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ABSTRACT

Complexity in modern product design is manifest through large numbers of

diverse parts, functions, and design disciplines that require an intricate web of

synergistic relationships to link them together. It is extremely di�cult for designers

to assimilate or represent such complex designs in their totality.

Few CAD tools provide support for managing complex design relationships.

Instead, designers must document and track these relationships independent of

the design model. This increases the burden on the design team and increases the

risk of inconsistencies and errors in the design.

This researches introduces a framework that utilizes the intricate relationships

between design components to enhance the representational power of design models

and to provide focal points for automating the management of design complexity.

Automated mechanisms, based on aggregation, interaction, and variational relation-

ships between design components, are presented that integrate model structure, a

variety of conceptual and detailed design information, and product management

controls into a single modeling framework. These mechanisms can be easily in-

corporated into design models. They facilitate re-use and cooperative design by

ensuring that related entities can be modi�ed independently.

Milling machine and formula automobile examples are used to demonstrate

and analyze the capabilities of this framework. Each example is decomposed into

multiple sub-assemblies, into which model details such as design descriptions and

rationale, design parameters, constraints, and goals, force and kinematic informa-

tion, manufacturing features, and geometry are incorporated. As a demonstration

that these research results facilitate management and analysis of the design model,

these examples show how designers can generate alternatives, how changes are auto-

matically propagated throughout the design model, and how to perform automated



force and kinematic analysis.
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CHAPTER 1

INTRODUCTION

1.1 Design Complexity

Complexity in modern design manifests itself in many di�erent ways. Product

design models contain a vast amount of diverse information that is linked together

in a variety of con�gurations. These products are developed over a period of time

through an extensive design process. During this process the designer brings to-

gether information such as customer needs and scienti�c and engineering principles,

forms this information into a high-level design model, and evolves this model into

a working product design. The designer applies numerous techniques to minimize

and manage the complexity of the design process and the product being designed.

1.1.1 Design Products

Product complexity results from a large number of parts in an assembly, complex

geometry or multiple functions within an individual part, and the combination of

many di�erent design disciplines within a single assembly [53]. The individual

components and functions are linked together in an intricate web of synergistic

relationships through which the design becomes more powerful and complex than

the sum of the individual pieces.

1.1.2 Design Process

To create and manage the design of complex products, designers proceed through

a series of process phases. Evbuomwan et al. characterize these phases as di-

vergence, transformation, and convergence [20]. The designer �rst extends the

solution space by diverging from the well-known aspects of the design situation while

identifying features of the problem which permit a valuable and feasible solution.

Creativity, pattern-making, insight, and guesswork allow the designer to transform
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the results of the divergent search into patterns that may lead to a single design.

Eventually, the designer must converge to the �nal design by removing uncertainties

and design alternatives.

Pahl and Beitz present a similar view of the design process in which the more

familiar terms of conceptual design, embodiment design, and detailed design are

used to describe the major phases. [41]. The conceptual design phase determines

the principle solution by abstracting the essential problems, functional structures,

and working principles and combining them into a conceptual structure of the

design. During the embodiment phase, the designer applies technical and economic

knowledge to the development of an overall layout, preliminary component shapes

and materials, and production processes. Finally, in the detailed design phase, the

arrangement, forms, dimensions, surface properties, materials, and production pos-

sibilities are speci�ed, analyzed, and revised into an economical, manufacturable,

working product design.

1.1.3 Design Knowledge

In both of these design process views, a designer applies considerable knowledge

to the understanding and formation of a product design. The designer must

determine customer needs and must have the scienti�c and engineering knowledge

to form these needs into a working product design. The information derived from

this design knowledge is highly complex and contains many interdependencies. In

addition, the applicable information frequently changes as the design evolves.

Customer needs are characterized by functional and performance requirements

which are constrained by the operational environment, budgetary limitations, and

other restrictions. Often, customer needs are ambiguous and incomplete and they

change considerably over time. Designers need to transform these ambiguous

requirements into a concrete design model while accommodating any changes.

Unfortunately, these ambiguous, changing requirements are a frequent cause of

cost overruns and delays in product development.

Engineering design requires considerable knowledge of scienti�c and engineering

principles. In addition, information about existing designs, standard components
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and materials, and manufacturing capabilities must be available to the designer.

This diversity of information and knowledge often requires multiple designers, with

expertise in di�erent engineering disciplines, to cooperate in the design of a single

product.

1.1.4 Complexity Management Techniques

The intricate relationships and large quantities of information in a complex

design are very di�cult for a design team to assimilate. The team must organize

and abstract the design information in di�erent ways to explore various design

possibilities, to analyze cross-disciplinary design compatibilities, to organize design

ideas into feasible design layouts and patterns, and to revise and restrict the design

alternatives until a workable design is obtained. Designers have developed a number

of techniques for abstracting design information and managing the complexity of

product designs.

One technique is to break the problem into a number of smaller sub-problems,

each of which is less complex than the original. If done properly, these smaller

problems can be resolved simultaneously by separate design teams, then the solution

can be integrated together to form the complete product design. In some cases,

existing designs may be re-used to satisfy sub-problems.

In the early stages of design, complexity is frequently reduced by deferring

speci�cation and modeling of many of the details, both geometric and functional.

In these early stages, functional concepts are embodied in high-level components

which interact in a speci�ed manner. Multiple alternatives may be developed and

analyzed before a particular design approach is selected. As the design problem

becomes better understood, the alternatives are narrowed down, additional detail

is added, and the design is more rigorously analyzed. This cycle continues until the

design has evolved into its �nal form.

As a design problem is decomposed into sub-problems or as detail is added at

di�erent levels of abstraction, additional relationships are established between com-

ponents of the design. These relationships evolve along with the design components.

Understanding and ensuring compatibility with these relationships is critical to
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designing a successful product. This is often complicated, however, by the di�culty

in capturing and de�ning these relationships.

Ideally, one would dedicate su�cient resources to completely identify, specify,

and analyze every aspect of a complex design. Since resources are usually limited,

however, one can reduce the chance of product failure by concentrating resources

on those areas that pose the greatest risk. The relationships between design compo-

nents have considerable impact on the overall design due to their synergistic e�ect.

Consequently, these relationships provide a convenient focal point for minimizing

design risk.

1.2 Computer-Aided Design

Computer-aided design (CAD) systems are essential for creating and maintaining

the vast amount of design information associated with complex products. Most

CAD tools emphasize detailed modeling of individual design components, but often

fail to support the complex relationships between design components which are

typical of most actual product designs. As a result, the design team must take

additional steps to manage these relationships independent of the actual component

models.

Many di�erent CAD tools have been developed for supporting di�erent phases

of the design process or for representing di�erent aspects of the design model.

Since the high-level conceptual models, detailed design models, and analysis mod-

els are created with di�erent tools, the model for a single design component is

often maintained in multiple, incompatibly formatted �les. The same is true for

functional, geometric, manufacturing, and assembly models that are created with

di�erent tools. In addition to the di�erent �le formats, each tool operates in its

own workspace with its own set of commands and procedures.

For a tool to use models that are created by a di�erent tool, some sort of

transformation is required, often involving translation of design formats, manual

conversion of design information by the design team, or additional design steps.

This frequently results in information lost during the translation, time lost to
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accomplish the translation, and additional complexity by having to keep track of

the mapping between representations. Design data that is shared between tools

must be organized in a fashion that is e�cient for translation. This often means

large pieces of the design model are grouped in a single �le. Changes made by

one tool are not available in other tools unless the designer takes explicit steps

to transform the changes into the proper format. As a consequence, it is di�cult

to propagate incremental changes between tools. Reuse of a design model is also

made more di�cult, since the designer must extract the di�erent representations

from each tool workspace in which they are de�ned.

In this independent workspace paradigm, links between di�erent component

models are di�cult to specify. Components that are composed of other indepen-

dently modeled components have no way of showing these connections except to

make copies of the other components. If one of these components changes, a new

copy must be inserted into the aggregate representation. If a component must

interact with other components, this interaction can be speci�ed independently

within each component; however, there is no easy way to determine which other

components are compatible with that speci�cation.

Product data management (PDM) tools can be used in conjunction with CAD

tools to specify and manage structural relationships between design components.

The relationships speci�ed by these high-level tools, however, fail to capture com-

plex design information such as functionality, strength of materials, or geometric

constraints. While these tools help the designer determine which components

are related, manual intervention is still required to keep the independent design

representations consistent. PDM tools are also restricted to managing complete

design �les, thus limiting their utility for managing incremental changes.

Associated with the various phases, levels of detail, and revisions of a design

model are the rationale and decisions which describe how the model evolved to

its current state. These informal, text based descriptions are often maintained

in a loosely organized set of notes or in the minds of the designers. Although

this information is often essential for design corrections or for acquiring knowledge
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about the design, the information is seldom incorporated into CAD models.

Many components in a mechanical design, such as bolts, bearings, springs, and

other connectors, are standardized and produced by independent manufacturers.

Since these components are not new designs they are often inadequately represented

in detailed design models. Where they are represented, the designer usually has

to individually specify features to accommodate these components in each a�ected

part.

1.3 The Problem

Whether for conceptual or detailed design, a major shortcoming of most CAD

tools is the isolation of the individual design artifacts. Although product models

require an intricate web of relationships to link individual components together

in a useful fashion, there is little tool support for specifying these relationships.

Consequently, the designer must document and track these relationships indepen-

dent of the actual component models. Product data management tools enable the

speci�cation of structural and classi�cation relationships, but these relationships are

still independent of the component models and provide little functional or geometric

information.

To adequately support the speci�cation and management of complex design

models, a CAD environment must accommodate the seamless evolution of a design

from a conceptual to a detailed model. Within the CAD environment, a designer

must be able to specify and track design models at multiple levels of detail, through

multiple revisions and alternatives, and across di�erent design perspectives. The

CAD environment must provide a focal point for constraining and analyzing the

behavior of interacting design components.

The capabilities of modern computers further extend the potential for computer-

aided design. Geographically separated design teams may work concurrently on

di�erent sections of a design or may collaborate by providing unique expertise

to a single design. Existing electronic designs may be cataloged and stored in

a standard format for reuse by anyone on a computer network. Independently
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developed tools are available for automatically checking and analyzing di�erent

design characteristics. A modern CAD environment should enable these capabilities

by seamlessly integrating the di�erent tools and representations with the necessary

data and process relationships.

1.4 Design Activities

The intricate relationships and large quantities of information in a complex

design are very di�cult for a designer to assimilate in their totality. The rela-

tionships between design characteristics are often unknown or poorly understood

which further exacerbates the problem. In an attempt to manage design complexity,

designers employ a number of common design activities to decompose the problem

into more manageable pieces and to control changes to the design as it evolves. For

a CAD system to support the entire design process, it must accommodate these

complexity management activities in addition to the speci�cation of geometry and

functionality. This research focuses on the complexity management activities and

capabilities enumerated here.

Decomposition. A high level concept of the design is decomposed into smaller

components which are more easily understood and implemented.

Simultaneous Development. Di�erent designers work on separate components of

the design at the same time.

Integration. Components designed separately from each other are composed into

a higher level functional design. Independently designed components should

be compatible with the high level speci�cations.

Non-Geometric Design Representation. To adequately analyze the feasibility and

performance of a design model, the designer must be able to quantify in-

formation concerning the functionality, ease of assembly, manufacturing pro-

cesses, and other design disciplines. This may involve kinematic joints, force

constraints, manufacturing or assembly features, fasteners and connectors, or
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other specialized design components.

Design Exploration. A designer often explores multiple alternatives before the

design is completed.

Concurrent Design. Designers with expertise in di�erent design disciplines may

need to concurrently develop and analyze the design model from multiple

viewpoints.

Design Recovery. Once a design has evolved, a designer may determine that

another version was better. This requires recovery of a previous version or

alternative of the design.

Design Reuse. A design may be adapted and reused to satisfy a di�erent set of

requirements.

Re�nement. Once a design exists, this design may be re�ned to adapt to dif-

ferent requirements or to improve the ability of the design to satisfy existing

requirements.

Change Management. A designer may need to propagate a change to interacting

design components, alternate versions, or higher level design aggregations so

that di�erent representations of a model are kept consistent. A designer may

also want to restrict how changes are made and propagated through the model.

Before a change is made permanent, a designer may want to analyze the impact

that the change has on the remainder of the model.

Design History. The designer needs to keep track of design decisions and the

history of the design to reduce rework and to allow di�erent individuals to

understand how the design has evolved. Design history also assists with

corrections to a design by providing an understanding of why a particular

design decision was made.



9

Assisted Analysis. Some quanti�able elements of the design can be automatically

analyzed. To better assist the designer, the design environment should support

such automation.

Simulation. The designer may want to simulate the movement and operation of

an assembly to analyze interference or behavior.

This research accommodates these complexity management activities by exam-

ining the design process from three di�erent perspectives { interaction, aggregation,

and variation. These perspectives facilitate understanding of the complexity man-

agement problems and provide an organizational structure for this research.

Interaction describes how two parts or sub-assemblies work together to provide

new capabilities. By controlling the interaction between design components, or

between a product and its operational environment, designers can constrain the

possible design solutions, thereby reducing complexity in the design.

Aggregation links together related components in support of design decomposi-

tion and abstraction at multiple levels of detail. An aggregation may represent a

hierarchical decomposition with increasing levels of detail or a parallel decomposi-

tion of interacting parts.

Variation describes the changing of a portion of the design over time. A design

may be re�ned to adapt to new requirements or to improve the design's ability

to satisfy existing requirements. Design alternatives enable the designer to con-

sider di�erent approaches for satisfying a design constraint. Alternatives may also

provide di�erent views of the design to support understanding and analysis from

di�erent technical or functional perspectives.

1.5 An Automated Framework

This research introduces an extensible framework for managing design com-

plexity which brings together relationships between design components, detailed

constraints and design information associated with these relationships, and methods

for communicating and managing this information throughout the design model.
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This framework includes version representations for exploring design alternatives

and evolving the design over time. The complexity management framework sup-

ports the capture of design information at di�erent levels of detail, the hierarchical

decomposition of design into multiple sub-problems, and it provides mechanisms for

describing and controlling the synergistic relationships between design components.

In this research, design complexity is managed via automated mechanisms for

specifying and controlling the aggregation, interaction, and variational relationships

in a design. The interface speci�cation object is used for describing the many

di�erent aspects of the interaction relationship between two parts in an assembly

such as relative motion, force transmission, geometry, and fasteners. Additional

information, of any type, is incorporated into the interface or any other design

component through the use of the attachment relationship. The attachment relation

links two design components in a parent-child relationship and, along with the in-

terface speci�cation object, de�nes the relationships necessary to form aggregations

of design components which, in turn, are used to represent design decomposition

and abstraction at multiple levels of detail. These aggregations may then be revised

to form di�erent versions of an aggregate object.

1.5.1 Mechanisms

The interaction between parts in an assembly represents considerable complexity

and risk in a design. This interaction combines parts to provide additional capa-

bility that is not possible with independent parts. In this research, an interface

speci�cation object is used to describe the information relevant to this interaction

between parts. The interface speci�cation object links two parts together and

provides a focal point for specifying and analyzing functionality, forces, geometry,

relative motion, and other information relevant to the interaction between parts in

an assembly.

As a design evolves, additional detail is incorporated into design components.

A single high-level component may be decomposed into multiple lower-level com-

ponents. This decomposition forms a hierarchical structure with minimal detail

at the top of the hierarchy and lots of detail at the bottom. This research uses
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an attachment relation to capture the parent-child link between components at

di�erent levels of detail.

A hierarchical decomposition of components may be grouped together at di�er-

ent levels to represent meaningful design artifacts or speci�c functionality. Multiple

interacting parts may be grouped together to form a mechanical assembly. In this

research, these groupings of design components are speci�ed as aggregations. These

aggregations represent portions of the model which may be developed and analyzed

independently from other portions of the model.

As independent segments of the design model, aggregations may be modi�ed to

form di�erent versions of the aggregate design component. A version may describe

an alternate implementation, an alternate view, or a more accurate revision of the

original design component. The versioning mechanism facilitates design exploration

and multi-disciplinary analysis while providing a documented history of the design

as it evolves over time.

Interaction, aggregation, and variational relationships are embedded within the

design model to provide focal points for representing, constraining, and analyzing

kinematic behavior, functionality, mechanical features, connectors and fasteners,

complex geometry, component positioning, and other design information across

multiple versions and alternatives. To facilitate re-use and cooperative design, no

modi�cations to related design entities are necessary. All relevant information is

speci�ed in the relationships which ensures that the design entities can be developed

independently. This also makes it easier to integrate these complexity management

mechanisms into existing design systems or to extend them to other design disci-

plines.

1.5.2 Usability and Extensibility

This research strives to support complexity management in a manner which

allows the design team to increase its productivity while proceeding according to a

process which is comfortable to its members. Designer productivity is enhanced by

automating tedious tasks, supporting interactive editing and analysis, minimizing

user interface complexity, and allowing customization of the user interface. Com-
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mands for managing complexity are similar to other design commands and do not

require signi�cant additional e�ort on the part of the designer.

To accommodate multiple design processes and simplify use of the complexity

management tools, the interaction, aggregation, and variation mechanisms are

implemented as fundamental design objects within the Alpha 1 automated design

system. The design object data structures reduce complexity and simplify analysis

by localizing the e�ect of changes; they enable customization by being extensible

to di�erent applications and by providing access to low level objects with variable

granularity; and they simplify automation of tedious tasks with low-level object

methods.

1.5.3 Alpha 1 Design Environment

The complexity management framework in this research is integrated intoAlpha 1,

an object-oriented test-bed system supporting research into geometric modeling,

high-quality graphics, curve and surface representations and algorithms, engineer-

ing design, analysis, visualization, process planning, and computer-integrated man-

ufacturing [55]. Alpha 1 provides geometric primitives, surface and curve represen-

tations, and mechanical features that can be used with the aggregation, interac-

tion, and variational mechanisms presented in this research to provide a powerful

computer-aided design and manufacturing environment.

Mechanical models in Alpha 1 are represented by a directed graph which iden-

ti�es the prerequisite objects necessary to construct a particular object and the

dependent objects that are based on the object. The model graph is used to

propagate changes to dependent objects and to minimize processing by computing

only the necessary prerequisite objects.

The Alpha 1 object-oriented software development environment facilitates code

generation for new modeling objects and provides a standard framework for building

model object constructors to integrate model objects into graphical and textual user

interfaces. The controlled interaction and aggregation mechanisms are implemented

as independent Alpha 1model objects which can be manipulated and controlled like

any other model object in the system.
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1.5.4 Limitations

Although a powerful user interface is a vital component of any design system, this

research does not speci�cally address user interface issues. Instead, the complexity

management mechanisms are implemented as fundamental design objects which

can be 
exibly integrated into a number of customizable user interfaces in Alpha 1.

This research implements versioning mechanisms to support the evolution of a

design model as it is decomposed and re�ned over time. Some fundamental ver-

sioning capabilities, available in commercial object-oriented database management

systems [30, 65], are implemented as a basis for the complexity management ca-

pabilities introduced in this research. These fundamental capabilities are extended

to support the management of alternative solutions and views, user-controlled

granularity, and the use of versioning as an interactive design tool.

