
Proceedings of Symposium on Haptic Interfaces
ASME International ME'99 Congress and Exposition

November 14-19, 1999, Nashville, Tennessee

DIRECT HAPTIC RENDERING OF COMPLEX TRIMMED NURBS MODELS

Thomas V Thompson II Elaine Cohen
Department of Computer Science

University of Utah

ABSTRACT

The most accurate haptic rendition of a virtual model is
produced when the haptic algorithm acts directly on the actual
model and not an intermediate representation. In the modeling
and design communities the de facto model representation stan-
dard is NURBS. Further, more powerful systems provide trim-
ming and adjacency information within the models representa-
tion. This additional information permits more complex models
to be expressed succinctly but also increases the complexity of
representation. In this paper we present an algorithm that sup-
ports direct haptic rendering of models constructed from trimmed
NURBS surfaces. Our distributed system links an advanced mod-
eling system to a force-re
ecting device. In addition, we present
extensions to the algorithm which support model manipulation,
dimensioned probes, and multi-probe contact.

1 INTRODUCTION
The passive graphical display of complex models can convey

only limited visual information. Even with the array of presen-
tation options supplied to a user by modeling packages, such as
isoline drawings, shaded images, and animations, the designer
is often left without information that could easily be gathered if
the model could be interrogated by touch (Gibson, 1966). Haptic
rendering supplies this channel of feedback to the user by simu-
lating the forces generated by contact with, and surface tracing
of, a virtual model (Fig. 1). This increased level of interaction
facilitates a greater understanding of complex models and adds
to the sense of realism in virtual environments (Hollerbach et al.,
1996; Stewart et al., 1997).

While the graphical display of a model is almost exclusively
accomplished by �rst converting it to a collection of polygons,
the model itself often starts with a di�erent geometric represen-
tation. In fact, a master CAD model is almost always described
by NURBS throughout its life (Piegl and Tiller, 1995). Being a
parametric representation, NURBS surfaces have the advantage
of compactness, higher order continuity, and exact computation
of surface tangents and normals. All of these properties are use-
ful in complex, realistic virtual environments (Snyder, 1995).

The ability to trim away arbitrary portions of a NURBS
surface and de�ne adjacencies under boolean set operations is
a powerful extension to any modeling package. These construc-

Figure 1. Multiple endpoint haptic rendering of a four cylinder crank shaft

constructed from trimmed NURBS surfaces.

tive solid geometry results form a large class of models which can
be much more readily and succinctly expressed using trimmed
NURBS than non-trimmed NURBS. Furthermore, the use of
trimmed NURBS is fairly widespread, making it important for
a haptic rendering algorithm to handle them. This increase in
expressiveness does not come without a cost. Since the trim-
ming curve (or curves) representing the boundary of a surface is
frequently expressed as a piecewise linear curve with a high num-
ber of segments, determining when haptic contact is to transition
from one surface to another can be a complex task. However,
once such a transition is detected, topological adjacency infor-
mation can allow for e�cient computation of the exact transition
point.

A major contribution of this paper is that we use a model-
oriented approach which enables an environment populated by
a broad class of models to be haptically rendered (Fig. 1). En-
abling the user to trace directly on the actual CAD model in-
stead of an intermediate or alternate representation achieves the
most accurate haptic rendering results. To this end, we intro-
duce direct haptic rendering of complex models constructed from
trimmed NURBS surfaces. In order to realize this approach,



we have developed and tested algorithms for model proximity
testing, fast update of global and local closest point approxima-
tions, computationally e�cient surface evaluation and normal
evaluation techniques, and smooth e�cient transitioning across
trimmed surface boundaries. Further, we present extensions in-
cluding model manipulation, dimensioned probes, and multiple
probe contact. These algorithmic results are tested within a
complete system that integrates a research modeling package,
Alpha 1 (Riesenfeld, 1989; Riesenfeld, 1993) with both a Sarcos
Dextrous Arm Master (Jacobsen et al., 1990) and a Phantom
haptic feedback device (Massie and Salisbury, 1994).

2 BACKGROUND
The goal of a haptic rendering system is to generate forces

that can be applied to a user's hand or arm to accurately pro-
duce a sense of contact with a virtual model. These forces, called
restoring forces, resist penetration into the virtual model and are
calculated using a wall model. These response models often have
a restoring force proportional to the penetration depth (Colgate
and Brown, 1994) and in the direction of the surface normal at
the contact point, typically a local closest point. An accurate
force computation depends on a good tracking and tracing algo-
rithm since the magnitude and direction of the force depends on
the accuracy of the calculated closest point and normal. Impor-
tantly, the force servo loop, and hence the closest point calcula-
tion, must run at several hundred Hz in order to maintain sti�
virtual surfaces (Minsky et al., 1990). This high update rate
limits the complexity of the algorithms for �nding the closest
point and thereby has dictated the types of models that could
be rendered.

