Freeform Surfaces

The presented algorithm for computing visibility of planar curves can be extended
for computing the hidden surfaces. Given two-parameters family of viewing directions
V(θ, ϕ), the visibility problem for the surface case is solved in a six-dimensional pa-
rameter space, (u, v, s, t, θ, ϕ). Much like the curve case, this higher dimensional for-
mulation simultaneously considers all view directions in the domain, and provides a
reliable solution to a particular visibility query. We first present a set of conditions for
determining whether a surface location S(u, v) is visible or not.

Lemma 2. A surface point S(u, v) is invisible if and only if there exists another surface
point S(s, t) such that

F(u, v, s, t, θ, ϕ) =
〈
S(u, v) − S(s, t),

∂V
∂θ

(θ, ϕ)
〉

= 0, (6)

G(u, v, s, t, θ, ϕ) =
〈
S(u, v) − S(s, t),

∂V
∂ϕ

(θ, ϕ)
〉

= 0, (7)

H(u, v, s, t, θ, ϕ) = 〈S(u, v) − S(s, t), V(θ, ϕ)〉 > 0, (8)

where V(θ, ϕ) is a polynomial approximation to the sphere that spans all possible view-
ing directions.

Proof. By Equations (6) and (7), the two surface points S(u, v) and S(s, t) are on the
same line with the same direction to the view direction V(θ, ϕ). By satisfying Equa-
tion (8), S(s, t) is closer to the view source than S(u, v), which makes S(u, v) invisible
for that view direction. �

Since Equation (8) is an inequality constraint, the simultaneous zeros of the three Equa-
tions (6) – (8) are 4-manifolds in a six-dimensional parameter space. Let M be the
4-manifold zero-set of Equations (6) – (8). Then, similarly to the curve case, the pro-
jection of the zero-set into the uvθϕ-domain prescribes the hidden parts of the surface
S(u, v). If (u, v, θ, ϕ) falls into the interior of the projected region of M, then the
corresponding surface location, S(u, v), is not visible from viewing direction V(θ, ϕ).
In other words, the uncovered region (under this projection), in the uvθϕ-domain, de-
termines all the visible sections of S(u, v) along continuously varying viewing direc-
tions. In Figure 4(a), a shaded region depicts the projection of the zero-set, M, into the
uvθϕ-parameter space. A parameter (u1, v1, θ1, ϕ1) falls into the projected region in
Figure 4(a) and thus, its corresponding surface point S(u1, v1) is invisible for viewing
direction V(θ1, ϕ1) (see Figure 4(b)). On the other hand, point S(u2, v2) is visible since
parameter (u2, v2, θ1, ϕ1) is located outside the projected region.

Projected into the uvθϕ four-dimensional space, the boundaries of the projection of
the zero-set M can be determined as the st-directional silhouettes of M, by finding all
the simultaneous zeros of Equations (6) – (9), where

I(u, v, s, t, θ, ϕ) = 〈V(θ, ϕ),N(s, t)〉 = 0, (9)

and N(s, t) is a normal vector field of S(s, t). The common zero-set of Equations (6)
– (9) is now a 3-manifold in a six-dimensional space, which is the boundary of the



Simultaneous Precise Solutions to the Visibility Problem of Sculptured Models 459

(a) (b)

(u1, v1, θ1, ϕ1)
(u2, v2, θ1, ϕ1)

S(u1, v1)

S(u2, v2)

V(θ1, ϕ1)u

v

θ
ϕ

Fig. 4. (a) A shaded volume depicts a projection of the solution M into the uvθϕ-parameter
space. (b) S(u1, v1) is invisible for a viewing direction V(θ1, ϕ1) since (u1, v1, θ1, ϕ1) falls into
the projected volume. Compare it with S(u2, v2).

(a) (b) (c)

v

u

V

S

Fig. 5. (a) A surface S with a viewing direction V . (b) A set of trimming curves in the uv-
parameter domain. (c) Visible parts of S are shown for the given view direction.

projected volume of M. Given a particular viewing query V(θ0, ϕ0), two of the solution
space’s remaining degrees-of-freedom are fixed and we can extract 1-manifold solution
curves from the projected region of M. These curves in the parameter space correspond
to curves that delineate the hidden surfaces from the visible ones.

It is quite difficult to either visualize or contour 3-manifolds in a six-dimensional
space. By fixing a particular viewing direction, 1-manifold curves in a six-dimensional
space result. So it is possible to use the algorithm presented by Seong et al [23] to extract
all the visible parts of S(u, v). Figure 5(a) shows a surface S with a viewing direction
V . The boundary curves of visible sections in the uv-domain are computed using our
approach (see Figure 5(b)). In Figure 5(c), gray-colored trimming surfaces represent
hidden surfaces of the original surface and the bold ones are visible sections for the
viewing direction. Shaded regions in the parameter domain (Figure 5(b)) correspond to
the hidden surfaces in Euclidean space (Figure 5(c)).

4 Experimental Results

We now present examples of computing a visibility chart in a continuous domain
for both planar curves and 3D surfaces. For all the figures, the gray-colored region
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θ

t

θ

Fig. 6. (a) Given a planar curve C(t), the projected region of M and projected r-directional
silhouette curves Sr are shown in gray and bold lines, respectively. (b) A set of visible segments,
Sr

v , is shown in bold lines.