1.6 Document Summary

There are many aspects of automating the management of design complexity

which have been previously explored by other researchers. This work is described

and analyzed in Chapter 2.

To provide a better understanding of the automated mechanisms and to demon-

strate the capabilities of the automated framework that is introduced in this re-

search, two case studies are undertaken with real manufacturing design examples.

These case studies, along with design methodologies for simultaneous and incre-

mental design, are outlined in Chapter 3. Examples from the two case studies are

interspersed throughout the remainder of the document.

Chapter's 4, 5, and 6 describe the fundamental mechanisms and strategies for

the automated complexity management framework introduced by this research.

Chapter 4 explores the roles and data structures associated with part, assembly,

and other aggregations. Chapter 5 describes the complexity associated with the

interaction between parts in an assembly along with the data structures used for

the speci�cation of this interaction. Chapter 6 presents the data structures and

capabilities of the versioning mechanism which is used to maintain revised and

alternate variations of a design aggregation.
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In Chapter 7, the results of this research are measured against the capabilities

and activities identi�ed in Section 1.4. These capabilities are also used as a basis of

comparison for other design data models. Chapter 8 concludes this document with

a summary of the research and conclusions about the contributions of this research

to the �eld of computer-aided design. This chapter also recommends future research

directions.



CHAPTER 2

RELATED WORK

Complex product design is characterized by a variety of interrelated process

activities, design representations, and model components that evolve over time. As

discussed in this chapter, however, most existing tools and research only support

static representations or component models with minimal support for the relation-

ships between these representations, the variations as the models evolve over time,

or the design activities which are necessary to manage design complexity.

Feature-based design is a common approach for embedding di�erent functions

and multiple design disciplines into a single part model. A feature is a standard,

reusable design entity that encapsulates related functional, manufacturing, geomet-

ric, or other engineering information into a single representational abstraction. A

sampling of these feature-based design approaches is described in Section 2.1.

Some researchers have developed data models for design which incorporate frag-

ments of information associated with the relationships between design components

in a complex design. These models, as summarized in Section 2.2, range from data

structures which integrate structural and constraint relationships into the design

model to mechanisms for simplifying the speci�cation of some of the relationships

which contribute to design complexity.

As a design evolves over time, a number of model variations are created. These

variations are supported with version management capabilities as discussed in

Section 2.3. Unfortunately, version management capabilities are not well supported

in CAD systems.

Product data management (PDM) systems take a di�erent approach to manag-

ing complexity as described in Section 2.4. Instead of embedding complexity infor-

mation in the original CAD models, PDM systems maintain a separate database
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which links together the individual component models created by di�erent CAD

applications.

2.1 Feature-Based Design

A common technique for controlling design complexity is to hide some of the de-

tails at di�erent levels of abstraction. Feature-based design facilitates this approach

by encapsulating geometry, functionality, design intent, tolerances, manufacturing

processes, or other important design information into reusable, standardized fea-

tures. Features help control complexity by enabling the designer to work with a

single entity instead of many separate pieces of information. Specialized features

may be developed for di�erent design disciplines, enabling concurrent design by

multiple designers working with di�erent feature views.

Shah and M�antyl�a [49] characterize a feature as a physical constituent of a

part that has engineering signi�cance and predictable properties and is mappable

to a generic shape. Recurring characteristics of products may be modeled as

feature classes which can be reused to facilitate construction of a product design.

Features provide a means for \chunking" information, making it easier for humans

to understand. According to Shah, \a major advantage of features is that they

provide an additional level of information to CAD systems to make them more

useful for design and to integrate a design with downstream applications. Because

of the higher semantic level of features, they can provide a basis for recording a

more complete product de�nition."

Features are commonly used to represent manufacturing processes associated

with a particular shape of a part (for example, the drilling or reaming processes

required to machine a hole or a pocket) [7, 9, 10, 24, 54]. By embedding process

information in the feature, a process plan to manufacture the part can be gener-

ated automatically [10]. Tolerance and dimension information is also frequently

encapsulated in features, providing a convenient mechanism for automatic analysis

of associated costs and ease of manufacturing [26, 44, 60]. Many researchers discuss

embedding functional requirements and speci�cations within features for design ver-
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i�cation [2, 9, 22]. Implementation of functional feature modeling systems, however,

has been limited to very small, research domains, probably because of the di�culty

associated with unambiguously specifying functionality. Features have also been

used to represent assembly relationships and constraints [16, 36, 49, 50, 59].

A feature-based design system must consider location of a feature on a part and

relationships between features on a part or in an assembly. Feature validation and

interactions between features on a part are also important issues. If multiple feature

views exist which represent the same design component from multiple perspectives

(for example, a functional view or a manufacturing view composed of the appro-

priate functional or manufacturing features), one must be able to map between

the di�erent views. In addition, to represent information such as manufacturing

processes, speci�c features must be de�ned to describe those processes. These

feature-based design issues are dealt with in a variety of ways as discussed in the

following paragraphs.

Location of a feature on a part is usually determined relative to some geometric

entity (e.g. a face or an edge), to another feature, or to a user-de�ned reference.

In the University of Utah's Alpha 1 system [10, 55], a designer de�nes an anchor to

specify location and orientation. Each feature also has an anchor and the feature

is placed in the model by aligning the feature anchor with the user-de�ned anchor.

Process plans built from features in Alpha 1 have successfully produced a wide

variety of machined parts, however, placement of features requires the designer

to ensure that anchors are properly speci�ed. Ranyak and Fridshal [44] resolve

planar and cylindrical geometrical features into primitives (point, line, or plane)

and locate the feature relative to another feature or a datum reference frame.

Location tolerances are embedded in the feature to determine the type of location

constraint to apply (e.g. distance, concentricity, angle). Gossard et al. [26] use

location dimensions to locate a feature relative to a particular face. Relative

position operators for specifying the intersection angle of two faces or the distance

between two parallel planes allow the designer to de�ne and locate features with

scalar values.
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In an assembly, feature relationships may be used to constrain how parts �t

together. Driskill [16] de�nes assembly features such as a peg in a hole which

constrain the geometry and the relative location of the peg and the hole so that the

two parts �t together. In her work, the peg and the hole are separate features which

act together to form an assembly. Shah and Tadepalli [50] present another approach

in which a new feature is created, in addition to the peg and the hole on each

part, which does not �t on any part, but describes and constrains the relationship

between the features on each of the two parts. This approach is used by Shah and

Tadepalli to determine if two parts can be assembled. In both of these approaches,

individual parts are designed independently and include one component compatible

with an assembly feature. Once designed, these parts are selected and analyzed to

determine if and how they can be assembled. If no valid assembly representation

is possible, the parts must be independently modi�ed and re-analyzed until a valid

con�guration is reached. Both approaches are also limited to static assemblies.

Driskill's and Shah's assembly features identify compatible geometry and mating

constraints that are useful for determining whether two parts may be assembled,

but are not intended for specifying or controlling the interaction of the parts once

assembled.

By properly specifying feature constraints, features become valuable tools for

validating the geometry or other attributes of a model. For example, a through

hole can be speci�ed so that it's entire diameter is on the part and its depth is

equal to the thickness of the stock. Any time the model is changed, features can be

revalidated to make sure all constraints are satis�ed. Unfortunately, this problem

is easily complicated by interactions among features. For instance, if one of two

parallel slot features is widened such that it intersects with the other, the two

separate features have changed into a single slot feature.

Geelink et al. [24] group interacting features into a compound feature, which

can be decomposed into its primitive features for process planning. Unfortunately,

intersection of two or more features may cause deletion of important portions of

the geometry. Geelink's feature recognition algorithms alleviate this intersection
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problem by relaxing feature de�nitions. This solution has been implemented for a

limited set of features, but it is not apparent that the solution is generally applicable

to other features or to all feature con�gurations. When feature constraints are vio-

lated by a change, Dohmen [13] reconstructs the feature model from the geometric

primitives. This requires that all features and constraints be programmatically

de�ned with low-level geometry. Chen [8] matches feature vertices, edges, and faces

to determine when a feature is no longer valid. He then rebuilds the feature model

by deleting or modifying invalid features. Because of the ambiguity in determining

how features should interact, Chen's approach often results in an approximation of

the feature model. All of these methods require interaction with the low level part

geometry, degrading the higher level abstraction provided by features.

Feature modeling is frequently proposed as a method for concurrent design.

Many di�erent aspects of the design, such as functionality, manufacturing, and

assembly, are considered concurrently to accelerate the design process. To ana-

lyze each of these design aspects, di�erent design views are needed. To analyze

functional capabilities, the designer needs to look at functional relationships and

constraints. A process plan for manufacturing must be generated and analyzed for

e�ciency and cost-e�ectiveness. By providing features to represent each of these

views, and mapping between the feature views, designers and analysts with di�erent

expertise can analyze the model at the same time. Unfortunately, mapping between

views and keeping them consistent is a considerably di�cult task.

Shah [49] identi�es four theoretical approaches to feature mapping. Heuristic

methods use pre-speci�ed transformation rules to map between two engineering

application views. Another approach transforms features to an intermediate-level

structure which is common to multiple applications. Cell-based mapping decom-

poses features into cells which can then be transformed into another feature view.

In graph-based mapping, feature attributes and constraints are represented by a

graph which is transformed, using graph grammars and algorithms, into another

graph forming a di�erent engineering perspective.

Falcidieno et al. [21] extract shape information from a feature by applying
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previously de�ned feature and shape rules. The shape information is stored as

a hierarchical graph which can be converted to di�erent views using pre-de�ned

routines. All features and views, including feature interactions, must be explicitly

de�ned by an application expert. It is not clear how robust or complicated this

process is, but the examples have less than twenty shape features and are limited

to planar and cylindrical faces. Brooks and Greenway [7] use object relationships

to relate di�erent feature views to the faces and topology of the geometric model.

This work requires programmatic de�nition of features and is limited to planar and

quadric surfaces. Cunningham and Dixon [11] provide a mechanism for de�ning

heuristics to transform between a design feature and any alternate activity represen-

tation. A monitor routine restricts the combinations of design features to those that

can be converted into activity features. All features and their mappings to alternate

activities must be explicitly de�ned before the monitor routine will allow them to

be used in the design. Intersections of more than two features are derived from

adjoining two-way relationships. Wearring [61] identi�es intermediate geometry

features which can be reorganized, through detailed geometry manipulation by the

designer, into whatever functional feature is desired. For a simple block with a

hole in it, the relationships, dimensions and tolerances for three of the faces and

the hole must be speci�ed and maintained by the designer. In practice, each of

these implementations has only been applied to a limited domain and to parts with

limited complexity. The solution space and complexity for many parts or assemblies

quickly becomes unmanageable.

A signi�cant drawback to any feature modeling system is the domain speci�c

nature of features. To model a di�erent manufacturing domain or a di�erent view,

a new set of features is required. Some researchers have tried to overcome this

with interactive feature de�nition; however, due to the di�culty in specifying rela-

tionships and constraints, only limited analysis and validation is possible in these

systems. The FROOM (Feature and Relation based Object Oriented Modeling)

system [24], for example, supports only planar, cylindrical, and conical faces with

adjacent, perpendicular, parallel, and co-axial relations. Only features which can
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be completely de�ned with parameters are allowed. Other researchers [44, 47]

have developed an object-oriented feature hierarchy, where new features inherit

attributes and constraints from parent feature classes. Transformation and recog-

nition of these features is based on the pre-de�ned, high-level parent class and may

not consider the necessary detail contained in the feature object. Features which

do not fall into a pre-existing class still require new class de�nitions.

Researchers attribute considerable representation and modeling power to the

use of features. In practice, however, the only common use of features, other than

for representing geometric attributes such as dimensioning, tolerancing, and shape,

is for manufacturing process automation. Very little functional speci�cation and

analysis is supported by existing feature modeling systems. Features are also very

application dependent and mapping between feature domains is complicated by

the interactions between multiple features on a part. Representing and mapping

between complex parts with multiple interacting features is di�cult to do with

existing systems.

2.2 Data Models for Design

While features facilitate representation of di�erent functions and design disci-

plines in a design model, they are independent design objects and contribute little to

the organization of the di�erent features into manufacturable parts or assemblies. A

number of more comprehensive models have been proposed for linking features and

other design information together into complex parts and assemblies and embedding

these relationships into a static product model. Some of these models utilize

structural and constraint relationships to integrate individual component models

into complex aggregations while others simply facilitate speci�cation of complex

relationships. Some models focus on high level concepts and functionality while

others emphasize detailed manufacturing designs.

Eastman and Fereshetian [19] present a set of criteria for evaluating and compar-

ing product data models. These criteria include an object-oriented class hierarchy

with abstract data types, multiple specializations of classes, and composite objects.
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A data model must support relations within composite objects, relations between

variables, and relations such as cardinality and dependency between object struc-

tures. Included in these relations are constraints and aggregations. Both invariant

and variant relations are required. Relations must support integrity management

of the data to include partial integrity while the design is in an intermediate state.

In addition, the product data model must provide for continuous object re�nement

and schema evolution.

Eastman's Engineering Data Model (EDM) [18, 17] for architectural design is

among the most comprehensive of the design models reviewed in this research.

EDM is an architectural design model which strives to represent function and form

at multiple levels of abstraction with explicit management of partial integrity. EDM

provides aggregation, composition, and accumulation relationships which allow the

designer to describe the aggregation hierarchy of the design along with constraint

information between components. EDM is based on set theory and �rst order logic.

Domains are sets of values corresponding to a simple type, aggregations are sets

of named domains, and constraints are general relations stored as procedures. The

primary object is a functional entity { an aggregation and its constraints along

with other entities which it specializes. A composition is the set of relations linking

an entity to its parts. These relations are de�ned as accumulations which include

functional design rules and property relations between the parts. To support partial

integrity, some relations are not satis�ed immediately. Integrity between multiple

views is maintained through maps which are specializations of constraints that can

change the database variables and schema. Missing from EDM are operations,

such as automated generation of relations, which simplify designer interaction and

explicit version management of design revisions. A number of architectural design

domains, including composite windows, core and panel walls, and basic building

structures, have been modeled with EDM. Due to its architectural focus on static

structures, however, it is not clear that the relationships in EDM can incorporate

mechanical interaction information such as forces, connectors, and kinematics.

Manufacturing features and other mechanical design representations have not been
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demonstrated with EDM.

Gui and M�antyl�a's multi-graph structure [27] focuses on the top-down evolu-

tion of an assembly design from high level functional concepts. The multi-graph

supports multiple levels of detail and provides links between functional, struc-

tural, and geometric information. A leaf node in the multigraph can be linked

with a functional description, geometry, features, elements in a bond graph, or

other design information. The multi-graph also provides a connector for describing

force transmission and motion constraints associated with the interaction between

parts in an assembly. An example connector is a spring which imparts a force

but also provides a physical geometric connection. A feature link relates design

functionality or other feature representations to the geometry. Gui and M�antyl�a

use this multigraph representation to share design objects between three system

components { the DesignPlanner, which describes functional relationships; the

DesignSketcher supporting geometric modeling; and the DesignConsultant which

resembles an expert system. Each system component links its design representation

to the object multigraph. Once the designer has speci�ed the functionality, tools

for behavior and energy transformation analysis can be applied to the multigraph.

The designer develops geometric representations and associates them with the

proper functions. Gui and M�antyl�a describe how the multigraph representation and

associated design and analysis tools are used to model an electrical contactor used to

open a circuit based on a control voltage. Designers are given considerable 
exibility

in representing functionality, however, this limits the degree to which the analysis

is automated. The multi-graph emphasizes functionality and assembly modeling,

but requires that the detailed manufacturing information be modeled separately.

While linkages exist, the multi-graph mechanisms are not applied directly to the

speci�cation and validation of individual, manufacturable parts.

Representing design functionality is a common goal of many researchers. The

feature-based approach discussed in Section 2.1 is intended to support functional

representation, but has rarely been used in this fashion. Baxter et al. [2] propose an

enhanced entity-relation diagram for representing design functionality and analyz-
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ing how well a product satis�es the speci�ed functionality. Functional relationships

such as performed by, input of, output of, and has need of are traversed and the

functionality of the linked components are analyzed to determine if these relations

are satis�ed. Baxter's model was tested on a valve assembly with 22 components.

The model contained 35 function instances and approximately 1000 nodes. It

is not clear how much of the validation was automated; however, some human

intervention appears necessary to resolve the ambiguity associated with integrating

sub-functions and analyzing their combined ability to perform their parent function.

Rosenman and Gero [45] assert that multiple views and representations are

dependent on a functional context. Di�erent views (e.g. architectural, mechanical,

structural) are composed of a di�erent set of functional primitives rather than a

di�erent look at the same standardized primitives. This requires a di�erent model

for each view with a view de�ned by a set of functions or a set of functional systems.

Di�erent disciplines may refer to the same element using di�erent terminology. This

is handled using explicit relationships between elements with identical properties,

elements in an assembly, partial elements, and constrained elements. This data

model is used to create architectural, mechanical, and structural views of a building;

however, change propagation and other relationships between the views are not

demonstrated.

Gorti and Sriram [25] present a framework for conceptual design which uses

functional, composition, aggregation, and spatial relationships. The designer selects

prede�ned components, establishes functional relationships between the compo-

nents (supports, transmits load, or resists load), and speci�es the spatial relation-

ship (for example, connects, intersects, or abuts). These relationships are used to

generate possible design concepts to use as a basis for more detailed design. A

limited set of conceptual entities such as pier, slab, and bank, have been developed

to demonstrate this approach for the design of a river bridge.

The interaction between components in an assembly is inadequately represented

in many data models. Models such as Eastman's EDM include hierarchical aggre-

gations and positioning constraints, but provide only limited support for describing
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how di�erent aggregations or individual components interact. Other models such

as Driskill's assembly features, incorporate interaction information into individ-

ual parts which restricts analysis of the interaction relationship and complicates

change propagation between the interacting parts. Some researchers, however,

have realized this problem and have focused on the speci�cation and analysis of

the interaction relationships between parts in an assembly.

Bordegoni and Cugini [5] speci�cally address the interaction between �xed com-

ponents in a mechanical assembly. They propose an assembly feature for specifying

the interaction relationship at various levels of detail. This is accomplished by

having the designer �ll in appropriate detail information in a cataloged template

for each instance of an interaction relationship; however, if the template does not

provide a slot for the information, the detail can be added only after modifying

the template. Multi-disciplinary analysis is facilitated by providing functional,

positioning, and assembly information in a single relationship. Bordegoni and

Cugini's implementation of assembly features, however, is rather limited, having

only been demonstrated for �xed assemblies with no kinematic interaction.