For instance, Zilles and Salisbury (1995) advocate using a
constraint-based system to trace polygonal models. These sys-
tems are often limited to simple models since the high poly-
gon count of complex models requires too much processing time.
Ruspini et al. (1997) extend this work to handle larger polygon
counts and to permit more general graphics primitives, such as
points and lines, to be traced by a dimensioned probe.

Adachi (1993) employs distribution functions and Salisbury
and Tarr (1997) use implicit surfaces to permit quality tracing
of sculptured models. However, the design and graphics commu-
nities by and large model using NURBS. As such, to use these
methods requires a conversion from the NURBS model into one
of these other representations. This conversion is not only a
complicated task but can be numerically unstable resulting in
inaccurate models de�ned by high order functions.

Others (Adachi et al., 1995; Mark et al., 1996) propose using
intermediate representations to simplify the tracing of sculptured
models. These systems are bound by network limitations, and
therefore updates are slow. While this approach permits the
tracing of complex models, it su�ers from poor temporal per-
formance and cannot accurately reproduce surfaces with high
curvature.

Thompson et al. (1997a) as well as Johnson and Cohen
(1998) have demonstrated direct haptic rendering of sculptured
models constructed from untrimmed NURBS surfaces using di-
rect parametric tracing. While sculptured models can be traced

with quality results using these methods, they are predominantly
surface oriented approaches since the models contain no topo-
logical adjacency information. The method requires tracking a
closest point on each proximal surface to allow tracing across
surface boundaries. This in turn limits both the complexity and
number of models populating the environment.

Nelson et al. (1999) provide a closed form solution in the
velocity domain for tracing sculptured NURBS models using a
locally convex end-e�ector model. While this method allows
the end-e�ector to be sculptured, the contact model is a single
point and the approach is surface oriented with no transitioning
algorithm.

3 SYSTEM OVERVIEW
A haptic virtual environment must meet the update rate

constraints of the visual and haptic displays. While it may be
acceptable for the visual display to update at twenty frames per
second, the haptic display must maintain rates of several hun-
dred Hz for the virtual surfaces to feel solid. Both the visual and
haptic display individually tax a system, therefore, we distribute
the simulation process and haptic process onto di�erent special
purpose computers (Thompson et al., 1997a; Thompson et al.,
1997b).

The modeling environment runs within the simulation pro-
cess on a graphics workstation which handles the visual display
and performs computations typically global in scope. When the
simulation process detects an appropriate global event, such as
the proximity of the probe to a model, it signals the haptic pro-
cess, which continues the computation with low-latency, local
methods. The haptic process runs on real-time microcomputer
boards and performs computations which are typically local in
scope.

Several Ethernet channels connect the two processes to fa-
cilitate the various forms of communication in our system. Both
processes have a model manager whose sole function is to main-
tain data consistency across the system. Data caching on both
sides of the system, in conjunction with the distinct division
of labor between the two processes, keeps the communication
overhead at a minimum. The combination of independent pro-
cesses maximizing computational capacity, low communication
overhead, and synchronized visual and haptic display creates a
realistic haptic virtual environment.

4 TRIMMED NURBS MODELS
Non-Uniform Rational B-Spline (NURBS) surfaces are

highly compact and yet very expressive as a representation for
modeling. A NURBS surface is a bivariate vector-valued piece-
wise rational function of the form

S(u; v) =

Pm

i=0

Pn

j=0
Pi;jwi;jBj;kv (v)Bi;ku(u)Pm

i=0

Pn

j=0
wi;jBj;kv (v)Bi;ku(u)

; (1)

where the fPi;jg form the control mesh, the fwi;jg are the
weights, and the fBi;kug and fBj;kvg are the basis functions



de�ned on the knot vectors fug and fvg for a surface of order
ku in the u direction and kv in the v direction.

The various properties of a NURBS surface, including a local
convex hull property, and the ability to evaluate surface points,
normals and tangents, along with its intuitive control charac-
teristics make it a good representation for modeling and design.
These properties have led to NURBS becoming the de facto in-
dustry standard for the representation and data exchange of ge-
ometric models (Piegl and Tiller, 1995).