C(t)

V (a) (b)

t

θ

C(t)

V
(c) (d)

t

θ

Fig. 7. (a), (c) A planar curve C(t) and the visible curve segments that are shown in bold lines.
(b), (d) A continuous visibility charts computed by solving Equations (1) – (3).

represents the projection of the zero-set of the corresponding set of polynomial equa-
tions in the parameter space and characterizes hidden parts of planar curves or surfaces.
Bold lines in curves or surfaces represents visible parts from the given view direction.

Figure 6 shows a planar curve and its visibility charts in a continuous domain. Bold
lines in Figure 6(a) represent a set of r-directional silhouettes of the zero-set mani-
fold. The boundary curves of the projected region are computed based on a topological
analysis of the visibility charts and shown in Figure 6(b).

In Figures 7, (a) and (c) show two planar curves and (b) and (d) are the visibility
charts for all viewing directions. For a particular viewing direction, V , a set of visible
curve segments are shown in bold lines in Figures 7(a) and (c). Figures 7(b) and (d)
show the corresponding parameter domain in thick lines. The computation time for
generating the visibility charts over all possible view directions for the curve case vary
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(a) (b) (c)

v

u

S(u, v)

Fig. 8. (a) An envelope surface generated by sweeping a scalable ellipsoid along a space trajectory
is shown. (b) A set of trimming curves in the uv-parameter domain is presented in bold lines. (c)
Visible parts of the surface are shown for the given viewing direction.

(a) (b) (c)

v
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V

S

(d) (e) (f)

v

u

V

S

Fig. 9. (a), (d) A surface S is shown with a view direction. (b), (e) A set of trimming curves in
the uv-parameter domain is presented in bold lines. (c), (f) Visible parts of the surface are shown
for the given viewing direction.

according to the curve’s complexity, taking from 1.3 to 6 seconds on a Pentium IV
2GHz desktop machine.

Figure 8(a) shows an envelope surface generated by sweeping a scalable ellipsoid
along a space trajectory. A set of trimming curves is shown in Figure 8(b), which is
the result of solving Equations (6) – (9) after fixing a viewing direction. Each trimmed
surface sub-region is tested for visibility using a simple ray-surface intersection method.
Figure 8(c) draws visible surface patches only.

The original surfaces in Figure 9(a) and (d) are bi-quartic NURBS having about 250
control points and shown with different view directions. Figure 9(b) and (e) show a set
of trimming curves which are boundaries between visible parts and hidden surfaces in
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(a) (b) (c)

(d) (e) (f)

Fig. 10. (a) A teapot is presented by four surface patches. A set of trimming curves in the para-
meter domain of the body (b), handle (c), spout (d) and the cap (e). Trimmed surfaces are shown
in (f) which are visible for the viewing direction.

the uv-parameter domain. Figure 9(c) and (f) show visible surface patches only along a
specified viewing direction. On a 2GHz Pentium IV machine, computing the trimming
curves in the uv-domain for Figures 8 – 10 took about 13 to 45 seconds.

The teapot in Figure 10 is represented by four bi-cubic NURBSs surfaces which are
open (Figure 10(a)). Each of the four surface patches can be hidden by any of the other
ones according to the viewing direction. In Figure 10(a), part of the body is blocked
by both a handle and a cap for the given viewing direction (a figure is generated along
the viewing direction). Furthermore, it blocks itself and makes shadow regions. Fig-
ure 10(b) shows the trimming curves in the parameter domain of the body. They are
comprised of three set of curves. Trimming curves generated due to a cap are repre-
sented by gray-colored lines in Figure 10(b) and four open curve segments located in
the middle part of the domain are generated by the handle. Since the surface patch of
the handle is not closed, the trimming curves are also open. Thus, the geometric inter-
section curve between the handle and the body is needed for a proper trimming. All
the other trimming curves in Figure 10(b) stems from the body itself. Figure 10(c)–(e)
show a set of trimming curves for the handle, spout and the cap, respectively. Finally,
Figure 10(f) draws all the visible parts.

5 Conclusion and Future Work

We have presented a robust and efficient scheme for computing hidden curve/surface
removal, in the continuous domain. The approach is based on the derivation of a set of
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algebraic constraints that determine the visibility of curve’s or surface’s locations. All
view directions in the domain are considered simultaneously, and the algorithm pro-
vides a continuous chart for the visibility from all possible views. By simultaneously
solving 2 polynomial equations for a curve case and 3 polynomial equations for a sur-
face case, in the parameter space, the presented approach can detect all the hidden parts
of the sculptured model for continuously varying view directions. The zero-set of the
polynomial equations prescribes the hidden parts of the model and we construct a visi-
bility chart by projecting the zero-set into an appropriate parameter space. Furthermore,
the topological structure of the visibility chart is analyzed in the same framework, pro-
viding a reliable solution to the computation of the visibility chart.

The presented approach can be applied to trimmed models as well. The original trim-
ming curves need to be considered in the computation of the boundary curves between
visible and invisible parts in the case of trimmed models. Visibility computations for
perspective views are desirable extensions to the method presented. To this end, we
need to deal with even higher-dimensional solution spaces.
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