Lee et al. [34, 37, 38] developed mating features to represent four typical po-

sitioning and kinematic con�gurations between planar and cylindrical surfaces of

parts in an assembly model. The against mating feature speci�es that the surface of

one part must lie against a second part. This relationship has one rotational degree

of freedom and two translational degrees of freedom. A �ts mating feature speci�es

a cylinder in a hole. Here translational movement is allowed along the axis of the

cylinder and rotational movement is allowed around the axis. A contact feature is

an against feature with no movement and a tight �t feature is a �ts feature with no

movement. The designer associates mating features with individual part surfaces

and, if a valid set of mating features is speci�ed, the modeling system generates

the necessary equations to infer the relative position of the parts.

Beach and Anderson [3] extend the mating feature concept to include a total

of twelve di�erent attachments. Their attachment hierarchy includes cylindrical,

planar, revolute, prismatic, spherical, and helical attachments that are speci�ed as
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either rigid or a kinematic pair. They represent these attachments in a general

graph showing the attachment relationships a part has with all other parts. This

graph is supplemented with a hierarchical tree to show subassembly grouping.

All attachments within a subassembly must be rigid. If a component is modi�ed

and does not violate any constraints, the parts are automatically reassembled. A

simple wheel mount, with no sub-assemblies and with only planar and cylindrical

attachments, is provided as an example. The sub-assembly hierarchy, although

critical to reducing the model complexity and increasing designer understanding,

is included by Beach almost as an afterthought. The sub-assembly hierarchy is

implemented in a separate data structure and there are no relationships between

this hierarchy and the attachment graph. The two structures are integrated only

through high-level software routines. Use of the subassembly structure is not

illustrated in any examples.

Wolter and Chandrasekaran [63] use geometric structures, called geomes, to

represent \any arbitrary collection of geometric elements whose form may or may

not be fully speci�ed." Geomes can be used for relationships between objects

as well as the objects themselves. Functional information can also be associated

with a geome. For example, the designer can specify the behavior and a limited

amount of geometry (such as the axis of rotation) for a kinematic constraint.

The constraint can then be instantiated anywhere in the model by specifying the

necessary parameters. Higher level geomes can be used as design speci�cations

with the implementation represented in lower level geomes. Geomes can also

be used to represent geometric entities that have no physical existence, such as

the axis of a hole or the paper path of a copying machine. Wolter and Chan-

drasekaran provide a simple example of a device which uses two rack-and-pinion

geomes to transform translational motion in one direction into translational motion

in a perpendicular direction. While their approach is quite 
exible, Wolter and

Chandrasekaran point out that a product designed with this approach is certain

to be more complex than a geometrical representation alone since a considerable

amount of non-geometric constraints may also be included in the geomes; however,
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by organizing the data hierarchically, the amount of information presented to the

designer can be limited, thereby facilitating understanding and manipulation of

the design. Wolter and Chandrasekaran also discuss the di�culty of graphically

representing this information and in unambiguously interpreting the constraints.

Since much of the framework presented by Wolter and Chandrasekaran has not

been completely implemented, the geome concept has only been demonstrated for

hypothetical examples. It appears to be highly 
exible, however, and one can easily

envision geomes as an interface speci�cation between two objects in an assembly,

as relations between views, and as constraints imposed on an aggregation hierarchy

or di�erent design alternatives.

Fasteners and connectors are often critical to the interaction between parts.

Salomons et al. [46] propose a mechanism for incorporating connection information

such as a weld or keyway into a relationship describing the interaction between

parts. These relations do not appear to be used for any automated analysis or

validation. Abrantes and Hill [1] incorporate fasteners into a relationship between

assembly parts; however, this is only used as a means for reducing the number of

possible assembly con�gurations.

A key aspect of any design is the evolution of the design model over time as it

proceeds through the design process. Some researchers have proposed representa-

tions for recording the historical information associated with this evolution. These

representations enable the designer to embed historical information directly in the

design model.

Kim and Szykman [33] use design decisions to describe the relationships between

versions of a design model. The concept behind their approach is that any time

a design change is made, it re
ects a decision by the designer. Design decision

relationships facilitate the representation and exploration of design alternatives. By

forcing designers to document design decisions, versions are more easily associated

with new functionality or abstractions rather than simply representing a snapshot

of the design at a particular point in time. A conceptual example of a television

remote control is presented in which di�erent battery con�gurations are interac-
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tively examined and analyzed. Considerable 
exibility is provided for representing

design knowledge with these relationships; however, these 
exible representations

limit the amount of analysis and constraint checking which can be automated.

Design decision relationships are static objects and must be explicitly de�ned by

the designer.

Shah et al. [48] classify design history information into four conceptual elements:

the design problem, domain knowledge, design processes, and the design solution

or product data. Each of these elements must be captured in representational

data structures to form a design history data model. Shah et al. develop a design

language to represent the processes, organizational entities, design products, and

relationships between the entities associated with a design project at any particular

point in time. A number of issues for representing design history, however, remain

unresolved. Among these issues are the extension of database technology to incor-

porate modeling of processes, rationale, and design constraints and the development

of a dynamic data de�nition language that can specify design history and represent

the evolution of the design process.

To assist with change propagation and constraint analysis, researchers have

developed active relationship objects which execute pre-existing procedures when

triggered by another object or event. Active relationships localize constraint and

change propagation, thereby reducing complexity and facilitating analysis and in-

teraction.

Sullivan [52] depicts active relationships with mediators which represent be-

havioral relationships between two objects. A behavioral relationship re
ects the

behavior one object should exhibit when another object completes an operation or

changes an attribute. A behavioral type object raises an event when a particular

action occurs in that object. The mediator recognizes this event and executes the

appropriate action on related objects.

Mediator objects can be inherited and decomposed just like other objects. Ag-

gregation and interaction relations, transformation between representations, and

evolutionary mapping between versions can all be implemented with mediators.
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Sullivan clari�es that behavioral relationships embedded in mediators must be

independent of each other; otherwise a speci�c ordering of mediator invocation

is required. Also, the current implementation only handles binary relationships.

While he advocates the use of mediators during the design process, Sullivan

provides examples that are more appropriate for an operational environment. Me-

diators were developed for use in software, and Sullivan uses them to communicate

between application objects such as user interface windows. Sullivan proposes

mediators for mapping between design views and versions, however no examples

are provided. This mapping would be an appropriate use of mediators, but re-

quires speci�cation of the complex behavioral relationships involved in a design

environment.

Brett et al. [6] de�ne a propagation as an object similar to a mediator, but limited

to non-ancestral relationships between design objects. A non-ancestral relationship

is one that \is not already in a parent-child relationship within an object-oriented

hierarchy." A propagation \can be conceived as an independent, third-party object

which causes mediating software to �re whenever changes to one object must trigger

changes to other objects so as to maintain data consistency." The idea behind

propagations is to encode constraints within the relationship object or provide

methods for accessing a constraint database, then act on those constraints to

propagate changes between related objects.

One can imagine using propagations to constrain the interaction between parts

or to ensure consistency between di�erent alternatives or views. Brett et al. explain,

however, that they have only been able to implement single view relationships be-

tween features on a single part. Constraints are hard-coded in the object de�nition

and can only be used to represent geometric relationships.

Heinrich and Juengst [28] take a completely di�erent approach in analyzing the

connection between components in a technical system. They base their work on

\the principle that systems and components interact mainly through interfaces

which can be thought of as resources and that the resources demanded and the

resources supplied by components have to be balanced." An assembly of me-
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chanical components can be modeled by representing the fasteners and mating

features as resources that are consumed by one part and produced by another.

Describing the resources consumed and produced by the environment provides a

system speci�cation. Similarly, the problem can be decomposed by describing the

resources for sub-assemblies or individual parts. Heinrich has tested this approach

with prototypes in a variety of electronic and mechanical applications.

While Heinrich doesn't propose it, the interfaces through which resources are

exchanged could be implemented as relationship objects between components. His

resource management approach, however, is more applicable to a system of products

in an environment rather than individual products. In fact, Heinrich clari�es that

his approach fails if the function depends decisively on how the components are

connected.

As evidenced by many of the data models presented in this section, representing

functionality is a signi�cant problem in any modeling system. Pre-de�ned rela-

tionships may adequately specify some functionality, but are generally unable to

capture the complete functionality of a product. Complete functional speci�cations

invariably involve some ambiguity which requires human interpretation.

Relationships objects have been demonstrated as a useful mechanism for repre-

senting the interaction between components of a design. Relationship objects can

be used to represent a multitude of design information, but most implementations

have been limited to single aspects of a design in a limited capacity. Combining

relations for di�erent design information would simplify the design interface while

providing more capability for analysis.

None of the data models presented in this section completely captures the man-

ufacturing design process. Some are concerned only with functionality or assembly

joints. Explicit support for version management is minimal or non-existent. Data

models only capture the static representation of the data and do not deal with

automating designer manipulation of the data. Applying these design models

to real-world manufacturing problems has found only limited success due to the

representational complexity involved.
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2.3 Version Management

As a design evolves over time, many revisions, variants, or alternates of the

design may be created. Version management tracks these di�erences and ensures

that related versions of the design model are kept consistent. While version man-

agement has been successfully utilized in some engineering disciplines, especially

software engineering, there have been few mechanical design systems which support

comprehensive version management of design models.

Mechanical design models have certain characteristics which make version man-

agement more di�cult. Katz [31] identi�es the following characteristics of design

data which must be considered when developing a version management system:

� Design data is organized hierarchically.

� Design data evolves. Versions must be able to represent revised and alternative

designs for an object. Con�gurations of versions, representing a complete

design model, also evolve.

� There are multiple equivalent or corresponding representations of a design

object.

� Design object instances are derived from object classes and inherit attributes

and behavior from the parent class.

To support these characteristics, Katz proposes a conceptual versioning model

in which the following data primitives are used to describe the relations between

design objects:

� Component hierarchies are indicated by IS-A-PART-OF relations which form a

directed acyclic graph. Primitive objects form the leaves of the graph and all

other nodes are composite objects. This kind of relation is also referred to as

an aggregation.

� Version history is depicted by IS-DERIVED-FROM relations which show how one



32

version is derived from another. Alternatives are shown by multiple parallel

derivations of a single version. IS-A-KIND-OF relations describe instances of a

class of objects. Version history and instance relations are depicted graphically

as a tree.

� When component hierarchy and history or instance relationships are combined,

the result is a con�guration.

� Equivalent or corresponding objects with di�erent representations are linked

via IS-EQUIVALENT-TO relations or equivalences.

Katz also identi�es the following operations necessary for version management:

� Currency operations designate and locate the current version of an object or

con�guration. The current version is the basis for subsequent derivations or

equivalent representations.

� Change propagation involves automatically incorporating new versions into

con�gurations. Constraint propagation refers to the enforcement of equivalence

constraints by procedurally regenerating new versions (generating equivalent

views). If multiple design objects can have the same parent, propagating

changes throughout the design hierarchy can generate an exponential number

of propagation paths. Katz suggests that this ambiguity can be minimized by

having the designer restrict the propagation paths or by specifying constraints

that isolate the changes to a particular part of the design hierarchy.

� Dynamic con�gurations, in which the components in the con�guration are not

resolved until the aggregation relations are actually traversed, imply meth-

ods for describing valid versions to include in the con�guration. Dynamic

con�gurations are implemented with various version naming and organization

techniques.

� Workspaces support simultaneous access to design data. Managing the move-
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ment of objects between these workspaces allows designers to make changes to

an object without interfering with other designers. Workspaces are typically

organized as a master workspace with veri�ed design data and multiple indi-

vidual workspaces for individual designers. Additional workspaces may also

exist for integrating the changes of an entire group of designers.

This framework provided by Katz encompasses much of the existing work in

version management and data modeling for design. Katz presents a survey of ver-

sion management research and describes how this research �ts into his framework.

Additional variations and implementations of this framework are described in the

remainder of this section.

For software con�guration management, Zeller [66] presents the concept of ver-

sion sets grouped according to feature logics. A feature is a name and a value

associated with some element of a con�guration item (an example [name, value]

pair is [compiler, gcc]). Features may be assigned by the designer or may be

derived from the context in which the component is used. By making the delta

between two versions a feature, the latest complete version is derived from the

uni�cation of all the delta features for that component. Di�erent views can be

built from di�erent features associated with the component. System con�gurations

are created by taking the intersection of all relevant features of the components.

In [67], Zeller also discusses four version management models for software which

his version sets and feature logics support. The checkin/checkout repository model

consists of revisions stored in a repository. Designers checkout a component, make

changes, and check the component back into the repository. Revisions are repre-

sented by delta features describing the di�erences between versions. The composi-

tion model builds consistent con�gurations by selecting valid component versions

based on features. In the long transaction model, a subset of the original con�gura-

tion is copied to a private workspace. Changes made in the workspace are identi�ed

with a feature. When committed back to the original environment, the feature is

modi�ed appropriately. The change set model allows a change to be integrated
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into multiple related components based on selected features. Zeller focuses on

building consistent product con�gurations as sets. While he presents techniques

for composing systems and managing version histories, the set representation does

not directly support hierarchical aggregation or variational derivation relationships.

Plaice and Wadge [43] present another approach for organizing software versions

to implement various con�gurations of a design. In their work, globally unique

names and an ordered version derivation path identify the appropriate version of

a component for a con�guration. The proper version is identi�ed by matching

an extended name (similar to Zeller's features) or selecting the latest version on

a similar derivation path. This approach also supports the merging of multiple

con�gurations into one. Holsheimer [29] examines version ordering by decomposing

complex logical programming objects into partially ordered sets based on type re-

lations. This ordering facilitates mapping complex objects to a relational database.

Each type relation becomes a database relation linking objects according to their

object type hierarchy. Version ordering with this approach has been demonstrated

for single inheritance and non-variational object instances.

Schema evolution is a concern of any data model for version management.

Meyer [39] states that schema evolution occurs \if at least one class used by a

retrieving system di�ers from its counterpart in the storing system." This causes

object mismatches which occur when the schema (or class) for an object has been

modi�ed, but the data re
ects a di�erent schema. Object mismatches are detected

by registering a unique version name or storing a class descriptor with each version.

Correction for a removed attribute requires no action, but a new attribute requires

some sort of initialization.

Zhou et al. [68] present a far more comprehensive framework for schema evolution

in a real-time machine tool control application. Zhou identi�es schema change

taxonomy, schema change invariants, schema change rules, and schema change

semantics. The change taxonomy determines schema changes which are signi�cant

to the application being supported. Invariants identify those aspects of the schema

which must remain unchanged to guarantee database consistency. Examples include
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the class hierarchy and distinct object and variable names. Change rules outline

heuristics to follow to eliminate ambiguity in resolving schema changes. Speci�c

axioms for resolving the impact of changes on the remaining schema and the

underlying data are de�ned in the change semantics. Zhou has implemented objects

for timing constraints and performance polymorphism (di�erent implementations

carrying out the same task with di�erent performance measures), but has not yet

incorporated schema evolution into the real-time database.

In many instances, the version management system must be able to handle

data from di�erent applications. Krishnamurthy and Law [35] implement meta-

operators (insert, delete, and replace) which summarize all changes made to a

version during an editing session. A compress operation determines the equivalent

meta-operation for a sequence of design tool changes. The meta-operation is then

applied to the active version to integrate the changes into the version database.

The meta-operations are applicable to any data, regardless of the application or

view which created the data. These methods are implemented with a commercial

CAD system and demonstrated on a simple shaft assembly. Version representations

with meta-operators have not been used with alternate views or applications.

Much of the work in version management concentrates on software development.

While the problems are similar to that in mechanical design, most of the widely

used version management systems are based on textual objects. Textual objects

are compared word by word for di�erences between versions. This approach is not

appropriate for mechanical design, since such textual comparisons would fail to

capture the structure associated with design objects.

In addition to the con�guration, organization, schema evolution, and multiple

application problems discussed above, there are a number of other issues which

must be handled in a version management system. The granularity at which

objects are versioned must be determined, either by default or through designer

speci�cation. Change propagation can diverge into multiple paths; this must be

controlled algorithmically or through designer intervention. Solutions to these

issues often require designer interaction, another issue which must be addressed.
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Version management is a diverse area with many issues a�ecting design complexity

and evolution.

2.4 Product Data Management

Product data management (PDM) systems \integrate and manage processes,

applications, and information that de�ne products across multiple systems and

media [42]." PDM is a meta-tool, external to any particular CAD application

or model, that manages all information used to de�ne a product as well as the

processes used to develop those products. Although many PDM products are

available commercially, most literature in this area discusses theoretical concepts

associated with PDM rather than actual PDM implementations.

CIMdata, an international consulting �rm focused on PDM and related computer

integrated manufacturing (CIM) technologies, classi�es PDM capabilities into �ve

functional areas [40, 42]:

1. Data vault and document management provide secure storage and retrieval

of product de�nition information. Only authorized users may access data

and changes are released only after completing a prede�ned approval process.

Design data is managed as complete documents, images, or �les [4] and is

frequently stored in a relational database management system.

2. Work
ow and process management enables the PDM system to control and

manage the 
ow of data between people and applications in accordance with

an organization's prede�ned business processes. Newly completed or modi�ed

documents can be automatically routed and tracked throughout the organiza-

tion for approval and release.

3. Product structure management facilitates the creation and management of

product con�gurations. Users can link product de�nition data such as draw-

ings, documents, and process plans to parts and product structures. Unique

views of product information can be con�gured for di�erent design disciplines.

As con�gurations change over time, the PDM system can track versions and
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design variations.

4. Classi�cation functions provide e�cient mechanisms for indexing and retriev-

ing standard or similar components. These functions have been ignored by

most PDM vendors.

5. Project management provides work breakdown structures and allows resource

scheduling and project tracking. Resources are combined with managed data

to provide an additional level of planning and tracking. Project management

capabilities are not well supported in current PDM systems; instead, these

capabilities are typically provided by third-party project management tools in

which a limited number of links are established to the PDM data.

Bilgi�c and Rock expand the CIMdata capabilities to include impact analysis in

which the PDM system detects the e�ects of a potential design change to the overall

product design [4]. In addition to the functional capabilities, CIMdata also identi�es

utility functions that are provided by PDM systems for communicating between

applications and personnel, for transporting data among distributed locations, for

translating data between applications, for scanning and viewing images, and for

con�guring and monitoring the PDM system [42].

In his description of CIM Manager [62], Westfechtel provides a more detailed

look at some of the issues associated with product and process management for

engineering design applications. CIM Manager is conceptual PDM infrastructure

for which Westfechtel has implemented a limited prototype. CIM Manager, as well

as most other PDM systems, uses a course-grained management scheme in which

complete documents are managed. In doing so, it is not possible to manage the

individual components or parts that are embedded inside the documents. West-

fechtel claims, however, that CIM Manager provides a framework for embedding

domain speci�c tools that can operate on the �ne-grained level.

CIM Manager handles relationships between components in the same discipline

such as between design representations of components in an assembly. It also

handles relationships that cross disciplines such as those between geometric designs
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and manufacturing plans. CIM Manager controls versions of individual products as

well as versions of product con�gurations. To deal with these di�erent relationships

and versions, Westfechtel identi�es three types of consistency control which can be

tracked with CIM Manager:

1. Internal consistency requires that a design document is consistent with the

design language of the tool that created it.