Trimmed NURBS models are constructed by cutting away
portions of a NURBS surface using trimming curves in paramet-
ric space. In our system trimming information is represented as
directed closed polygons called trimming loops. Each individual
linear portion of the loop is called a segment. A collection of con-
nected segments that represents shared boundary between two
surfaces is referred to as an edge. Portions of the surface domain
to the left of a loop are considered cut-away while pieces to the
right are deemed part of the model. Note that each surface that
is part of a model contains at least one trimming loop. If there
is no portion of the surface being cut away then this loop simply
surrounds the domain of the surface.

Consider the model in Fig. 2a of a simple disc with a hole
cut through it. The top surface will have two trimming loops
within its parametric domain as shown in Fig. 2b. Notice that
the direction of the two loops indicate that the dark regions are to
be cut away. The outer clockwise loop cuts away the outermost
region while the inner counterclockwise loop cuts away the center
region representing the hole. The edges in Fig. 2b are illustrated
in alternating brightness to indicate the patch in Fig. 2a that is
adjacent to each edge.

(a) (b)

Figure 2. A trimmed NURBS model (a) and its parametric domain containing

the trimming loop information (b).

5 DIRECT HAPTIC RENDERING
The goal of direct haptic rendering is to enable the user

to feel the actual designed model instead of some secondary
representation. In addition to an enhanced tracing experience,
using the actual model also allows the designer to modify the
model without having to wait for the haptic system to convert
the model in a time-consuming preprocessing step. The di�-
cult part of this approach lies in the evaluation of the model

to acquire the requisite closest point and surface normal needed
by the force response model. These calculations must complete
in a short enough time to permit the entire haptic process to
maintain its high update rate. Also, the method must produce
what we refer to as a local closest point since tracing using a
global closest point results in several complications and, in fact,
potentially erroneous results (Thompson et al., 1997a).

The act of haptically tracing a virtual model can be bro-
ken down into several phases. The system checks each model
for proximity to the probe and activates those models deemed
proximal. The tracking algorithm then tracks a closest point
on the model until contact is made, at which point the tracing
algorithm takes over. While in contact, the tracing algorithm
maps the movement of the probe to movement along the surface
of the model. Transitioning is indicated if the probe's movement
causes the local closest point to cross a trimming loop boundary.

5.1 Proximity Detection

Our algorithm needs to trace only a single point per model
per end-e�ector. However, it is still advantageous to keep the
number of models active to a minimum. Doing so saves pro-
cessor time and maintains high update rates. To this end, our
system checks the proximity of the probe as it moves throughout
the environment to each model. We use a �rst order approxi-
mation to the closest point found by a method referred to as
nodal mapping (Thompson et al., 1997a). The simulation pro-
cess performs this computation since it is a global computation
that requires the processing power of the workstation. When
the probe moves close enough to potentially contact a model, an
activation packet is sent to the haptic process indicating that a
closest point should be tracked. This packet contains the ID for
the model being activated along with the surface ID and para-
metric location of the closest point. The parametric value then
seeds the tracking algorithm.

5.2 Tracking

Any movement near an active model, while not in contact
with that model, is referred to as tracking. Contrary to tracing,
the closest point for tracking must be the global closest point.
This ensures proper contact detection by permitting the closest
point to jump across concavities and to climb convex regions.
For example, Fig. 3 demonstrates the di�erent closest point re-
quirements. During tracing, the probe moves from position A
to position B resulting in the closest point becoming bound to
the intersection of two surfaces (Fig. 3a). This is the correct
response: the probe is trying to move inside a second surface
and should be restricted from movement in that direction. If
the same algorithm was used for tracking, a similar scenario
could occur (Fig. 3b). Again the probe moves from position A
to position B, which results in the tracked point being bound
to an edge. In this case, however, the closest point should not
be bound. In fact, if the probe were to continue along the cur-
rent path and intersect the model, the contact would not be
detected since the penetration would not occur at the location
of the bound tracked point.



(a) (b)

Figure 3. A bound closest point is desired when in contact and tracing (a)

but when tracking while not in contact (b) it is not.

The tracing algorithm cannot be used exclusively for track-
ing since it assumes the probe is in contact and therefore the next
desirable closest point should correlate to a movement bound to
the surface of the model. In the tracing algorithm, it is appro-
priate for the closest point to hold its position since its purpose
is to restrict the probe's movement in certain directions. During
tracking, however, there should be no restrictions on the probe's
movement or the closest point which shadows it.

Currently, it is not feasible to determine the global closest
point to a trimmed NURBS model at haptic rates. Therefore, we
use a hybrid approach where the tracing algorithm is augmented
by periodic re-seeding with the global closest point. The sim-
ulation process calculates an approximate global closest point
using an algorithm based on a time-critical method that spends
less time on objects outside the region of interest (Johnson and
Cohen, 1997). The haptic process accepts this point and uses
it to re-seed the tracing algorithm. This periodic re-seeding al-
lows the tracing algorithm to form a good approximation to the
global closest point between updates. We have found this to be
very e�ective since the probe typically does not move very far
between updates. Even though contact detection may be de-
layed for several cycles, the cycle rate is so high that the delay
is, in practice, imperceptible to the user.

5.3 Contact and Tracing
At the heart of every haptic system is its ability to detect

the contact of the probe with a virtual model and to simulate
the act of tracing along the surface of the model. Contact occurs
when the probe �rst intersects the virtual model, resulting in a
positive penetration depth. Once contact has been established,
any lateral movement along the surface indicates tracing. As the
probe moves, a local closest point on the surface of the model
is found that shadows the probe's movement. The accuracy of
this closest point and its associated normal is essential since the
restoring force calculation depends directly upon this result.

We relate movement of the probe to movement along the
surface using direct parametric tracing (Thompson et al., 1997a).
The algorithm has been shown to run at interactive rates and
produce accurate results making it suitable for direct haptic ren-
dering. The algorithm is seeded with the surface evaluation point

S(u�; v�), calculated using re�nement (Cohen et al., 1980) where
(u�; v�) are the parametric coordinates for the point of contact.

Movement along a surface in Euclidean space relates to
movement in parametric space by the partial derivatives of the
surface

@S

@u
�

�Su
�u

;
@S

@v
�

�Sv
�v

;

where �Su and �Sv are the change on the surface along the
u and v isocurves respectively. A good approximation for �Su
and �Sv is the projection of the probe onto the surface tangent
plane. The coordinates of this projection within the tangent
plane are used to derive �u and �v.

A key element of the algorithm is the e�cient computa-
tion of the surface tangents @S

@u
and @S

@v
. The calculation of

S(u�; v�) by re�nement results in the new knot vectors fûg and
fv̂g, the new weights fŵig and a new control mesh fP̂i;jg where
P̂i�;j� = S(u�; v�). Furthermore, the i� column and the j� row
in the control mesh form control polygons for isocurves that pass
through the point P̂i�;j� . This allows the calculation of the two
tangent vectors to be performed using the more simple curve
equation. The isocurve de�ned at v� in the j� row of the control
mesh is given by


j�(u) =

Pm

i=0
P̂iŵiBi;ku(u)Pm

j=0
ŵjBj;ku(u)

; (2)

where the fP̂ig form the extracted control polygon, the fŵig are
the associated weights, and the fBi;kug are the basis functions
de�ned over the knot vector fûg for a curve of order ku. The

i�(v) curve can be formed in similar fashion.

We then calculate the tangent vector by evaluating the
derivative of the isocurve at u�. Using the quotient rule to form
the velocity curve for Eq. (2) yields,


0j�(u) =

0
B@
Pm

i=0

Pm

j=0
P̂iŵiŵjBj;ku(u)B

0

i;ku
(u) �Pm

i=0

Pm

j=0
P̂iŵiŵjBi;ku(u)B

0

j;ku
(u)

(
Pm

j=0
ŵjBj;ku(u))

2

1
CA :

However, since the curve was re�ned to form an evaluation point,
each basis function takes on a value of either zero or one when
the velocity curve is evaluated at u�. The two basis functions
that remain active, Bi�;ku(u

�) and Bi�+1;ku�1(u
�), result in the

simpli�ed expression,


0j�(u
�) =

(k � 1)

ûi�+k � ûi�+1

ŵi�+1

ŵi�
(P̂i�+1 � P̂i�): (3)

Notice that the tangent vector is computed e�ciently using
only the control polygon, associated weights, and the knot vec-
tor. With this and the resulting calculation of �u and �v, the
new approximation to the local closest point can be evaluated.
Since this new point, S(u�+�u; v�+�v), is calculated using re-
�nement, the algorithm can continue directly into the next time
step.



5.4 Transitioning
Three basic transitions can occur during a trace. Two forms

result when the probe's movement causes the local closest point
to hit a trim boundary. In the �rst form of transitioning, the
local closest point should transition across the trim and onto
an adjacent surface (Fig. 4a). This occurs most often in areas
of a model constructed by pasting surfaces together along an
adjacent edge. The second possibility is that the closest point
should remain on the trim edge. This is the case in concave areas
where the probe can trace along the intersection of two surfaces
(Fig. 4b). The �nal form is the special case of transitioning o�
the model. When the penetration depth becomes negative, trac-
ing ends and tracking resumes, which is e�ectively the inverse of
the contact problem.