2. External consistency means a dependent component or version is consistent

with respect to a master. An example of this dependency is a manufacturing

plan that is based on a speci�c geometric representation.

3. Con�guration consistency requires that a version is consistent with respect to

a con�guration of components of which it is a member; thus, the version must

be internally consistent and externally consistent with all related components

in the con�guration.

CIM Manager uses a product-centered process management paradigm in which

each component of a con�guration corresponds to a process that is used to produce

the component. Dependencies between components are mapped onto data 
ows

between component processes. CIM Manager supports concurrent engineering by

pre-releasing intermediate results to dependent processes as soon as possible.

Hamer and Lepoeter [58] describe a more general conceptual framework for man-

aging design data. Their framework is characterized by �ve orthogonal dimensions.

The version dimension represents new versions of a model which are modi�ca-

tions of other versions. The views dimension accommodates representations at

di�erent levels of detail. This may involve di�erent levels of abstraction such as

a conceptual view and a detailed view or it may involve di�erent disciplines such

as a manufacturing view or a functional view. The hierarchy dimension depicts

the decomposition of a design model into smaller parts. The status dimension

corresponds to organizational procedures used to maximize the likelihood that a

design is satisfactory. A di�erent status may require a di�erent workspace. Finally,



39

the variants dimension handles di�erent variations of the same basic product.

Hamer and Lepoeter claim these dimensions are quite simple when considered

independently, but, in reality, many dimensions must be handled simultaneously

resulting in many di�erent non-trivial solutions. This framework is 
awed, however,

in that it leaves out the interaction between components in an aggregate model.

Zanella and Gubian [64] also describe a generalized model of a design manager

which is \a set of functions which build, maintain, display, manage, and enforce

relationships among the data and among the design tools which are involved in a

project." The design manager controls the design software, supports the design

methodology, coordinates large sets of data, maintains design integrity, and reacts

to changes in the design environment. Zanella breaks the functions required of a de-

sign manager into two groups. Static functions help in establishing and representing

relationships among objects. Dynamic functions support design transformations

which involve any kind of changes in the relationships among objects. Zanella

identi�es a number of design management relationships which are similar to those

discussed by Katz (see Section 2.3) for aggregation, re�nement, and equivalences.

Zanella and Gubian emphasize the functions of a design manager, but provide only

high level conceptual requirements for the functions that should be performed.

While PDM systems are useful for controlling data and performing high level

product management tasks, they have many limitations. Design information such as

functionality or geometric constraints can not be associated with the relationships

between components. This means another tool must be used to document this

information and additional steps taken to integrate the results back into the PDM

model. Bilgi�c and Rock point out that \PDM systems do not have a formal

representation of the product that unambiguously describes its function. Most

of the valuable information about the products stays in the \documents" the PDM

system is managing. [4]" This separation of the detailed information from the

product structure adds complexity to the design model by requiring more links

and it adds considerable overhead to the design process.
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The document centered management approach of PDM systems restricts the

designer's ability to implement and analyze incremental changes to small parts of

a document. Instead, the designer must work with entire documents and manually

ensure that related parts of other documents are kept consistent. Miller states

that integration of PDM with other CAD applications continues to be a major

challenge for PDM users [40]. As a consequence, some application models can

not be completely incorporated into the meta-model, thus requiring additional

steps to keep these separate representations consistent. Bilgi�c and Rock identify

other limitations of PDM systems including the inability to analyze the impact

of proposed changes, the lack of capabilities to classify products by functionality,

the inability to reuse design knowledge, and the inadequate support of resource,

performance, and risk management [4].

Due to these limitations, PDM systems require considerable overhead to ef-

fectively integrate complex product designs and applications. This reduces the

utility of PDM systems for incremental design changes, rapid design development,

or small production runs. These limitations are re
ected in many organizational

implementations of PDM systems in which only the data vault and document

management capabilities are utilized [23, 32].

2.5 Summary and Analysis

Considerable research has been performed to support the design and evolution

of complex products. Feature-based design enables designers to manipulate stan-

dardized, reusable design abstractions rather than the individual points, curves,

and surfaces of an entity's geometry. Features can also encapsulate additional

design information such as functionality or manufacturing processes, although this

capability has not been e�ectively exploited. Features can support concurrent

design by representing design disciplines as di�erent views. Mapping between views,

however, is a di�cult problem and current approaches require manipulation of the

low level geometry, thus negating the bene�ts of the higher level feature abstraction.

A number of data models have been proposed for representing the hierarchical
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aggregations and constraints of complex designs. Di�erent models are proposed for

functional or conceptual designs and for detailed, manufacturable designs. Because

of the ambiguity associated with specifying functionality, the functional models

are only able to capture a portion of the design functionality. The more detailed

models have di�culty representing the detailed information associated with the

interaction between parts in an assembly. Specialized relationships such as Lee's

mating features facilitate speci�cation of kinematic and positioning constraints [38],

but provide no easy way to incorporate other functional or geometric information.

Embedding complexity relationships in conceptual and detailed design models fa-

cilitates analysis and change propagation; however, it is di�cult to develop a widely

applicable modeling representation.

Version management systems have been implemented to track and control mod-

i�cations to design components and some of these versioning systems support

alternative designs, multiple views, and di�erent con�gurations of a product de-

sign. Most version management systems, however, have only been implemented for

the management of program text associated with software design. Since product

structure is critical to manufacturing design, these systems are inadequate.

Product data management systems provide a comprehensive framework for man-

aging all documents, applications, and processes which contribute to a product

de�nition. PDM takes such a high-level approach, however, that the details of

the design are not visible. This reduces the e�ectiveness of PDM in analyzing the

design or implementing incremental changes. As a consequence, PDM systems are

largely used only as secure document repositories.



CHAPTER 3

CASE STUDIES IN COMPLEX DESIGN

The design of complex products can be greatly facilitated by automating many

design activities or assisting with certain design capabilities. Automation can

enhance the management of product complexity by supporting the representation

of product structure and functionality; by providing variable granularity, multi-

ple views, and di�erent abstractions of the product design; and by incorporating

fasteners and connectors and design constraints into the product representation.

Process activities which can bene�t from automation include, among others, design

decomposition, multidisciplinary analysis, simultaneous design, design reuse, con-

trolled evolution, change management, and change propagation. These capabilities

and activities are described in greater detail in Section 1.4.

This chapter presents case studies for the design of an automobile and a milling

machine which demonstrate the activities and capabilities identi�ed above. Portions

of these case studies appear as examples in this document to illustrate and explain

the capabilities of the automated framework introduced in this research. The case

studies are also used to analyze this research and compare the capabilities of other

design tools and research (see Chapter 7).

3.1 Simultaneous Design of a Formula
Automobile

Modern automobiles provide a comprehensive example of complex product de-

sign. A single automobile contains thousands of components allocated among

many di�erent sub-assemblies. Any particular car model may be available in

many di�erent con�gurations which are minor variations of the basic model. The

industry is highly competitive so auto makers are pressured to develop innovative
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features and new models in relatively short periods of time. There are many safety,

environmental, and budgetary constraints which further limit the design options.

Each year, as part of a national engineering competition sponsored by the Society

of Automotive Engineers (SAE), an undergraduate design class at the University

of Utah designs, builds, and races a prototype formula automobile. While not as

complex as a modern road vehicle, the design process and issues for this automobile

provide a microcosmic demonstration of the challenges for computer-aided design.

This case study uses the models and processes developed for the formula automo-

bile design class [14, 15, 57], but modi�es them slightly to emphasize the complexity

management capabilities identi�ed in this research. The general requirements

and constraints of the formula automobile, as described in an overview of the

project [57], are described below.

For the purpose of the competition, the students are to assume that

a manufacturing �rm has engaged them to produce a prototype car for

evaluation as a production item. The intended sales market is the non-

professional weekend autocross racer. Therefore, the car must have very

high performance in terms of its acceleration, braking, and handling

qualities. The car must be low in cost, easy to maintain, and reliable.

In addition, the car's marketability is enhanced by other factors such

as aesthetics, comfort, and the use of common parts. The manufacturing

�rm is planning to produce 1000 cars per year at a cost under 8500 dollars.

The challenge to the design team is to design and fabricate a prototype

car that best meets these goals and [constraints].

The primary restrictions on the design are the safety requirements and

the engine size and intake restrictor. There is a minimum wheelbase of

1520 millimeters (60 inches) and the cars must have a working suspension

with a minimum usable wheel travel of at least 50 millimeters (2 inches).

The cars must also have four wheel brakes capable of locking all four

wheels on dry asphalt at any speed. To ensure that the cars will not
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tip over during the performance events, the cars must not roll over when

subjected to a tilt test with the car tipped to an angle of 57 degrees

with the tallest driver in the car. Other safety requirements specify front

and rear roll hoops, side impact protection, driver restraint systems, and

driver safety equipment.

The engine may be any four-cycle piston engine with a displacement

of not more than 610 cubic centimeters. The fuels allowed are non-leaded

premium gasoline, non-leaded 100 octane racing gasoline, and M85, a 85

per cent methanol, 15 percent gasoline mixture. To limit the power of the

engine, a single 20 millimeter diameter restrictor must be placed between

the throttle and the engine for gasoline-fueled cars. For M85-fueled cars,

the restrictor is limited to an 18 millimeter diameter. Supercharging or

turbocharging is permitted provided that the restrictor is upstream from

the supercharger or turbocharger. Any type of transmission or drive train

may be used.

Due to the short time for development and the high complexity of the formula

automobile, multiple design sub-teams work simultaneously on di�erent portions of

the overall design. With this approach it is desirable that the design be decomposed

into sections that are largely independent of each other.

To improve understanding and to organize the project for simultaneous design,

the design team decomposes the formula automobile into smaller sections. The

team initially identi�es three major functional sub-systems: the body which makes

the automobile more aerodynamic and improves the appearance; the chassis which

provides support, rigidity, and other functionality; and the power train which

provides the power to move the car. The chassis and the power train are too

complex to allocate to a single sub-team, so the design team decomposes these

two sub-systems into smaller sub-assemblies as shown in Figure 3.1. The design

team allocates each of the sub-assemblies identi�ed in this �gure to a sub-team for

further design and analysis. To avoid duplication and to simplify presentation, this
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case study uses only the rear portion of the automobile which includes the rear

suspension, rear wheels, rear brakes, and the power train.

Each of the sub-systems in Figure 3.1 has some sort of functional, geometric,

or kinematic interaction with other sub-systems in the automobile. For example,

the rear suspension interacts with the brakes, the wheels, and the power train. To

avoid di�culties when integrating the individually designed sub-systems into the

complete product design, the design sub-teams need to coordinate on these areas

of interaction.

A considerable amount of design information is associated with the interactions

between sub-systems. As these interactions are agreed upon by various sub-teams,

it is often helpful to document the resulting descriptions to minimize later mis-

understandings. If during the course of designing the independent components,
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Transmission

WheelsBrakes
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Engine
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Figure 3.1. High-level decomposition of formula automobile
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a design sub-team �nds it impossible or too costly to conform to a previously

agreed upon interaction description, the sub-teams must work together to modify

the description.

The individual sub-teams proceed by decomposing the sub-systems for the rear

section of the automobile as shown in Figure 3.2. These sub-assemblies and parts

are explained in the following paragraphs.

The wheel transfers power from the power train to the road to move the car for-

ward. Wheel sizes are standardized to accommodate tires. The wheel is connected

to the hub with a standardized arrangement of bolts.

The rear suspension supports the weight of the car and provides stability to the

ride. The rear suspension contains support members and springs which provide

torsional stability and allow limited vertical motion to absorb road bumps; a hub
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Figure 3.2. Decomposition of rear section of chassis and power train
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to which the wheel and the drive shaft are connected; and a bearing carrier to

support the hub while allowing the hub to rotate. As shown in Figure 3.2, the

decomposition of the rear suspension also creates additional areas of interaction,

both within the rear suspension sub-assembly and between the components of the

rear suspension and other sub-assemblies, that the designers must coordinate to

ensure compatibility with other parts. The common areas of interaction with other

sub-assemblies now include the transfer of power, through the hub, from the drive

shaft to the wheel; the connection of the springs to the frame; and the support of

the brake adaptor with a bolted connection to the the bearing carrier.

The brake sub-assembly brings the entire car to a stop by halting the rotational

motion of the wheels. A signi�cant concern of the braking subsystem is dealing

with the considerable heat which is generated from the frictional forces. For the

disk brakes used in the formula automobile, the wheel is stopped with a caliper that

squeezes a rotor until the friction stops the rotor from rotating. In addition to the

rotor and the caliper, the brake sub-assembly contains a brake hat to which the rotor

is connected and an adaptor which supports the caliper. The brake sub-assembly

interacts with the rear suspension through a bolted connection between the brake

hat and the hub, and through a bolted connection between the adaptor and the

bearing carrier.

The power train generates power and transforms it into torque which is applied to

the drive shafts. The power train contains an engine, transmission, and drive shafts

that are purchased from other manufacturers. Their dimensions, requirements, and

performance speci�cations are integrated into the automobile design. The power

train also includes the �nal drive which transforms the power from the engine and

transmission into the desired torque to apply to the drive shafts. The drive shaft

is supported through its interaction with the rear suspension hub.

The design of each sub-system requires expertise in a number of di�erent areas to

include design functionality and ease of manufacture and assembly. By concurrently

analyzing and designing for these di�erent areas, design sub-teams can improve their

e�ciency.
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As shown in Figures 3.1 and 3.2, di�erent sub-systems can be decomposed at

di�erent levels of detail. Also, since each sub-team proceeds at a di�erent rate, the

sub-teams must be able to simultaneously work at di�erent levels of detail [12].

The University of Utah enters the design competition each year with a completely

di�erent set of students. Students are better able to reuse or adapt components

from previous versions of the automobile if they are able to understand the rationale

and history that led to the previous designs and if they can easily recover these old

designs and modify them as necessary.

3.2 Incremental Design of a Milling
Machine

Because of the amount of rework which results from design changes made late

in the design process, errors caught early in the design process are generally easier

and less costly to correct. An incremental design process, if properly implemented

and supported, would increase the chance of early error detection by performing

multidisciplinary analysis over small increments rather than after complete design

phases as in traditional waterfall models. Small increments reduce the complexity

of design analysis, yet they allow the designer to consider the entire model during

this analysis to ensure compatibility and completeness. Trying di�erent alternatives

is less costly since the designer can control the level of detail in each alternative.

Figure 3.3 presents a pseudo-algorithm for the incremental design process used in

this case study.

A milling machine creates a manufactured part by cutting away excess material

from a standardized piece of stock. Milling machines are highly complex with

thousands of complex parts and precise operating constraints. Speed, accuracy, and

cutting tool access are critical requirements of the milling operations. Although

many milling machines already exist, this case study explores alternatives of a

particularly complex sub-assembly of the milling machine, the spindle cartridge,

for innovations which could increase performance. The design is real; however,

the innovative design scenario is simulated to emphasize exploratory aspects of the

design process which are well suited to incremental design.
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1. Specify external interactions and constraints

2. Decompose into sub-assemblies or components

3. Specify internal interactions and constraints

4. Design sub-assemblies or components

5. Analyze

6. If satisfied, then quit

7. Otherwise, refine in one of the following ways:

7.1. Modify at same abstraction level

7.1.1.Modify existing sub-assemblies, components, or interac-

tion constraints

7.1.2.Go to 5

7.2. Add at same abstraction level

7.2.1.Add additional sub-assemblies or components

7.2.2.Go to 3

7.3. Decompose at lower level of abstraction

7.3.1.Map internal interaction constraints to external inter-

action constraints, as necessary

7.3.2.Go to 2

Figure 3.3. Incremental Design Process

The design team initially divides the milling machine into six sub-assemblies as

shown in Figure 3.4: a spindle head for mounting and spinning the cutting tools,

a drive for moving the spindle head in a vertical direction, a column for mounting

the vertical drive, a table for mounting the work piece, an X-Y drive for moving

the workpiece horizontally, and a bed upon which the column and the X-Y drive

are mounted [56]. As shown in Figure 3.5, the spindle head is further decomposed

into a spindle cartridge which holds and rotates the cutting tool, a spindle drive

which provides the power to spin the spindle cartridge, and a head casting upon

which the cartridge is mounted. In this case study, the incremental design process

in Figure 3.3 is used to explore innovative designs for the spindle cartridge .

As the �rst step in the incremental design process, the designer identi�es the op-

erating environment for the spindle cartridge and speci�es the external constraints

imposed on the cartridge. These constraints include the size of the tools, the

required milling accuracy, and the desired cutting speed. Although not part of the
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spindle cartridge, the tool holder is a standardized part that further constrains

the design of the spindle cartridge. The tool holder holds cutting tools that

interact with the part being milled, thereby exerting forces on the spindle cartridge

sub-assembly. These forces, along with the interaction of the spindle cartridge with

the head casting and the spindle drive, must all be considered in the design of

the spindle cartridge. To accommodate these external constraints, the design team

speci�es the interaction of the spindle cartridge with the tool holder, the head

casting, and the spindle drive.

After the external constraints are speci�ed, the design team determines the

major functions or concepts in the cartridge design and converts these concepts

into the initial design components. The spindle cartridge is decomposed into three

major functional components: a spindle which rotates at a high rate of speed, a

housing to provide a stable mounting for the spindle, and a draw bar for mounting

the tool holder. As the design team decomposes the spindle cartridge they also

identify interactions between the spindle, the housing, and the draw bar.

The design team continues the incremental design process with the high level

design of the major components within the spindle cartridge sub-assembly. Because

of the innovative nature of the design, the design team needs to create di�er-

ent variants of the design and analyze each variant with respect to functionality,

manufacturability, and ease of assembly. Each variant is subject to the same

interaction constraints as the original design. When the initial high-level design

increment is completed, the designers need to analyze the design for conformance

with constraints and to determine how to proceed with the next increment.

The design team has a number of options for re�ning the design. If analysis

reveals discrepancies in the design, the designers could correct these by modifying

parameters or constraints. Alternatively, the design team could add additional

components, at the same level of detail, to satisfy missing functionality. Once a

satisfactory design is obtained at one level of detail, the design team could further

decompose the design by adding additional detail and constraints.

At any detail level, di�erent design teams may need to simultaneously design



52

independent design components or sub-assemblies. Design teams should modify

and re-use existing design components where possible.



CHAPTER 4

AGGREGATION

To manage the vast amounts of information in a complex product design, de-

signers must be able to organize the design information into smaller subsets. This

organization usually results in a hierarchical structure with relations identifying

entities that are part of a higher level composite entity [31]. This research uses the

concept of an aggregation to represent composite design entities and their relations

with entities at di�erent levels of the model hierarchy. Aggregation is essential for

organizing complex design data into a comprehensible product structure.

Because of its importance in organizing complex design models, aggregation is

supported to varying degrees in many existing CAD tools. Gui and M�antyl�a's

multigraph [27] provides a conceptual model of the design hierarchy which empha-

sizes the functionality of the design components. Product data management (PDM)

systems [4, 40, 42] focus on the structure of the design model with hierarchical links

between major design documents. In the multigraph and PDM representations,

detailed manufacturing information is modeled separately and then linked into

the hierarchical aggregation structure. Other aggregation models [18, 38] embed

detailed manufacturing information directly into the hierarchical structure, but

restrict the designer's ability to independently manipulate the aggregation models

at di�erent levels of abstraction.