(a) (b)

Figure 4. (a) Transitioning across a trimming edge and onto another surface.

(b) Transitioning onto the intersection of two surfaces.

There are four core modules to the tracing algorithm that
permit the proper detection and handling of transitions. The
check_cross module detects when a movement along a surface
intersects a trimming loop. Once such an intersection is found
the find_adjacent module determines the exact corresponding
point on the neighboring surface. Tracing along a trim boundary
is handled by the slide3d module with the release module
being used to determine when the edge tracing should terminate
and normal surface tracing should resume. The path the tracing
algorithm takes through these modules is illustrated in Fig. 5.

5.4.1 Trim Intersection. Discrete movement along the
surface correlates to a directed line segment in parametric space.
This segment is constructed using the current contact point's
parametric coordinates and the next location calculated using
direct parametric tracing. If this segment, or movement vector,
intersects any of the surface's trimming segments then a bound-
ary has been crossed. The location of the intersection is deter-
mined by selecting the intersection point closest to the current
contact point.

Since the number of trimming segments per surface can be
very large, it is not possible to check every segment for inter-
section. Our solution to this problem is to overlay each surface

special
normal

nono

yes

no
yesno

yes

yes

Evaluate

Evaluate

special
normal

release

On trim

End-effector position

slide3d

next_uv

on_surface slide3d

next_uv check_cross Evaluate

find_adjacent

Figure 5. The tracing algorithm follows a di�erent path depending upon

when and if the trace results in crossing a trim boundary.

with a grid. Each cell in the grid contains the trim segments
that lie within or intersect it. Ideally, each cell would contain
one segment and each segment would be contained in exactly
one cell. In practice this is not necessary and would result in
heavy preprocessing overhead. We locate the grid so that its
boundary coincides with the bounding box of all trim segments.
Further, we construct the grid to have four times as many cells
as segments with the number of rows and columns being equal.
In practice, this is heuristic has proven to be e�ective.

Each call to check_cross results in only checking those seg-
ments lying within the cells the movement vector intersects. In
addition, we use a grid walking algorithm in order to check these
cells in the order the movement vector traverses through them.
The intersection checks conclude at the �rst valid intersection,
further cutting down on the number of intersection checks per-
formed.

5.4.2 Adjacency. In order to smoothly transition from
one surface to another it is necessary to calculate an accurate
transition point on the neighboring surface. Our system main-
tains an edge adjacency table for each surface. This table al-
lows e�cient determination of the adjacent surface as well as
the appropriate trimming loop and edge onto which the transi-
tion should occur. The segment is found by indexing into the
edge to the segment that corresponds to the one intersected.
Since adjacent trimming edges run in opposite directions, and
the number of segments in these edges is the same for both sur-
faces, the index of the proper segment can be found directly as
N � i� 1 where N is the number of segments in the edge and i
is the index of the segment intersected. The exact point of tran-
sition along this segment, s, is then given by s(1� p) where p is
the percent along the intersected segment that the intersection
occurred.



5.4.3 Edge Tracing and Release. Tracing along a
trim edge is closely related to tracing along the surface. The
edge tracing algorithm must slide along the edge in Euclidean
space to a point locally close to the probes position. Our slide3d
module does precisely that. The algorithm projects the probe
onto the current segment. If this projection remains on the cur-
rent segment then this projection is our result. If, however, the
projection is beyond either endpoint of the segment then we con-
tinue to project onto segments along the loop in that direction
until a local minimum is found.

Once the local closest point is found the algorithm checks
to see if the tracked point should release from the trim. Our
algorithm �rst evaluates one of the surfaces and then uses di-
rect parametric tracing to determine the next location on the
surface. If the calculated parametric point is on the surface (i.e.
on the correct side of the trimming loop { the right side of the
closest segment) then the trace releases from the trim. If the
trace does not release onto the �rst surface then the second is
checked. When the trace does not release onto either surface,
then a special normal is computed directed from the probe's lo-
cation to the local closest point. This normal ensures a smooth
trace along the edge and also deters further movement into the
model.

6 EXTENSIONS
Using the direct haptic rendering algorithm as a black box

entity, several worthwhile extensions are possible. We have im-
plemented model manipulation, dimensioned probes, and multi-
probe contact. While these are but a few of the potential im-
provements and extensions, they demonstrate the power and

exibility of the algorithm.