4.1 Role in Complexity Management

A complex product design is comprised of many di�erent components represent-

ing di�erent views of the design at multiple levels of detail. To form a working

product design low level features and geometry objects are linked together to form

manufacturable parts. These parts work together to form a functional assembly.
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Multiple assemblies may work together in a complete product. Aggregation is the

mechanism for structuring these components into recognizable parts or assemblies.

From a top-down perspective, designers initially lay out the design at a high level

with a limited number of components. The high-level design could be a conceptual

design with functional descriptions and no geometry or it could be an initial design

layout with rough geometry such as cylinders and boxes. By analyzing simple

conceptual models, designers can narrow down the set of possible design solutions

without expending considerable resources. As additional detail is de�ned, designers

decompose components from the high-level layout into multiple sub-components.

Although top-down decomposition may provide a reasonable framework for or-

ganizing a design model, it does not necessarily re
ect the way a design evolves.

This research uses aggregation to increase the 
exibility for organizing design

data into multiple levels of abstraction and at di�erent levels of granularity in

a form that is useful to a design team's process. Individual design components

can be independently analyzed and re�ned while still belonging to a higher-level

aggregation.

This research also uses aggregation as a mechanism for controlling changes to a

design model. By implementing an aggregation as an independent design module

which encapsulates low-level design information, other design entities have a limited

view of the design data within the aggregation. The aggregation forms a boundary

which gives the designer control over how external changes a�ect the aggregation

and how internal changes to the aggregation are propagated to other design entities.

This modularity facilitates change management by providing a well de�ned entity

to control as well as an entity with which to associate design rationale and history.

The designer can restrict changes to stay within the boundaries of the aggregation

which facilitates simultaneous development of di�erent aggregations by di�erent

design teams and enables reuse of these aggregations in other product designs.

Representation of assembly aggregations, in particular, is important for ex-

tending modeling capabilities beyond the speci�cation of low-level geometry and

manufacturing features. The assembly aggregation provides the necessary frame-
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work for laying out a design model at conceptual, functional, and detailed levels

of abstraction. Because product functionality is realized by the interaction of

di�erent components rather than by individual components alone, Sodhi and Turner

suggest that an assembly-modeling framework is the key for a design environment

that can capture and maintain functional intent [51]. Shah and M�antyl�a describe

additional bene�ts of assembly modeling to include interference detection between

parts, motion simulation, constraint satisfaction, assemblability evaluation, and

assembly manufacturing planning [49].

4.2 Underlying Concepts and Terminology

Some standard terminology is used repeatedly throughout this document to

refer to particular implementation concepts or structures. Although minor in their

support of the thesis explored in this research, these concepts are necessary for

understanding some of the larger, more signi�cant concepts and structures.

4.2.1 Design Objects and Constructors

A design object refers to any design modeling entity which can be created

and manipulated within the modeling environment. This includes, among others,

curves, surfaces and other geometric entities, features, mathematical models or

constraint entities, composite structures, or textual and numeric entities. The term

\design object," however, does not imply a classi�cation or inheritance structure as

it does in object-oriented software design, although, if supported by the modeling

environment, objects with inheritance and classi�cation would also �t the de�nition

for \design objects."

The modeling command which creates a design object is called a constructor.

The examples in this research use the text based design speci�cation language of

Alpha 1, however, menu and pointer commands from a graphical user interface are

equally applicable as constructors if they result in the creation of a design object.
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4.2.2 Positioning Constraints

Positioning of related design objects within a complex product design model

is essential for visualizing and analyzing the design. In this research, positioning

constraints are speci�ed with user de�ned anchors which describe a local coordinate

system in Alpha 1. Each object to be positioned must have a positioning anchor

associated with it. Many design objects in Alpha 1 include positioning anchors in

their de�nition. This research also allows other design objects to be associated

with a positioning anchor by wrapping these objects within a design object which

provides an anchor. To position an object, the designer speci�es the desired position

with another positioning anchor, and the object is aligned with this anchor using

existing routines from Alpha 1.

This mechanism is used to automatically align features, parts, and sub-assemblies

when part or assembly aggregations are created. A change in one positioning

constraint will be automatically propagated throughout the entire aggregation. For

example, if the positioning constraint for a hole feature is changed, this will cause

the hole to be relocated along with any component linked to the hole. If a shaft has

been inserted into the hole, the shaft will be relocated, as will any other components

linked to the shaft.

4.3 Aggregation Relationships

Although design data is hierarchical, there are two types of relationships neces-

sary to de�ne an aggregation { hierarchical parent-child relationships and a peer-

to-peer relationships which de�nes how components at the same level interact with

each other. These relationships are implemented in this research as attachments

and interface speci�cation objects, respectively.

The hierarchical relationships in an aggregation are represented with attachment

relations which link a child component to its parent (Figure 4.1). Since the primary

representation of mechanical design data is geometric, the attachment relation

includes location information for positioning the child component relative to its

parent.
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Peer-to-peer relationships are de�ned at the assembly level between interacting

parts or sub-assemblies. Designers specify peer-to-peer relationships in interface

speci�cation objects which link two parts and provide positioning and kinematic

constraints along with other relevant design information as described in Chapter 5.

In many design tools, information associated with the relationships between

components is embedded into the linked components. In this research, however,

the attachment and interface speci�cation object are independent design objects

which the designer can manipulate independent of the entities which are linked by

these relationships. The designer can use the attachment and interface speci�cation

relationships to manipulate the model structure or con�guration without modifying

the actual design entities. With this independence, designers can re-use pre-existing

component designs and integrate them into a new design model without having to

modify the original component.

4.4 Aggregation Objects

An aggregation object is a single entity, representing a portion of the hierarchical

model graph, that encapsulates detailed information into a single module while

separating this information from other parts of the model. This research de�nes

three types of aggregation objects for grouping mechanical design information {

neighborhoods, parts, and assemblies.

Attachment

location

Parent

Child

Figure 4.1. The parent-child relation depicted by an attachment
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The content of an aggregation can vary widely with only a limited amount of

required information for each type of aggregation object. This gives the designer

considerable 
exibility while still providing su�cient information to diagram, con-

strain, or analyze the design.

Designers may modify and recon�gure an aggregation to contain di�erent com-

ponents for di�erent levels of abstraction or for di�erent views. For example,

the functional abstraction of the formula automobile con�gures brake parts into

a single aggregation, while another abstraction with rigid sub-assemblies divides

the brake parts into two separate aggregations along with other components from

the rear suspension and the wheel. Designers can include an object in more than

one aggregation by separately de�ning the object and inserting a copy into the

appropriate aggregations.

4.4.1 Neighborhood

A neighborhood is a generic aggregation for isolating and modularizing any group

of objects in the design model. No explicit relationship is required among members

of a neighborhood { the designer simply needs to identify those design objects which

should be in a particular neighborhood.

A neighborhood is useful for encapsulating low-level geometric entities or pa-

rameters or as a temporary place holder during early stages of the design when the

relationships between design entities are not yet well speci�ed. A neighborhood is

the least structured of the three aggregations and is generally applicable in all situ-

ations where the more structured part or assembly aggregations are inappropriate

or where insu�cient information is available to describe the relationships required

in the part and assembly aggregations.

A neighborhood may be nested within another neighborhood to form a hierar-

chical structure with increasingly more detail at the lower levels. When used in

this fashion, however, there are no explicit links, such as attachments, to describe

the relationships between the two levels.

In the formula automobile, neighborhoods are used by the designers to represent

the low level parameters, points, lines, and circles, from which complex curves and
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surfaces are derived. Figure 4.2 shows the Alpha 1 design speci�cation language

description of a neighborhood that encapsulates the geometry of the heat slots in

the automobile's brake rotor. In this example, the neighborhood is identi�ed with

the seq constructor which incorporates all the design objects within the brackets

into a single neighborhood.

Once an object is identi�ed as a member of a neighborhood, access to that

design object, from outside of the neighborhood, is restricted. Reference to the

neighborhood object itself provides access to the last object identi�ed in the neigh-

borhood or a collection of all objects in the neighborhood, as selected by the

designer. In Figure 4.2, the actual heat slot surface, Slots, is the last object

in the sequence and is directly accessible by referencing the neighborhood vari-

able, HeatSlots. The complex surface for the heat slots is shown in Figure 4.3.

By assigning neighborhood objects with the \:*" operator, designers can also

make objects within the neighborhood accessible on an individual basis by indirect

reference through the neighborhood object. For example, the object associated

with SlotCir1 is accessible from outside of the HeatSlot neighborhood through the

constructor HeatSlots::SlotCir1. This constructor creates a copy of the SlotCir1

object so that any modi�cations will not a�ect the design object embedded in the

neighborhood. Objects within the neighborhood may not be modi�ed from outside

of the neighborhood.

The neighborhood aggregation structure for the heat slot surfaces is shown in

Figure 4.4. Although this structure shows a hierarchical relation among the design

components, these relationships simply illustrate the dependencies of the object

constructors. In an Alpha 1 design model, any design object which uses another

design object in its construction establishes a precedence relationship in which the

new object becomes dependent on the previous object. No other information is

associated with these relationships. The neighborhood structure could just as well

be a group of objects with no dependencies between them. This is often the case

when a neighborhood is used to encapsulate a set of numerical parameters.
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HeatSlots : seqf

"Slots";

CirDia : ( Rotor_Hat_Intfc::BoltCirDia +

RotorParms::SlotCirOffset );

CtrPt : pt( 0.0, -RotorParms::SlotCtrRad );

CtrCir : circleCtrRad( CtrPt, RotorParms::SlotCtrRad );

ConstLine1 : linePtAngle( CtrPt, 35.0 );

Point1 : ptIntersectCircleLine( CtrCir, ConstLine1, false );

Cir1 :* circleCtrRad( origin, RotorParms::SlotWidth/2.0 );

Cir2 :* circleCtrRad( Point1, RotorParms::SlotWidth/2.0 );

Cir3 :* circleRadTan2Circles( RotorParms::SlotCtrRad +

RotorParms::SlotWidth/2.0,

cir1, cir2,

true, true, true );

Cir4 :* circleRadTan2Circles( RotorParms::SlotCtrRad -

RotorParms::SlotWidth/2.0,

cir1, cir2,

false, false, true );

SlotCrv : outlineCrv( array( Cir1, Cir3, Cir2,

CircCCw( Cir4 )),

false );

Slot : profileSide( SlotCrv, "inside",

RotorParms::Thick + 0.1, 0.0, 0.0, 0.0 );

Anchor1 : rotateAnchor( Prims::Anchor1, 0.0, 0.0,

-RotorParms::SlotFrstAng );

SlotPattern1 : RadialPattern( Anchor1, Slot,

RotorParms::SlotNum,

(RotorParms::SlotFrstAng+90.0)/

RotorParms::SlotNum, CirDia );

SlotPatternAnchor2 : rotateAnchor( Anchor1,

0.0, 0.0, 90.0 );

SlotPattern2 : RadialPattern( Anchor2,

Slot,

RotorParms::SlotNum,

(RotorParms::SlotFrstAng+90.0)/

RotorParms::SlotNum,

CirDia );

Slots : entity( mergeShell( SlotPattern1,

SlotPattern2 ) );

g;

Figure 4.2. Speci�cation of the heat slot surface



61

Figure 4.3. Heat slot surface
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Figure 4.4. Structure of the heat slot neighborhood

4.4.2 Part

A part aggregation consolidates related design components which represent a

single part. Part aggregations examine the attachment relationships between de-

sign objects to determine the hierarchical structure of the part and to position

and validate the components of the part in accordance with speci�ed attachment

relationships.

An intent of the aggregation structure is to enable the designer to start out with

a conceptual abstraction of a part and evolve this concept into a detailed part design
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by attaching additional features and geometry objects. Thus, in order to specify a

part aggregation, one design object with a positioning anchor is designated as the

base component. Then, additional components can be incorporated into the part

aggregation with attachment relationships.

The part aggregation is used in the formula automobile design model to represent

all distinct parts. The brake rotor speci�ed in Figure 4.5 is an example of one of

these parts. Designers specify the part aggregation with the partSeq constructor

which extends the neighborhood sequence to incorporate all design objects linked

with partof attachments into a part object. The part object positions all attached

components with respect to a selected base component and organizes the aligned

components into a hierarchical structure. The part object is the accessible result

of the partSeq constructor. The geometric representation of the brake rotor part

object is shown in Figure 4.6.

The brake rotor part in Figure 4.5 consists of manufacturing features which

indicate sections of the machining stock which must be cut away to form the �nal

part. The Stock entity is identi�ed as the base object by its position as the �rst

object designated as a parent in a partof attachment. The designer organizes the

part model by nesting the manufacturing details into neighborhood aggregations

for each of the major features, IDCut, OuterCut, CutOutPattern, and BoltHoles,

and attaching these features directly to the Stock. Since heat dissipation is a key

functional characteristic of the brake rotor, the designer speci�es the HeatSlots as

a nested part aggregation which is further decomposed into four patterns that are

attached to the HeatSlot to form an intermediate level of detail. This abstraction

facilitates exploration of the heat dissipation capabilities of the brake rotor by

allowing the designer to independently manipulate and analyze the heat slots. The

structure of the brake rotor part is depicted in Figure 4.7. All objects that are

attached to the Stock, either directly or through intermediate objects, are aligned

and incorporated into the brake rotor part object.

To specify constraints or design goals, designers can embed additional design ob-

jects into the part aggregation without direct links into the attachment hierarchy. In
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BrakeRotor : partSeqf

"Detailed design of the Rear Brake Rotor Model";

Prims seqf
. . .

g
Stock seqf

. . .

g
IDCut seqf

. . .

g
atch1 : partof( Stock, Prims::Anchor1, IDCut );

OuterCut seqf
. . .

g
atch2 : partof( Stock, Prims::Anchor1, OuterCut );

HeatSlots : partSeqf

"Heat Slots";

SlotPattern1;

atch1 : partof( OuterCut, Prims::Anchor1, SlotPattern1 );

SlotPattern2;

atch2 : partof( OuterCut, Prims::Anchor2, SlotPattern2 );

SlotPattern3;

atch3 : partof( OuterCut, Prims::Anchor3, SlotPattern3 );

SlotPattern4;

atch4 : partof( OuterCut, Prims::Anchor4, SlotPattern4 );

g

CutOutPattern seqf
. . .

g
atch4 : partof( Stock, Prims::Anchor1, CutOutPattern );

BoltHoles : Rotor_Hat_Intfc.pos_entity;

atch5 : partof( stock, Prims::Anchor5, BoltHoles );

g;

Figure 4.5. Speci�cation of the brake rotor part
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Figure 4.6. Brake rotor part
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Figure 4.7. Structure of the brake rotor part aggregation
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the brake rotor part, the designer nests dimensional parameters, low-level geometric

entities such as lines and circles, and other constraints in the Prims neighborhood

aggregation. None of these objects is linked into the the brake rotor part with

an attachment relationship, however, by inclusion in the part speci�cation, these

entities become part of the part aggregation. The designers mark each key entity

within the Prims aggregation for access by other components in the brake rotor

part aggregation.

4.4.3 Assembly

The assembly aggregation serves to organize interacting parts or sub-assemblies

into a single mechanical assembly. Assembly aggregations examine the interface

speci�cation relationships between parts to align the parts and to validate the parts

in accordance with the interface constraints. In this research, the structure and

methods provided by the assembly aggregation support high level design layout,

grouping and positioning of low-level parts, and multiple assembly con�gurations

so that di�erent types of analysis can be performed.

A minimal assembly aggregation contains two parts or sub-assemblies and an

interface speci�cation between them. To incorporate additional parts or sub-

assemblies into the assembly aggregation, designers must create interface speci-

�cation objects to link new components with another part in the assembly.

The formula automobile assembly is comprised of a number of sub-assemblies

and parts as shown in Figure 4.8. As shown in this example, an assembly aggrega-

tion is speci�ed with the constructor assemblySeq which extends the neighborhood

sequence to incorporate design objects linked with interface speci�cations into an

assembly object. An assembly object positions all interacting parts with respect

to a selected base part and organizes the aligned parts into a list structure. The

assembly object is the accessible result of the assemblySeq constructor.

Designers can use the assembly object for automated analysis of the kinematics

and forces associated with the interfaces in the assembly. To analyze the forces

acting on the formula automobile assembly, the designer invokes the command:
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RearLayout : assemblySeqf

"Layout of rear section of formula automobile";

Chassis : assemblySeqf

"Rear section of chassis";

Frame;

Wheel;

RearSuspension : assemblySeqf
BearingCarrier;

Hub;

Carrier_Hub_Intfc;

g
Brake : assemblySeqf

Hat;

Rotor;

Caliper;

Adaptor;

Hat_Rotor_Intfc;

Rotor_Caliper_Intfc;

Caliper_Adaptor_Intfc;

g

Frame_RearSuspension_Intfc;

RearSuspension_Wheel_Intfc;

Brake_RearSuspension_Intfc;

g

PowerTrain : assemblySeqf
DriveShaft;

FinalDrive;

Transmission;

Engine;

DriveShaft_FinalDrive_Intfc;

FinalDrive_Transmission_Intfc;

Transmission_Engine_Intfc;

g

Chassis_PowerTrain_Intfc;

g;

Figure 4.8. Assembly speci�cation for rear layout of formula automobile
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validateForces( FormulaSAE )

which examines the forces attached to the assembly aggregation and validates these

forces against the speci�ed interface constraints. Positioning of assembly compo-

nents is automatically validated by the constructor as the assembly is updated. The

designer can manipulate component positions to perform kinematic analysis of the

assembly.

By not restricting the types of objects that can be linked into an assembly,

designers can use generic entities with little design information at the conceptual

level and detailed sub-assemblies or parts at more detailed levels. In the formula

automobile example shown in Figure 4.8, the Hat, Rotor, Wheel, or other parts in

any of the sub-assemblies can be speci�ed independent of the assembly aggregation.

These objects may represent a high-level conceptual decomposition as shown in

Figure 4.9 or detailed information and geometry as depicted in Figure 4.10. If no

existing de�nition of an object exists, the designer can choose to have a high-level

placeholder object automatically created.

RearSuspension Brake

PowerTrain

Wheel

Figure 4.9. Conceptual decomposition of rear layout

Final DriveXXz

Drive Shaft
�
�
��

Hub
@
@R

Bearing Carrier���:

Rotor���9

HatXXy

Figure 4.10. Detailed representation of rear layout with Wheel omitted
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Like a neighborhood aggregation, the designer can embed additional design

objects, such as parameters or textual descriptions, into the assembly aggregation

without directly linking these objects to the assembly structure. This allows the

designer to specify high-level constraints for the assembly components or to describe

the purpose of the assembly as depicted in Figure 4.8.