6.1 Models in Motion
Whether through manipulation, animation, or dynamic

properties, mobile models are a fundamental property of virtual
environments. The direct haptic rendering algorithm presented
in this paper is designed for probe movement with static models,
but can be extended so that both probe and models can move.
We accomplish this by tracing the original (non-transformed)
model with a probe position that has been transformed into
model space (Thompson et al., 1997b).

For each model being traced or tracked, we transform the
probe through the inverse of the model's transformation matrix.
This process transforms the movement of the model into a com-
ponent of the probe's movement. The resulting closest point and
normal are then transformed back from model space to world
space. This embedding of the tracing algorithm requires mini-
mal overhead and does not a�ect the update rate of the haptic
process.

6.2 Dimensioned Probe
One of the drawbacks to point probe methods is the dimen-

sionless nature of the probe. If two models are placed directly
adjacent to one another, a probe without �nite size could still
move between the two models without making contact. To elim-

inate this possibility we compute a model that is projected out-
ward by the radius of the desired probe. A model of this type is
often referred to as an o�set model (Ho, 1997). Our system uses
the o�set model in the haptic rendering process while using the
original model for the visual display.

Figure 6 illustrates the construction and use of an o�set
model. The original model in Fig. 6a is o�set by the radius of
the probe in the direction of the surface normal resulting in the
model in Fig. 6b. Isolated regions are trimmed away, producing
the o�set model in Fig. 6c. Contact with the surface of this
o�set model represents contact with the original model with a
dimensioned probe (Fig. 6c). Notice that any part of the o�set
model that is trimmed away represents a portion of the original
model that could not be contacted with the dimensioned probe.
Tracing with a point probe along an edge created by trimming
away a region corresponds to tracing multiple contact points of
the original model with a dimensioned probe (Fig. 6c).

(a) (b) (c)

Figure 6. (a) Actual model. (b) Initial o�set model. (c) Final o�set model

with possible trace positions.

It is important to note that this process depends on trim-
ming and adjacency information. Further, while this approach
uses an auxiliary representation it is not a simplifying \interme-
diate" representation, since the o�set model exactly represents
the parts of the original model that can be contacted by the di-
mensioned probe. Producing the o�set model adds signi�cant
preprocessing, but it does not a�ect performance of the tracing
algorithm as long as the model geometry does not change during
the trace.

6.3 Multi-Probe Contact
Our current implementation of direct haptic rendering of

trimmed models runs at over 1000 Hz. However, when using
the Sarcos master we notice no improvement when running at
any rate over 500 Hz. By running at this lower rate, there is
extra time within each cycle of the haptic process. Since the
Sarcos device can re
ect forces to multiple end-points, we make
two calls to the trace algorithm using the location of the �nger
and thumb as the probe locations. This adds to the overall
tracing experience with only a slight data overhead and minimal
impact on the tracing algorithms performance. We are currently
working on using this additional information to produce stable



grasps as well as allow better user control of the models and the
environment (Maekawa and Hollerbach, 1998).

7 RESULTS
Our trace algorithm is model-based with a near constant

time grid-based transitioning algorithm. This results in equal
performance and accuracy for each model, regardless of com-
plexity (Fig. 7).

Figure 7. Highly trimmed model of a mechanical gear.

Trimmed NURBS models vary greatly in the number of sur-
faces and trim segments required to represent them. Table 1 lists
a sampling of models against which we tested the system. The
Srfs column indicates the total number of surfaces for the model.
Segs indicates the average number of trim segments per surface.
Grid statistics are represented in the �nal three columns. The
column labeled Empty gives a percentage for the number of cells
in a surfaces grid that contain no trim segments. Empty cells
translate into essentially zero work for the transitioning algo-
rithm. Max gives the maximum number of segments in any one
cell. This number represents the worst case for the transitioning
algorithm for the given model. Finally, the Mean column shows
the average number of segments in cells that actually contain
segments. This number indicates the amount of work the tran-
sitioning algorithm can be expected to perform when near a sur-
face boundary. Note that both the Max and the Mean columns
contain very small numbers in comparison to the Segs column.
These numbers indicate the drastic reduction in work the transi-
tioning algorithm performs when compared to an algorithm that
would check every segment.

The two haptic devices used are very di�erent yet both pro-
duced accurate results. The Sarcos Dextrous master is a high
inertia device with 10 degrees-of-freedom and a complex dynam-
ics structure. For this device, the haptic process ran on a hybrid
PowerPC 604 and Motorola 68040 VME system with a surface
sti�ness of 6000N=m. The Phantom is a low inertia device with 3
degrees of freedom and a rather simple dynamics structure. The
haptic process in this instance ran on an SGI Indigo R10000 un-
der IRIX 6.5 with a surface sti�ness of 1200N=m. Both used a

Model Srfs Segs Empty Max Mean

Goblet 3 254.00 89.92 13 3.38

Brake 28 168.14 72.52 6 1.47

Gear 22 1256.27 92.11 15 4.05

Crank 73 412.00 89.56 36 3.30

Table 1. Statistics on models used in system testing.

nonlinear response model to provide a physically-accurate model
of probe-model collision (Marhefka and Orin, 1996). In both
cases, the simulation process ran on an Octane with dual R10000
processors and RealityEngine2 graphics.

Since the quality of the trace is directly related to the cal-
culated closest point and surface normal, we ran simulations to
determine the errors for these values. The simulation consisted
of a surface trace at a constant penetration depth of 5mm. The
algorithm was able to resolve the closest point to within 0:2mm
and the error for the surface normal error was under 0:02degrees.
In practice, the penetration depth averages 3mm for the Sarcos
master and 1mm for the Phantom with low variance. This il-
lustrates that the penetration is not only consistently small, but
also consistently near the mean. This combination produces a
smooth tracing experience.

8 FUTURE WORK
The goal of our research is to produce a virtual environ-

ment that allows intuitive interaction with complex models. To
achieve this goal, algorithms to support important capabilities
remain under investigation and include:

� An arbitrary probe model would allow the trace to more
closely represent the device being used. More complex hap-
tic devices permit tracing with the full hand.

� Collision contact and response for model impacts is a di�-
cult problem, especially when using trimmed NURBS, but a
low latency solution needs to be developed for more realistic
force response.

� Surface properties such as texture can add to the realism
of the tracing experience. Soft and deformable models are
a challenge since changes in the geometry can occur during
contact.

We are also investigating alternative uses for the tracing
algorithm. Among these are methods for modifying arbitrary
curves that lie on a surface, sketching on a surface interactively,
and �nding the silhouette curves of NURBS models.

9 CONCLUSION
We have presented a powerful algorithm that supports the

direct haptic rendering of models constructed from trimmed
NURBS. This model-based approach permits more complex
scenes as well as models to be haptically rendered. Addition-
ally, we have demonstrated the ability of the algorithm to be



extended in order to permit model manipulation, tracing by a
dimensioned probe, and multi-probe contact. Finally, the dis-
tributed system design allows high update rates on both sides of
the system, resulting in an interactive visual display coupled with
an accurate haptic rendition produced from the actual model.

ACKNOWLEDGMENTS
The authors would like to thank the Biorobotics group for

helping operate and setup the robotic devices, their various con-
trol systems, and the networking software. Thanks also go to
the students and sta� of the GDC project, within which this
work was developed. Support for this research was provided by
NSF Grant MIP-9420352, by DARPA grant F33615-96-C-5621,
and by the NSF and DARPA Science and Technology Center
for Computer Graphics and Scienti�c Visualization (ASC-89-
20219).

REFERENCES
Adachi, Y., 1993, \Touch And Trace On The Free-Form

Surface Of Virtual Object," in Proc. Virtual Reality Annual Intl.
Symp., Seattle, WA, pp. 162-168.

Adachi, Y., Kumano, T., and Ogino, K., 1995, \Intermedi-
ate Representation For Sti� Virtual Objects," in Proc. Virtual
Reality Annual Intl. Symp., Research Triangle Park, NC, pp.
203-210.

Cohen, E., Lyche, T., and Riesenfeld, R., 1980, \Discrete
B-Splines And Subdivision Techniques In Computer Aided Ge-
ometric Design And Computer Graphics," Computer Graphics
and Image Processing, Vol. 14, Number 2.

Colgate, J.E., and Brown, J.M., 1994, \Factors A�ecting
The Z-Width Of A Haptic Display," in Proc. IEEE 1994 Inter-
national Conference on Robotics & Automation, San Diego, CA,
pp. 3205-10.

Nelson, D., Johnson, D., Cohen, E., 1999, \Haptic Ren-
dering of Surface-to-Surface Sculpted Model Interaction," in 8th
Annual Symp. Haptic Interfaces for Virtual Environment and
Teleoperator Systems, Nashville, TN.

Gibson, J.J., 1966, The Senses Considered as a Perceptual
System, Boston, MA, Houghton Mi�in Co.

Ho, C., 1997, Feature-Based Process Planning and Auto-
matic Numerical Control Part Programming, Ph.D. Thesis, Uni-
versity of Utah, Computer Science Department.