The rear layout speci�ed in Figure 4.8 has two major sub-assemblies { the

power train and the chassis. To represent di�erent levels of detail or additional

sub-assemblies, the designer can nest assembly aggregations, such as those for the

frame, rear suspension, brake, and the wheel within another assembly aggregation.

The designer links each part or sub-assembly within the rear layout assembly to

other parts or sub-assemblies using interface speci�cation objects. The assembly

structure represented by the rear layout speci�cation is shown in Figure 4.11.

Observe that the entities and relationships in this diagram directly parallel the

independent conceptual decomposition of the rear layout depicted in Figure 3.2.
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CHAPTER 5

INTERACTION

The interactions among assembly components represent considerable complexity

and risk in a product design. Signi�cant information concerning design function-

ality, force transmission, the positioning and movement of parts, fasteners and

connectors, and other aspects of a design is concentrated and transmitted via the

interaction relationship. According to Sodhi and Turner [51], product functionality

is manifest in the relationships between assembly components since functionality

can not be completely implemented in individual parts. Other researchers empha-

size the importance of the interaction relationship for orienting and describing the

relative motion of assembly components [5, 16, 37, 49], while others utilize the

interaction relationship for transmission of forces [27] or the inclusion of fasteners

and connectors [1, 5, 46].

The interaction relationship combines multiple parts in a synergistic way such

that the resulting assembly is more complex and more representative of the design

than individual parts. Because of this synergistic e�ect, it is insu�cient to spec-

ify interaction information within the individual parts or through the hierarchy

relationships of an assembly as is done in many existing tools.

This research presents the interface speci�cation object for specifying and con-

trolling the interaction relationship between parts in an assembly. Coupled with the

aggregation capabilities discussed in Chapter 4, the interface speci�cation object

provides a controlled mechanism for communicating design information and con-

straints between related components, while isolating individual components from

the remainder of the model to facilitate independent development and analysis.



71

5.1 Role in Complexity Management

Specifying and controlling the interaction between parts in an independent de-

sign object provides considerable support for managing design complexity. The

advantages of such a mechanism include:

� Providing a means for representing design functionality. Functionality is gen-

erally manifested in multiple interacting parts and cannot be adequately rep-

resented in individual parts.

� Enabling interactive analysis and simulation of moving parts by incorporating

kinematic information into the interaction speci�cation.

� Facilitating assemblability analysis, analysis of forces, or other design analy-

ses by providing focal points in which to specify the appropriate interaction

constraints.

� Encapsulating details such as fasteners and connectors within the interaction

relationship, thus eliminating the need for separate speci�cation of these details

in each independent part.

� Controlling the evolution of the individual part or sub-assembly design and

reducing design incompatibilities by incorporating interaction constraints into

related parts or by ensuring the parts do not violate the interaction constraints.

� Minimizing design complexity and the e�ect of changes by localizing behavior

to either side of the interface speci�cation and controlling change propagation

across the interaction relationship.

� Modularizing the design with speci�cations which facilitate independent devel-

opment of components and integration of these components into the remainder

of the model.

� Facilitating design reuse of individual parts or sub-assemblies by separating

the interaction constraints from the part speci�cation.
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� Enabling the speci�cation of cross-disciplinary information such as that in-

volved in the interaction of electronic and mechanical sub-assemblies.

� Enhancing the representation of product structure by adding peer-to-peer links

between interacting parts.

� Providing a common location for specifying distances between interacting

parts. This might include dimensional tolerances or parameters for building

exploded views of an assembly.

5.2 Underlying Concepts and Terminology

The mechanisms presented in this chapter make use of specialized design ob-

jects for representing particular types of design information. The concepts and

terminology associated with these specialized objects are described here.

5.2.1 Features

Features encapsulate application speci�c design information into a reusable,

standardized component that is mappable to a generic shape. Di�erent features

may be used to represent the same portion of a design, with each set of features

capturing the design information that is relevant to a particular design discipline.

Similar to Shah and M�antyl�a [49], this research uses the term feature to mean

any design object with engineering signi�cance. This may be a particular geo-

metric shape, a previously de�ned feature in the design system, or an abstraction

representing the combination of a number of di�erent features or parts.

The Alpha 1 system already includes a signi�cant number of manufacturing

features. These features, when used in parts and interface speci�cations in the

design model, include manufacturing information from which numerical control

code can be generated for machining the part. Using the Alpha 1 development

environment, additional features may also be de�ned and incorporated into the

complexity management framework from this research.
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5.2.2 Joints

A key aspect of the interaction between parts in an assembly is the relative

motion between these parts. This research utilizes joints to capture the degrees

of freedom of motion and to enable the designer to interactively manipulate the

motion of the two parts. As de�ned in this research, a joint is similar to the mating

features used by other researchers (See Chapter 2); however, a joint extends the

capabilities of mating features by allowing interactive manipulation.

This research de�nes a generic joint for conceptually linking two parts or as-

semblies before interaction details are described. In addition, revolute, prismatic,

spherical, against, and rigid joint types are de�ned for constraining the allowable

motion of interacting parts. A revolute joint allows rotation around a single axis

and a prismatic joint allows translation in a single direction. A spherical joint allows

three rotational degrees of freedom around a point, and an against joint allows two

translational and one rotational degree of freedom on a surface. A rigid joint allows

no motion between the two parts. Alpha 1 also supports user-de�ned joint types in

which the designer speci�es the appropriate degrees of freedom.

The designer creates a joint by specifying the amount of rotational and transla-

tional movement for a particular joint type along with the current relative position

of the two linked parts. The parts may be moved interactively by modifying the

relative position in the joint. The joint object includes software methods, which

are automatically invoked when a joint is created or updated, to ensure invalid

movements and positions do not occur.

5.2.3 Connectors

Gui and M�antyl�a [27] introduce connectors to represent standardized components

such as springs and gears which transmit energy between components. Similarly,

this research de�nes bearing and screw connectors to represent and analyze the

transfer of forces between parts. Although the current implementation of con-

nectors supports only force transmission, this concept could be extended to other

disciplines, such as heat or electricity transfer, with the development of additional

connectors.
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The mechanical connectors presented here encapsulate fasteners such as bearings

and screws into a single design object. This design object also encapsulates appli-

cation parameters, geometry, and force analysis routines. The bearing connector

includes one or more bearings and spacers that are coaxially aligned immediately

adjacent to each other. Bearing life and rotational speed are application dependent

parameters that must be speci�ed by the designer. Using the screw connector, the

designer can describe patterns of one or more screws of the same size and type

along with application parameters for joint thickness and thread length.

Using automated routines embedded in the connectors, designers can analyze

simple point forces acting on an assembly. Similarly, the designer can invoke

constructor commands to automatically generate manufacturing features such as a

bearing bore or threaded hole that are compatible with the connector.

In this research, electronic catalogs are de�ned to facilitate the creation of

connectors containing standard bearings or screws. To select a standard com-

ponent, the designer need only specify a catalog number. The electronic catalog

then searches its database and retrieves the geometry, force capacity, and other

information for the selected component.

5.3 Interface Speci�cation Object

This research introduces the interface speci�cation object with which the designer

can capture all design information relevant to the interaction between parts. The

interface speci�cation object is composed of assembly features and positioning

constraints for the two interacting components and a joint describing the relative

motion between the assembly features. The designer can incorporate additional

information or levels of detail into the interface through an aggregation hierarchy

similar to that of the part object discussed in Section 4.4.2. The structure of the

interface speci�cation object is shown in Figure 5.1.

Assembly features describe compatible features on each of the two interacting

parts. Unlike other applications of assembly features, this research does not restrict

assembly features to any particular design capability such as design for assembly or
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Figure 5.1. The interaction relation depicted in an interface speci�cation object

functional design. Instead, any functional, manufacturing, or form feature, or any

geometric object available in the design system can serve as an assembly feature.

The designer can also represent assembly features as aggregations with multiple

levels of detail.

To ensure compatibility among interacting parts, the designer can incorporate

assembly features from an interface speci�cation object, that have been previously

de�ned to be compatible, into a component model via the aggregation mechanisms

of Chapter 4. When used in this way, any subsequent changes or additional detail

added to the assembly features will cause the change propagation mechanisms of

Alpha 1 to automatically regenerate the related parts to include the changes. If

the designer attempts a change which would lead to an invalid design model, the

automatic regeneration stops and the designer is noti�ed.

As additional detail is speci�ed for a model, the designer adds this information

to the interface speci�cation by using partof relationships to link the details to the

interface object aggregation hierarchy. While it is possible to incorporate any object

in the design system into the aggregation hierarchy, some specialized aggregations
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are particularly applicable to the interaction between parts in an assembly, such as:

� Nested interface speci�cations that can be used to re
ect the decomposition of

an interface into additional levels of detail.

� Connectors to support detailed force analysis across the interface and genera-

tion of manufacturing features such as threaded bolt holes .

� Applied forces or force constraints to provide the information necessary to

carry out preliminary and detailed force analysis.

� Additional constraints and analysis information including information for in-

terpretation by other tools.

The interface speci�cation object provides the capability to describe many as-

pects of the interaction between parts in an assembly. It also provides a convenient

mechanism for organizing and representing information used by other computa-

tional tools for analyzing the design model. The designer can maintain design

compatibility by incorporating interface assembly features into the design of new

part models or, when used with pre-de�ned part models, the designer can use the

interface speci�cation object to verify that the parts are compatible.

Interface speci�cation objects may evolve along with the remainder of the design

to represent functional concepts or detailed manufacturing information. Early in

the design, the designer may only be interested in linking two components in a

conceptual diagram. As the design evolves, the designer adds detailed information

to the interface object to specify motion constraints, force analysis constraints,

nested interfaces, fasteners and connectors, or other interaction information. Using

the interface speci�cation object and its associated aggregation relationships, the

designer can interactively move parts in an assembly, analyze and modify common

design parameters, and re-con�gure assemblies to represent multiple levels of detail.

The interface speci�cation is an independent design object which the designer can

manipulate to represent and control the complex relationships between interacting

parts in an assembly.
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5.4 Spindle Cartridge Sub-Assembly

To demonstrate the analysis and control capabilities supported through the

interface speci�cation object, this section presents a scenario for the incremental

design of the spindle cartridge sub-assembly from the milling machine case study

described in Section 3.2. The interactions between parts are essential to the

functionality of the spindle cartridge sub-assembly and, consequently, the designer

derives the individual components directly from these interactions. The innovative

nature of the spindle cartridge design, as depicted in this scenario, bene�ts from an

incremental design process in which the designer can carefully control and analyze

incremental changes to the design.

The spindle cartridge holds and rotates cutting tools during the milling of a

part. The spindle cartridge interacts with the spindle drive and the head casting to

form the spindle head sub-assembly of the milling machine as shown in Figure 3.5.

The spindle drive provides power to spin the spindle cartridge and the head casting

provides a base upon which the spindle cartridge is mounted.

In the �rst step of the incremental design process the designer identi�es the

operating environment and the external constraints imposed on the design. The

spindle cartridge design is constrained by the size of the tools, the required milling

accuracy, and the desired cutting speed. Although not part of the spindle cartridge,

the tool holder holds cutting tools that interact with the part being milled, thereby

exerting forces on the spindle cartridge sub-assembly. These forces, along with the

interaction of the spindle cartridge with the head casting and the spindle drive,

must all be considered in the design of the spindle cartridge.

To accommodate these external constraints, the designer uses the interface spec-

i�cation object to describe the interaction between the spindle cartridge and the

tool holder, head casting, and spindle drive. In this scenario, the designer initially

wants to analyze only the relative motion and forces acting on the spindle cartridge,

so these constraints are added to the interface speci�cation objects along with

assembly features identifying the high-level geometry and manufacturing features

associated with the interaction.
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As shown in Figure 5.2, which describes the interface between the tool holder

and the spindle, the designer uses an intfcSeq constructor to de�ne the inter-

face speci�cation object. The intfcSeq constructor is an extension of the partSeq

constructor that creates an aggregation containing a joint speci�cation and two

assembly features in addition to the information available in the part aggregation.

In the interface between the tool holder and the spindle the designer speci�es a

rigid joint and two assembly features, labeled toolholder and toolholder slot, to

accommodate the tool holder part. Using the intfcpos and intfcneg constructors,

the designer positions both the toolholder and toolholder slot features at the base

of the interface speci�cation. The designer links two externally applied forces,

axialForce and radialForce, into the interface speci�cation hierarchy by establishing

partof relationships with the joint.

toolholder_spindle_intfc : intfcSeq f

"The interface between the toolholder and the spindle";

"Joint allows no movement between toolholder and spindle";

joint : rigid();

"Select geometry from standard tool holder";

toolholder : toolholderTaper40;

toolholderSlot : reverseObj( toolholderTaper40 );

"Identify and position positive and negative features";

pos : intfcpos( baseAnchor, toolholder );

neg : intfcneg( baseAnchor, toolholderSlot );

"Attach forces acting on tool holder";

atch1 : partof( joint, baseAnchor, axialForce );

atch2 : partof( joint, XAnchor, radialForce );

g;

Figure 5.2. Interface speci�cation between tool holder and spindle
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In the second step of the incremental design process, the designer decomposes

the spindle cartridge into its major components: a spindle which rotates at a

high rate of speed, a housing to provide a stable mounting for the spindle, and

a draw bar for mounting the tool holder. The designer creates these components as

conceptual entities by including them in the spindle cartridge assembly aggregation

as shown in Figure 5.3. As the spindle cartridge is decomposed, the designer also

identi�es potential interactions between the spindle, the housing, and the draw bar.

These interactions are represented initially by interface speci�cation objects with

generic joints (ijoint) linking the conceptual entities (spindle, housing, and drawbar

identi�ed in the assembly. The designer describes design goals, such as desired

fatigue life and speed, by listing them as variables in the assembly aggregation.

In this scenario, part interactions are critical to the functionality of the spin-

dle cartridge sub-assembly, so the designer wants to ensure parts are compatible

with the interface speci�cation objects linking them. To facilitate the design of

spindleCartridge : assemblySeq f

"Performance parameters and goals";

FatigueLife :* 10000;

CuttingSpeed :* 4000;

"Components in spindle cartridge sub-assembly";

spindle;

housing;

drawbar;

"Interfaces between component in sub-assembly";

spindle_housing_Intfc :

intfc( ijoint(), baseAnchor, spindle, baseAnchor, housing );

spindle_drawbar_Intfc :

intfc( ijoint(), baseAnchor, spindle, baseAnchor, drawbar );

g;

Figure 5.3. Speci�cation of spindle cartridge sub-assembly
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compatible parts, the designer intends to build the interface speci�cation objects

and then derive part models from these speci�cations. Since the spindle is a shaft

which spins within the housing, the designer constructs an interface speci�cation

object containing a revolute joint with 360 degrees of rotation, a through-hole

feature, and a cylindrical shaft feature as depicted in Figure 5.4a. The geometry of

the spindle-housing interface, as shown in Figure 5.4b, represents the compatible

assembly features which are described in the interface speci�cation object.

To describe the interaction between the draw bar and the spindle, in which the

draw bar shaft moves in and out of the spindle like a piston, the designer creates

another interface speci�cation object. The spindle-drawbar interface speci�cation

includes a prismatic joint with limited movement allowed along the axis, a hole

feature, and a cylindrical shaft feature.

The designer proceeds with the incremental design process by describing the

high-level design of the major components within the spindle cartridge sub-assembly.

To model the spindle, the designer creates a part aggregation, as shown in Fig-

ure 5.5, into which he inserts the negative feature of the tool holder-spindle interface

(toolholder spindle intfc.negEntity) and the hole feature of the spindle-drawbar

interface (spindle drawbar intfc.negEntity). The designer attaches these two fea-

tures with partof relations to the shaft feature of the spindle-housing interface

(spindle housing intfc.posEntity). The part aggregation constructor automatically

aligns the attached parts and incorporates them into a part model for the spindle.

The designer creates the housing and drawbar parts in a similar fashion. By deriving

parts from the interface speci�cations as shown here, any changes the designer

makes to the interface speci�cation objects will be automatically re
ected in the

part model, thus maintaining compatibility between the interacting parts.

As the designer adds additional detail to the interface speci�cation objects

and part aggregations, Alpha 1 automatically propagates these changes to the

spindle cartridge sub-assembly speci�ed in Figure 5.3. The constructor function

for the assembly aggregation uses the spindle part as a base part and automatically

aligns the remaining parts according to their positions in the interface speci�cation
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spindle_housing_intfc :* intfcseq f

"Revolute joint with complete rotation";

joint : revolute( 360 );

"Shaft is a cylindrical surface of revolution";

shaft :* surfrev( profile( pt( shaft_radius, 0, shaft_height ),

pt( shaft_radius, 0, 0 ) ),

true );

"Hole is a mechanical hole feature";

hole :* entity( hole( offsetanchor(baseAnchor, 0.02, 0.02, 0.02),

shaft_radius * 2 + 0.3,

shaft_height,

0,

TRUE ) );

"Shaft is positive side of interface and hole is negative side";

pos :* intfcpos( baseAnchor, shaft );

neg :* intfcneg( baseAnchor, hole );

g;

(a) Interface speci�cation

hole
@@R

shaft
�
�
��

(b) Feature geometry

Figure 5.4. Initial interface speci�cation between spindle and housing parts
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spindle : partseq f

"The spindle is defined by the shaft side of the spindle-housing

interface, the hole side of the spindle-drawbar interface, and

the hole side of the toolholder-spindle interface.";

"Extract features from the appropriate interfaces";

shaft : spindle_housing_intfc.posEntity;

hole : spindle_drawbar_intfc.negEntity;

tool : toolholder_spindle_intfc.negEntity;

"The shaft feature is the main geometry of the spindle";

"The hole features are attached to the shaft";

atch1 : partof( shaft,

offsetAnchor( baseAnchor, 0, 0,

-spindle_toolholder_offset ),

tool,

"-" );

atch2 : partof( shaft,

offsetAnchor( baseAnchor, 0, 0,

spindle_drawbar_offset ),

hole, "-" );

g;

Figure 5.5. Spindle part speci�cation

objects. Figure 5.6 shows the resulting geometry of the initial spindle cartridge

sub-assembly.

Figure 5.7 shows the logical model structure for the assembly aggregation con-

taining the spindle and housing parts linked with the spindle-housing interface

speci�cation object. This diagram depicts each component as an aggregation with

attachments (atch), showing the hierarchical relationships. The hole and shaft fea-

tures de�ned in the spindle-housing interface speci�cation object are linked into the

housing and spindle parts with attachment relationships to re
ect the incorporation

of these interface features into the actual design model of the individual parts.

Now that the initial design increment of the spindle cartridge is complete, the
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Figure 5.6. Initial spindle cartridge sub-assembly
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Figure 5.7. Structure of spindle-housing assembly
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designer analyzes the design model to validate assumptions and constraints, to

evaluate the satisfaction of design goals, and to determine how to proceed with

the next design increment. With just a rough description of the part geometry

and the interfaces, the designer invokes automated mechanisms, which focus on the

aggregation and interaction relationships, to analyze the forces acting on the entire

assembly. The designer accomplishes this with the command:

validateForces(SpindleCartridge )

The assembly aggregation constructor automatically validates the position of in-

terface joints when the assembly is updated. The designer can manipulate joint

positions or key parameters upon which the joints are dependent to analyze the

kinematic behavior of the sub-assembly. If problems are discovered, the designer

can concentrate analysis on individual interface speci�cation objects to isolate the

problems. The designer re�nes constraints, parameters, and design components

as necessary, and Alpha 1 automatically regenerates component models, until all

problems are resolved.

When satis�ed with the results of the �rst design increment, the designer re-

�nes the design by adding additional detail. The bearings between the spindle

and the housing are key components in determining milling speed and fatigue

life. Using the lookupbearing command, the designer provides an identi�cation

number to automatically retrieve parametric models of bearings with the proper

dimension and estimated force capacity from an electronic catalog as shown in

Figure 5.8a. The bearingconn constructor in this �gure allows the designer to

create a bearing connector containing three bearings and a spacer along with

parameters specifying desired fatigue life and rotational speed. To facilitate the

modi�cation of existing aggregations, this research provides the merge command.

In Figure 5.8a, the designer uses this command to incorporate the connector into the

spindle-housing interface aggregation. Associated with the bearing connector are

additional constructors, bearingConnStep and bearingConnBore, which the designer

uses to generate manufacturing features, on both the shaft and the housing, to
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accommodate the bearing connector. Figure 5.8b shows the new assembly features

generated after adding the step feature to the shaft and the bore feature to the

housing. After the designer merges the bearing details into the spindle-housing

interface, Alpha 1 automatically regenerates the housing and spindle parts with the

appropriate bearing connection features and propagates all changes to the entire

spindle cartridge sub-assembly.

So that the bearings can be inserted during the assembly process and held in

place during operation, the designer decomposes the housing part into another

sub-assembly containing the main housing part and a detachable nose cap at the

end of the housing as shown in Figure 5.9. This assembly requires a new interface

between the nose cap and the housing. The designer determines that the nose

cap is to be held in place with screws, so the designer invokes a command to

retrieve the desired screw from an electronic catalog, then creates a screw connector

using a constructor which arranges six identical screws in a radial pattern. The

designer attaches the screw connector to the nosecap-housing interface using a

partof relationship, and builds assembly feature aggregations which include the

screw features. The designer constructs a new aggregation for the nosecap part in

which he attaches the assembly features of the nosecap-housing and spindle-housing

interfaces. The designer also attaches the nosecap-housing interface to the housing

part, causing Alpha 1 to automatically update the model of the housing part to

include the threaded hole features for the screw connector. After the individual

parts and interfaces are updated, Alpha 1 automatically regenerates the spindle

cartridge sub-assembly with the nosecap-housing interface and the new parts added.

The updated geometry is shown in Figure 5.10.

With the completion of another design increment, the designer now needs to

con�rm that the proper bearings and screws were used. Each connector has char-

acteristics, such as bearing life or screw grade, which determine the force limits

which the connector can withstand. The designer invokes automated force analysis

routines which calculate these limits and notify the designer if the applied forces

exceed the capabilities of the connectors.
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spindle_housing_intfc :* merge f
"Retrieve bearing from electronic catalog; Insert 3 bearings and

spacer into connector; specify fatigue life and speed goals in

connector; and attach connector to interface joint";

bearing : lookupbearing( "L13", bearingCat );

spacer : bearingSpacer( bearing, 14 * mmtoinch );

bearingconn : bearingconn(array(bearing, bearing,

spacer, bearingInvert(bearing)),

SpindleCartridge::FatigueLife,

SpindleCartridge::Speed);

bearingAnch : offsetanchor( baseAnchor, 0, 0, bearing_offset );

atch1 : partof( joint, bearingAnch, bearingconn, "+" );

"Generate step feature from bearing connector and attach step

feature to interface shaft. Make this the positive feature.";

shaft_part :* partSeq f
shaft : shaft;

shaftStep : bearingConnStep( bearingconn, step_length, 0 );

atch1 : partof( shaft, bearingAnch, shaftStep, "-" );

g
pos :* intfcpos( baseAnchor, shaft_part );

"Generate bore feature from bearing connector and attach bore

feature to interface hole. Make this the negative feature.";

hole_part :* partSeq f
housinghole : hole;

housingbore : bearingConnHole( bearingconn, bore_length, 0 );

atch1 : partof( housinghole, bearingAnch, housingbore, "+" );

g
neg :* intfcneg( baseAnchor, hole_part );

g;

(a) Interface speci�cation
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(b) Feature geometry

Figure 5.8. Details of the spindle-housing interface
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housingAssy : assemblySeq f

"Decompose the housing into an assembly";

housing;

nosecap;

nosecap_housing_intfc;

g;

Figure 5.9. Housing sub-assembly speci�cation
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Figure 5.10. Detailed spindle cartridge sub-assembly

At this point in the design process, the designer has encapsulated descriptions of

functionality and design rationale; design parameters, constraints, and goals; forces

and kinematic information; manufacturing features; and geometry into the interface

speci�cation objects of the spindle cartridge sub-assembly. From this information

the designer can invoke automated procedures, provided through this research

or existing capabilities in Alpha 1, to analyze the forces and kinematic behavior

of the sub-assembly, calculate geometric interference, or generate manufacturing

process plans. The designer can generate di�erent alternatives for the components

or interfaces and Alpha 1 automatically propagates these changes to the a�ected

parts and sub-assemblies. The designer has also decomposed the milling machine

design problem into small sub-assemblies which are more easily understood and

managed, and he has restricted the design of the spindle cartridge sub-assembly

through external interface speci�cations which ensure its compatibility with the
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remainder of the milling machine.

5.5 Formula Automobile Examples

The formula automobile case study, with its focus on simultaneous design and

higher-level sub-assemblies, demonstrates additional capabilities of the interface

speci�cation object. At higher levels, the automobile is decomposed into multiple

sub-assemblies, which are independently designed by separate sub-teams to satisfy

pre-de�ned speci�cations. At lower levels, design sub-teams develop complex new

designs or modify and re-use existing designs. Each independently designed sub-

assembly is eventually integrated into a higher level assembly until a completely

integrated product design is achieved.

5.5.1 Evolution of the Brake - Suspension Interface

A considerable portion of the design of a part or sub-assembly is determined

by its interaction with other components. The brake sub-assembly of the formula

automobile, for example, is largely de�ned by its interactions with the rear suspen-

sion sub-assembly. This is demonstrated in the speci�cation and evolution of the

interface between the brake and rear suspension sub-assemblies.

When the interaction relationship between the brake and the rear suspension

assemblies is �rst identi�ed, the details are not well-de�ned. At this point, the

design team de�nes an interface speci�cation object to serve as a structural link

between the two sub-assemblies. This link is generated with the constructor:

intfc( ijoint(), brakePosn, Brake, suspPosn, RearSuspension )

which creates a link between the two sub-assemblies that contains a generic joint

and allows the Brake and the RearSuspension to be positioned according to the

brakePosn and suspPosn anchors. Geometry and position information associated

with the interface at this point is useful for generating structural diagrams as shown

in Figure 5.11.

As the brake and rear suspension sub-assemblies are decomposed into their

separate components, the design sub-teams realize that the interface between the
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RearSuspension Brake

PowerTrain

Wheel

Figure 5.11. Diagram of rear layout components

two sub-assemblies must also be decomposed. One part of the brake sub-assembly

rotates with the hub and the wheel, while another part must be �xed to the rear

suspension to stop the rotation. In accordance with decomposition from Section 3.1,

the designers create additional interfaces between the brake adaptor and the bearing

carrier and between the brake hat and the hub. The designers incorporate these

additional interfaces into the interface between the brake and the rear suspension

using partof relations as shown in Figure 5.12. At the same time, the designers

identify some common dimensions, labeled as CalMountO�set and BrakeEarO�set

in Figure 5.12, which a�ect both of the sub-assemblies.

The interfaces between the brake and the rear suspension continue to evolve

as the designers add more detail to the interacting sub-assemblies. During this

evolution, the designers �rst describe the interaction information in the interface

speci�cation object and then they incorporate this information into the interacting

components. The interfaces between the brake and rear suspension sub-assemblies

demonstrate useful capabilities for representing and controlling design evolution

using the interface speci�cation object.

The interface between the brake adaptor and the bearing carrier consists primar-

ily of a rigid, bolted connection as shown in Figure 5.13. What makes this interface

speci�cation so useful, however, is the location and dimension parameters which

the designer includes in the interface speci�cation object. The designer uses these

parameters in the design of the brake adaptor and the bearing carrier to ensure the

two parts are compatible.

The brake hat and the wheel interact with the hub of the rear suspension
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Brake_RearSuspension_Intfc : intfcSeq f

"Include generic link information";

joint : ijoint();

pos : intfcPos( baseAnchor, Brake );

neg : intfcPos( baseAnchor, RearSuspension );

"Identify common dimensions";

CalMountOffset :* ( 37.5 );

BrakeEarOffset :* ( 40.0 );

AdaptorAnchor : offsetAnchor( baseAnchor,

CalMountOffset,

BrakeEarOffset,

0 );

"Decompose into interfaces between Adaptor and Bearing Carrier

and between Brake Hat and Hub";

Adaptor_BearingCarrier : intfc( ijoint(),

baseAnchor,

Adaptor,

baseAnchor,

BearingCarrier );

atch1 : partof( joint, AdaptorAnchor, Adaptor_BearingCarrier );

BrakeHat_Hub : intfc ( ijoint(),

baseAnchor,

BrakeHat,

baseAnchor,

BearingCarrier );

atch2 : partof( joint, baseAnchor, BrakeHat_Hub );

g;

Figure 5.12. Decomposition of interface between brake and rear suspension



91

Adaptor_Carrier_Intfc : intfcSeq f
"Location and Dimensional Parameters";

CalBoltSep :* ( 80.0 );

CalBoltOffsetY :* ( BrakeEarOffset - CalBoltSep );

CalBoltOffsetX :* ( CalMountOffset + 30.0 );

Offset1 :* ( 7.25 );

Offset2 :* ( 8.0 );

BrakeRotorThick :* ( 4.75 );

BrakePadThick :* ( 13.0 );

BrakePadAllow :* ( BrakePadThick + 0.5 );

BrakeCalFlangeRad :* ( 8.0 );

BrakeCalFlangeThk :* ( 8.0 );

BoltHoleDia :* ( 8.0 );

AdaptorThk :* ( 6.5 );

CarrierThk :* ( 10.0 );

"Interface joint and surfaces";

joint : rigid();

surf : capSurface(

profile( pt( CalMountOffset .... BrakeEarOffset ... ) ) );

"Retrieve screw from electronic catalog; build screw connector;

and attach connector to interface joint";

screw : lookupScrew( "11F", screwThreadTable,

"SOCKET", screwHeadTable,

2, screwGradeTable,

AdaptorThk + CarrierThk, AdaptorThk );

screws : screwrect( screw, AdaptorThk, 2, CalBoltSep, 1, 0 );

screwAnchor : offsetAnchor( baseAnchor, 0, 0, -AdaptorThk );

atch1 : partof( joint, screwAnchor, screws, "+" );

"Generate screw features and attach to interface surfaces";

adaptorPart : partSeq f
surf : entity( surf );

atch1 : partof( surf, screwAnchor, screws, "+" );

g
pos : intfcpos( baseAnchor, adaptorPart );

carrierPart : partSeq f
surf : entity( reverseObj( surf ) );

atch1 : partof( surf, screwAnchor, screws, "+" );

g
neg : intfcneg( baseAnchor, carrierPart );

g;

Figure 5.13. Interface between brake adaptor and bearing carrier
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sub-assembly through a rigid, bolted connection. Each of these three components

interacts with the others in a manner which appears to require three separate

interfaces, yet a single bolted connection is used to join all three parts. The

designers overcome this dilemma by deriving the interface between the brake hat

and the hub from the previously de�ned interface between the wheel and the hub

as shown in Figure 5.14. In this derivation, the designer creates a separate interface

between the brake hat and the hub by copying the hub-wheel interface. The only

thing the designer changes in the derived interface is the actual positioning of the

interface bolt connector. Consistency among the derived interfaces is maintained

through the change propagation mechanisms of Alpha 1.

5.5.2 Re-Use of the Wheels

In the formula automobile case study, the design team wants to re-use a previ-

ously designed model of the wheel assembly. In doing so, the design team must be

able to ensure compatibility with the remainder of the design. The designer uses

the interface speci�cation object between the hub and the wheel to help achieve

this compatibility. If the wheel is compatible with the interface speci�cation object,

"Derive the brakehat-hub interface from the hub-wheel interface";

BrakeHat_Hub_Intfc :* Hub_Wheel_Intfc;

BrakeHat_Hub_Intfc :* merge f

"Offset the interface to account for the thickness of the

brake hat";

BoltAnchor : offsetAnchor( baseAnchor, 0, 0, -HubThk - 2 * Ext );

atch1 : partof( joint,

BoltAnchor,

HubBoltHolePattern,

"+" );

g;

Figure 5.14. Derivation of interface between brake hat and hub
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than it should be compatible with the remainder of the model.

The designers integrate the wheel into the design model by transforming the

wheel model into the current design space, aligning it with the proper side of

the interface, and invoking automated mechanisms to check compatibility. In this

example, the wheel is designed in inches and is o�set from the origin. The local

design space requires metric dimensions and orientation aligned with the Z axis and

centered at the origin. The transformation to the local design space is accomplished

with the command:

Wheel : entity( objTransform( WheelOriginal,

array( tz( WheelOffset ),

sg( metricConv ) ) ) );

The designer aligns the wheel with the interface between the hub and the wheel by

incorporating the wheel into a part which has the negative feature of the interface

speci�cation object attached through a partof relationship:

WheelPart : part( Wheel,

partof( Wheel, Posn,

Hub_Wheel_Intfc.NegEntity ) );

Finally, to calculate geometric compatibility, the designer invokes a command to

check if there is any interference in the newly de�ned wheel part:

checkInterference( WheelPart );

Now the designer can control and manipulate the wheel part like any other com-

ponent in the assembly. Any changes the designer makes to the original wheel will

cause Alpha 1 to automatically re
ect the changes in the new wheel part; however,

after any change the designer will still need to recheck compatibility.

5.5.3 Kinematics of the Drive Shaft Interfaces

Although the assembly constructor automatically invokes kinematic analysis for

any interface containing a kinematic joint, this analysis has been di�cult to visualize

on previous examples because they involved revolute surfaces and revolute joints.

As a better visualization of kinematic analysis capabilities, this example analyzes
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the rear layout assembly of the formula automobile with respect to the vertical

travel of the wheel which might result from hitting a bump in the road. To simplify

the analysis, the rear suspension support members and springs are not included.

Instead, the designer focuses the analysis on the movement of the drive shaft which

interacts with the �nal drive as shown in the simpli�ed interface speci�cation of

Figure 5.15. In this interface the designer uses a spherical joint to allow limited

rotation around the X, Y , and Z axes according to the �rst three parameters of the

spherical constructor. The designer describes the rotational position about the X

axis, the fourth parameter of the constructor, in terms of wheel travel (WheelPosn)

which is an independent variable of the analysis. The positive and negative features

are points used by the designer simply to connect the interacting parts. The

designer speci�es the interaction between the drive shaft and the hub in a similar

way, and incorporates all of the sub-assemblies and interfaces of the rear layout

assembly into an assembly aggregation as shown in Figure 5.16. Upon creation,

the assembly constructor automatically analyzes the joint kinematics based on the

rotational positions about each axis. In this example, rotation about the X axis is

described in terms of wheel travel, while rotation about the Y and Z axes defaults to

the center of the allowable range of rotation. By varying the wheel travel parameter,

the designer can update the assembly, which causes the assembly constructor to

re-accomplish the kinematic analysis. If the wheel travel will result in an invalid

position for the spherical joints, the assembly is not re-constructed and the designer

is noti�ed. Figure 5.17 shows the resulting assembly at di�erent wheel positions.
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FinalDrive_Shaft_Intfc : intfcSeq

"Spherical joint";

joint : spherical( 15, 5, 2, atand( WheelPosn, ShaftLength ) );

"No surface details necessary for kinematic analysis";

pos : posIntfc( baseAnchor, pt( 0, 0, 0 ) );

neg : negIntfc( baseAnchor, pt( 0, 0, 0 ) );

;

Figure 5.15. Kinematic interface speci�cation between drive shaft and �nal drive
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rearLayout : assemblySeq f

"Rear layout of formula SAE automobile";

"This layout groups all components connected

through rigid interfaces into assemblies";

FinalDrive;

DriveShaft;

BearingCarrierAssy : assemblySeq f

BearingCarrier;

BrakeAdaptor;

Adaptor_Carrier_Intfc;

g;

WheelAssy : assemblySeq f

Rotor;

BrakeHat;

Hub;

Wheel;

Rotor_BrakeHat_Intfc;

BrakeHat_Hub_Intfc;

Hub_Wheel_Intfc;

g;

FinalDrive_Shaft_Intfc;

Hub_Shaft_Intfc;

Hub_Carrier_Intfc;

g;

Figure 5.16. Speci�cation of rear layout assembly
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(a) Wheel travel = 250mm (b) Wheel travel = 750mm

(c) Wheel travel = 1250mm

Invalid X position

(d) Wheel travel = 1750mm

Figure 5.17. Rear layout assembly at di�erent wheel positions



CHAPTER 6

VARIATION

Variation is an essential characteristic of any design process. As a design evolves

from conceptual ideas to detailed features and geometry, designers create di�erent

variations of the design with increasing amounts of detail. If new requirements

are imposed on the product, the design must be modi�ed to accommodate these

requirements. Designers often generate alternate variations of a design when ex-

ploring potential solutions to a design problem.

Most CAD environments provide little or no support for managing the many vari-

ations of a design model that may be created during the design process. Frequently,

the designer can only view the current version of a design with little information

about the process and decisions through which the design model came about. To

manage di�erent alternatives or old versions, the designer must save them under

di�erent names and track them independently from the actual design model. In

those systems that do provide support for managing design variations, the designer

has little control over the level of granularity at which design models are tracked

and controlled. Typically, it is inconvenient for a designer to manage anything

other than complete design models with these systems.

6.1 Role in Complexity Management

Any modi�cation to a design object represents a new variation of that design

object. Management of these variations, however, requires an acknowledgment of

the intent of the modi�cation. This research classi�es variations into two categories,

re�nements and alternatives, based on the designers intent in creating the variation.

This research uses a re�nement to portray modi�cations to a particular aspect

of a design model that do not change the primary functionality or basic design
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approach. If slight changes are made to the product requirements, designers must

re�ne the design to adapt to these changes. If there are problems or de�ciencies

with the current design, the designer creates re�nements to perfect or improve the

design. As a design evolves from a high-level concept to a manufacturable model,

the design model is re�ned by adding more detail. Designers can depict di�erent

levels of detail by creating new con�gurations of a design which contain additional

design components with varying amounts of detail.