Hollerbach, J.M., Cohen, E.C., Thompson, W.B., and Ja-
cobsen, S.C., 1996, \Rapid Virtual Prototyping Of Mechanical
Assemblies," NSF Design and Manufacturing Grantees Confer-
ence, Albuquerque, NM.

Jacobsen, S.C., Smith, F.M., Iversen, E.K., and Backman,
D.K., 1990, \High Performance, High Dexterity, Force Re
ective
Teleoperator," in Proc. 38th Conf. Remote Systems Technology,
Washington, D.C., pp. 180-185.

Johnson, D.E., and Cohen, E., 1997, \Minimum Distance
Queries For Polygonal and Parametric Models," Technical Re-
port UUCS-97-003, University of Utah, Department of Com-
puter Science.

Johnson, D.E., and Cohen, E., 1998, \An improved method
for haptic tracing of sculptured surfaces," in 7th Annual Symp.

Haptic Interfaces for Virtual Environment and Teleoperator Sys-
tems, Anaheim, CA.

Maekawa, H. and Hollerbach, J.M., 1998, \Haptic Display
for Object Grasping and Manipulating in Virtual Environment,"
in Proc. IEEE Intl. Conf. Robotics & Automation, Leuven, Bel-
gium, pp. 2566-2573.

Marhefka, D.W., and Orin, D.E., 1996, \Simulation Of
Contact Using A Nonlinear Damping Model," in Proc. Inter-
national Conference on Robotics and Animation, Minneapolis,
Minnesota, pp. 1662-1668.

Mark, W.R., Randolph, S.C., Finch, M., Van Verth, J.M.,
and Taylor III, R.M., 1996, \Adding Force Feedback To Graphics
Systems: Issues And Solutions," in Proc. SIGGRAPH 96, New
Orleans, LA, pp. 447-452.

Massie, T.M. and Salisbury, J.K., 1994, \The PHANToM
Haptic Interface: A Device for Probing Virtual Objects," in 3rd
Annual Symp. Haptic Interfaces for Virtual Environment and
Teleoperator Systems, Chicago, IL, DSC-Vol 1, pp. 295-301.

Minsky, M., Ouh-Young, M., Steele, M., Brooks, F.P. Jr.,
Behensky, M., 1990, \Feeling And Seeing: Issues In Force Dis-
play," in Proc. Symposium on Interactive 3D Graphics, Snow-
bird, UT, pp. 235-243.

Piegl, L. and Tiller, W., 1995, The NURBS Book, Berlin,
Springer.

Riesenfeld, R., 1989, \Design Tools For Shaping Spline Mod-
els," inMathematical Methods in Computer Aided Geometric De-
sign, (Edited by T. Lyche and L. Schumaker), Academic Press.

Riesenfeld, R., 1993, \Modeling With Nurbs Curves And
Surfaces," in Fundamental Developments of Computer Aided Ge-
ometric Design, L. Piegl (ed.), Academic Press.

Ruspini, D.C., Koloarov, K., and Khatib, O., 1997, \The
Haptic Display of Complex Graphical Environments," in Proc.
SIGGRAPH 97, Los Angeles, CA, pp. 345-351.

Salisbury, K. and Tarr, C., 1997, \Haptic Rendering of Sur-
faces De�ned by Implicit Functions," in Proc. 6th Annual Symp.
Haptic Interfaces for Virtual Environment and Teleoperator Sys-
tems, Dallas, TX, DSC-Vol. 61, pp. 61-67.

Snyder, J., 1995, \An Interactive Tool For Placing Curved
Surfaces Without Interpenetration," in Proc. SIGGRAPH 95,
Los Angeles, CA, pp. 209-218.

Stewart, P., Buttolo, P., and Chen, Y., 1997, \CAD Data
Representations for Haptic Virtual Prototyping," in Proc. ASME
Design Engineering Technical Conference, Sacramento, CA.

Thompson II, T.V., Johnson, D.E., Cohen, E., 1997, \Direct
Haptic Rendering Of Sculptured Models," in Proc. Symposium
on Interactive 3D Graphics, Providence, RI, pp. 167-176.

Thompson II, T.V., Nelson, D.D., Cohen, E., and Holler-
bach, J.M., 1997, \Maneluverable NURBS Models within a Hap-
tic Virtual Environment," in Proc. 6th Annual Symp. Haptic
Interfaces for Virtual Environment and Teleoperator Systems,
Dallas, TX, DSC-Vol. 61, pp. 37-44.

Zilles, C.B., and Salisbury, J.K., 1995, \A Constraint-Based
God-Object Method For Haptic Display," in Proc. IEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Hu-
man Robot Interaction, and Cooperative Robots, Vol 3, pp. 146-
151.