An alternative, as implemented in this research, describes an additional design

solution for a particular aspect of a design problem or a separate view of a design

solution to represent di�erent design disciplines for analysis. Alternatives initially

re
ect a similar level of design detail; however, selected alternatives may evolve to

include additional information.

Variation management, or as it is more commonly referred to, version manage-

ment, is the process of controlling changes to a design component and tracking

the di�erences between versions of the design component once changes have been

made. When di�erent views or alternatives are involved, version management also

ensures that the alternatives are kept consistent when designers make changes.

Managing design variations gives designers additional control over how a design

model evolves. By creating new versions of a design representation instead of

overwriting an existing version, designers can recover previous variations at di�erent

levels of detail. This may be necessary to correct errors that were introduced in a

later version or to derive an alternate variation without the details of the current

representation. Using the variational capabilities implemented for this research,

designers can manipulate and experiment with a version without committing the

changes. Changes are not propagated to the remainder of the model until they are

committed.

A designer can create multiple alternatives for a particular design problem and,

using the capabilities of this research, interactively move between them to determine

which alternative is more appropriate for di�erent situations. The designer can

generate alternatives from the same base component through which the alternatives
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can inherit common constraints or features. Alternative con�gurations of a design

object may contain di�erent versions of nested objects. With this capability,

changes to a design object are propagated to the alternate con�gurations only

if the particular version of the nested object in that con�guration is a�ected.

Designers can use the aggregation mechanisms discussed in Chapter 4 to include

design rationale and descriptions in design models. This information becomes part

of the variation and can be recovered and used by a di�erent designer to further

evolve a design or to modify and reuse a particular design component.

6.2 Underlying Concepts and Terminology

Version management in Alpha 1 is dependent on two key data structures, scope

and model object, which form the relationships necessary to depict the hierarchies

and dependencies of a design model. Although all design objects require these

structures to become part of a model, the scope and model object structures are

largely hidden from the designer.

6.2.1 Scope

The neighborhood, part, and assembly aggregations from Chapter 4 form design

hierarchies with many related design objects nested into a single aggregation object.

Each object in the aggregation becomes a member of a scope that is associated with

the aggregation object. The scope limits the accessibility of the nested objects from

objects external to the aggregation.

6.2.2 Model Object

The model object identi�es key information such as the constructor function

and the prerequisite pointers necessary to create a design object. The precedence

relationships of a design model are depicted in the prerequisite pointers of model

objects and the associated pointers to dependent objects that are based on an

object. Hierarchical relationships are represented with pointers to nested scopes

that are embedded in an aggregation design object. Each model object is a member

of a scope that is referenced through the model object.
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6.3 Automated Mechanisms

This research presents automated versioning mechanisms which allow the de-

signer to manage and control variation at di�erent levels of detail. The designer

can track revisions, generate alternatives, and maintain consistency between related

views. The goal is to make version management a tool with which the designer can

interactively manipulate, track, and control design alternatives and modi�cations as

the design evolves over time. To support this goal, this research emphasizes variable

granularity and relationships between versions and alternatives that are not well

supported by database management systems or other version management systems.

The versioning mechanisms implemented in this research include generation of a

complete baseline version, partial versions to represent the di�erences between two

versions, alternative versions, and version selection.

6.3.1 Baseline

This research de�nes a baseline as a complete version of a design object at a

particular instance in time. A version contains the nested scope of an aggregation

and the prerequisites of the aggregation object. To create a new version, this

research manipulates the model object constructor routines of Alpha 1 to make a

copy of the old scope before allowing any modi�cations. When a designer invokes

the Alpha 1 constructor command to update an object, the newly updated version

is automatically appended to a version list for that object. A baseline version

is created automatically as the original version of an object or the designer can

explicitly create a baseline version by invoking the baseline command.

By using an aggregation and its scope as the basis for a version, designers can

control version granularity by the number of objects embedded in the aggregation.

In addition, designers can individually select which aggregations should be ver-

sioned, thus allowing changes to the granularity without having to recon�gure the

aggregation.

Figure 6.1 demonstrates the initial creation of a versioned object for the rear

layout of the formula automobile. No special command is required to make a

version of an object. The designer simply needs to turn on the versioning 
ag and
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identify a version with the \:*" assignment operator. In this example, the initial

version includes all design objects de�ned within the brackets.

6.3.2 Delta

A delta version contains the di�erences between the current and previous ver-

sions. By only including the di�erences instead of the complete version, a delta

version saves computer storage space. A delta version is automatically created

when a designer updates an existing version.

This research provides three di�erent mechanisms for a designer to revise aggre-

gation objects. In the �rst of these, the designer reconstructs the entire aggregation,

in a manner similar to the original construction, by specifying both the unchanged

objects from the original version along with any new or changed design objects.

With the second mechanism, the designer identi�es all new or changed design

objects within the merge constructor as shown in Figure 6.2. The merge constructor

builds a new version which contains all unchanged objects from the original version

along with the new or modi�ed objects within the brackets of the merge constructor.

The third revision mechanism is to begin a long transaction in which the designer

interactively edits the original version by modifying or adding design objects. Any

RearLayout :* assemblySeq f

"Layout of rear section of automobile";

RearSuspension;

PowerTrain;

Brake;

Wheel;

Suspension_PowerTrain_Intfc;

Brake_Suspension_Intfc;

Suspension_Wheel_Intfc;

g;

Figure 6.1. Initial version of rear layout assembly
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changes made during the long transaction a�ect only the scope of the aggregation

object for which the transaction has been invoked. Alpha 1 does not propagate

changes to the remainder of the model until the transaction is ended. The designer

starts a long transaction with the BeginScopeEdit command which includes an

argument identifying the aggregation to edit. For example, to edit the contents of

the RearLayout assembly aggregation, the designer invokes the command:

BeginScopeEdit( RearLayout );

The designer ends a long transaction with the EndScopeRevise or the EndScopeAl-

ternate commands. These commands create a revised or alternative version of the

aggregation, commit the changes, and propagate the changes to the rest of the

model. The EndScope command a�ects the last scope for which a BeginScopeEdit

command was issued.

The merge constructor in Figure 6.2 creates a new version of the assembly

aggregation created in Figure 6.1. These two versions demonstrate the utility of

the variation mechanisms for representing various design abstractions. Each version

represents a di�erent level of detail for the same object, and the designer can access

each version individually to view the model at either of the two levels of detail.

The examples in Figures 6.1 and 6.2 also include design descriptions and ratio-

nale in the versioned aggregations. This information becomes part of the version

history and may be used by a designer to understand why certain decisions were

made and how the design evolved to its current state.

6.3.3 Alternative

An alternative version depicts an additional design solution or view of an object.

This research implements an alternative as a complete version of a design object

that starts a parallel version path. Once an alternative has been created, it can

be revised just like any other version. Revisions to the alternative version do not

change the original version.

To create an alternative, designers have the same options { complete rede�nition,
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RearLayout : merge f

"Add detailed sub-assemblies for the

brake, rear suspension, and powertrain";

Brake : assemblySeqf
Hat;

Rotor;

Caliper;

Adaptor;

Hat_Rotor_Intfc;

Rotor_Caliper_Intfc;

Caliper_Adaptor_Intfc;

g;

RearSuspension : assemblySeqf
BearingCarrier;

Hub;

Carrier_Hub_Intfc;

g;

PowerTrain : assemblySeqf
DriveShaft;

FinalDrive;

Transmission;

Engine;

DriveShaft_FinalDrive_Intfc;

FinalDrive_Transmission_Intfc;

Transmission_Engine_Intfc;

g;
g;

Figure 6.2. Revision with merge command
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merge, or long transaction { that are available to create a revision of an object.

A designer distinguishes the construction of an alternative from a revision by the

assignment operator \:<".

The versioning mechanisms of this research create an alternate view of an object

as an alternate solution with procedural mechanisms that the designer can invoke

to determine if consistent changes have been made in related views. The versioning

system tracks consistency with automatic routines that check whether the latest

version of each alternative view is identi�ed with the same baseline and revision

number.

A designer creates an alternative view with the assignment operator \:>" as

shown in Figure 6.3. In this example, the designer creates an alternate version

of the rear layout assembly in which the components are con�gured such that

all components attached via rigid interfaces are grouped into sub-assemblies. This

con�guration is useful for performing kinematic analysis since the designer can treat

the rigid sub-assemblies as single components. The designer invokes consistency

checking between the two views with the command:

checkConsistency( rear_layout );

6.3.4 Selection

As new versions are created, the model object constructor assigns a number that

speci�es the alternative, the view, the baseline, and the revision. A new object is ini-

tialized as alternative one, view one, baseline one, and revision one (A1.V1.B1.R1).

Creation of a new revision increments the number for the revision; a new baseline

increments the number for the baseline and reinitializes the revision number; a

new alternative increments the number for the alternative while re-initializing the

baseline and revision numbers; and a new view increments the number for the view

while keeping all other identi�er numbers the same.

To track the current version of an object, a versioned design object contains a

reference object which points to the current version of an object and the original

version. Designers select di�erent versions by identifying the aggregation name and
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rearLayout :> assemblySeq f

"Rear layout of formula SAE automobile";

"This configuration groups all components

connected through rigid interfaces into

assemblies";

FinalDrive;

DriveShaft;

BearingCarrierAssy : assemblySeq f

BearingCarrier;

BrakeAdaptor;

Adaptor_Carrier_Intfc;

g;

WheelAssy : assemblySeq f

Rotor;

BrakeHat;

Hub;

Wheel;

Rotor_BrakeHat_Intfc;

BrakeHat_Hub_Intfc;

Hub_Wheel_Intfc;

g;

FinalDrive_Shaft_Intfc;

Hub_Shaft_Intfc;

Hub_Carrier_Intfc;

g;

Figure 6.3. Alternative view of rear layout assembly with rigid sub-assemblies
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version number. The selection command �nds the appropriate version and changes

the current version reference so that it points to this version. For example, the

command

selectVersion( RearLayout, 2, 1, 1, 1 );

sets the current version of the RearLayout sub-assembly to alternative two, view one,

baseline one, and revision one. Using the propagation mechanisms of Alpha 1, all

other design objects that are dependent on the versioned object are automatically

updated to re
ect the newly selected version.

Using the getVersion command, designers can also select and copy a particular

version of an aggregation to another object. The getVersion command does not

change the original object and does not a�ect objects that are dependent on

the original object. Any subsequent changes made to the original object are not

propagated to the copied version. This selection mechanism allows the designer to

use selected versions of an object without being concerned that subsequent changes

to the original object will invalidate the new use of the object. Once a version has

been copied with the getVersion command, the designer can revise it just like any

other versioned object.

Parameterized aggregations complicate change propagation and selection among

versions. If the parameters are not contained in the aggregation, then the versioning

mechanism has no control over them. Thus, if a designer copies a parameter-

ized version, and then changes parameters upon which that version is dependent,

Alpha 1 will propagate the changed parameters to both the copied version and the

original version. If the designer includes the parameters within the aggregation,

the parameters will be copied along with the other information in the aggregation

and will not change when the original parameters are modi�ed.

Figure 6.4 demonstrates the e�ects of the getVersion command. The designer

derives the BrakeHat Hub Intfc in Part (b) from version A1.V1.B1.R1 of the

Hub Wheel Intfc in Part (a). The designer then revises BrakeHat Hub Intfc to

position the HubBoltHolePattern in a di�erent location. These changes do not a�ect
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the Hub Wheel Intfc. Similarly, any subsequent changes to the Hub Wheel Intfc will

not a�ect the BrakeHat Hub Intfc. This includes any changes to the parameters

that are included in the interface aggregation. Two parameters, baseAnchor and

Ext, however, have been declared elsewhere in the design model and used in the

Hub Wheel Intfc. Any changes the designer makes to either of these two parameters

will a�ect both the Hub Wheel Intfc and the BrakeHat Hub Intfc.

6.3.5 Version Tree

The version history of an object can be depicted as a version tree with alter-

natives represented by branches in the tree as shown in Figure 6.5. The version

reference at the beginning of the tree points to the base of the tree (the original

version) and the current version. In this �gure the left branch is the original branch,

the middle branch is an alternative of the original branch, and the right branch is a

di�erent view of the middle branch. The skipped numbers in the right branch re
ect

inconsistencies between the views. If a number is missing, there is no consistent

representation of the missing version. The dashed line between the last version in

the middle and right branches represents a virtual consistency relationship that is

not actually in the data structure, but is procedurally maintained with automated

routines for checking consistency.
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Hub_Wheel_Intfc :* intfcSeqf

"Specify the interface between the rear hub and the wheel";

StudLength :* ( 30.0 );

BoltNum :* ( 4 );

BoltCir :* ( 100.0 );

BoltDia : ( 10.0 );

BoltWall :* ( 1.0 * BoltDia );

OD :* ( 120.0 );

CtrDia :* ( 75.0 );

HatThk :* ( 4.75 );

HubThk :* ( 4.75 );

joint :* rigid();

pos : intfcpos( baseAnchor, entity( ... );

neg : intfcneg( baseAnchor, entity( ... );

HubStud : lookupScrew( ... );

HubBoltHolePattern :* screwRadial( ... );

atch1 : partof( joint,

offsetAnchor( baseAnchor, 0, 0, -

HubThk - 2 * Ext ),

HubBoltHolePattern );

g;

(a) Hub { Wheel Interface

BrakeHat_Hub_Intfc :* getVersion( Hub_Wheel_Intfc, 1, 1, 1, 1 );

BrakeHat_Hub_Intfc :* merge f

"This interface is derived from version A1.B1.R0 of the

Hub_Wheel_Intfc. The boltHolePattern is offset e to

account for the thickness of the brake hat";

atch1 : partof( joint,

offsetAnchor( baseAnchor, 0, 0,

-HubThk - HatThk - 2 * Ext ),

HubBoltHolePattern );

g;

(b) BrakeHat { Hub Interface

Figure 6.4. Use of getVersion command
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Version 3
Alternative

Rigid Assembly View

Functional View

Functional View
Version 2

Alternative

Version 3

Alternative

Functional View
Version 2

Original

Original

FormulaSAE
Version Reference

Base Current

Functional View

Alternative
Rigid Assembly View

Version 1

Version 1
Alternative

Functional View
Version 1

Figure 6.5. Version tree



CHAPTER 7

ANALYSIS OF COMPLEXITY

MANAGEMENT CAPABILITIES

Over the years, designers have developed a variety of techniques for managing

design complexity. More recently, design automation systems have made it easier for

designers to create and store design information. This, in turn, has made it possible

for designers to create more complex design models for which the complexity can

no longer be managed with manual techniques. To accommodate this increased

complexity, this research introduces a framework for representing, analyzing, and

managing complex design models, in which support for both new and existing

design processes is integrated into computer design models. Section 1.4 presents a

number of design activities and capabilities identi�ed in this research as important

for managing design complexity. In this chapter, these capabilities are used as a

measure for analyzing the e�ectiveness of the complexity management framework

introduced in this research and for comparing this framework to related design data

models discussed in Chapter 2.

Those capabilities that are emphasized in a particular research paper or tool

are identi�ed in Table 7.1. Sections 7.1 through 7.10 of this chapter describe the

methods that each tool or researcher uses to satisfy these capabilities. In some

cases, research tools support a capability such as hierarchical decomposition, but

this capability is not marked in Table 7.1 because it is not a focus of the research

e�ort and, consequently, is not described in the research paper.
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Jacobs
p p p p p p p p p p

EDM
p p p p p

Multigraph
p p p p

Lee/Gossard
p

PDM
p p p p p

Geomes
p p

Bordegoni/Cugini
p

Baxter et al.
p p

Gorti/Sriram
p

Salomons et al.
p

Abrantes/Hill
p

Kim/Szykman
p p

Rosenman/Gero
p

Brett et al.
p

Table 7.1. Comparison of design tool capabilities

7.1 Decomposition at Multiple
Levels of Detail

Using assembly aggregations and interface speci�cations, the framework devel-

oped in this research supports decomposition of design problems into multiple

sub-assemblies. In the formula automobile example, the designer began this de-

composition with high level functional systems such as the frame, the chassis, and

the power train, and evolved it into detailed assemblies of individual parts such as

those in the brake sub-assembly. At the lowest level, the designer decomposed

individual parts into combinations of features and geometry. Essential to the

aggregation framework are the relationship objects between hierarchical levels of

decomposition and between interacting components at the same level of detail which
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assist the designer in capturing information such as functionality, kinematics, and

relative position, yet support designer manipulation of individual design objects

independently from the rest of the hierarchy.

Using the aggregation and versioning mechanisms of this framework, the de-

signer can modify or analyze a design model at the conceptual level, the detailed

manufacturing level, or any level in between. This analysis can be accomplished at

any time after the original de�nition of an object, regardless of how much additional

detail has been added. Thus, the designer can always treat the rigid wheel assembly

of the formula automobile, which includes the brake rotor, brake hat, the hub, and

the wheel, as a single abstract object, even after the individual parts are added and

re�ned with additional detail.

Other design data models provide varying degrees of support for representing

design decomposition. In Eastman's Engineering Data Model (EDM) for archi-

tectural design [18], designers use compositions for representing objects that are

composed from many parts. Accumulations form a parallel structure in which the

designer can associate functional constraints with compositions at a similar level of

detail. While this data model has considerable power for representing hierarchical

decompositions, lower level components tend to be tightly coupled to their parent

composition, which restricts the designer's ability to independently manipulate and

re�ne these low-level components. In addition, once low-level details have been

incorporated into a composition, the designer can no longer access the higher level

abstraction by itself without the details.

The multigraph data structure proposed by Gui and M�antyl�a [27] supports the

decomposition and evolution of design models from conceptual to detailed design

with a hierarchical graph data structure. The multigraph also includes connectors

for describing force transmission and motion constraints between interacting parts

at the same level of detail. Like the framework presented in this research, the de-

signer can use these peer-to-peer connector relations to manipulate sub-assemblies

at a particular level in isolation from other levels. A drawback of the multigraph

structure is that the designer must develop manufacturing details and functional
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concepts in separate data structures.

Lee and Gossard [38] present a hierarchical assembly structure in which the

designer speci�es the position and relative motion of components in an assembly

with mating features that are associated with the hierarchical links between levels.

This assembly structure is oriented toward the representation of complete, detailed

assemblies rather than the evolution of an assembly design from conceptual to

detailed design.

Using product data management systems [4, 40, 42], designers can build struc-

tural links between components and between di�erent design representations for

the same portion of a design model. Since little information can be associated

with the links, however, they serve only to classify design information and to de�ne

product con�guration structure. The designer has little control over the level of

detail which can be manipulated with these systems since the data is managed at

the document or �le level rather than individual design objects.

Wolter and Chandrasekaran [63] propose a geometric structure, or geome, as

a mechanism for encapsulating low-level details into a single design object at a

higher level of abstraction. Their work focus on feature level hierarchies with little

discussion of complex assemblies.

7.2 Simultaneous Development
and Integration

The interface speci�cation objects introduced in this research are used to describe

the interaction between parts and to constrain the design of interacting parts. If de-

�ned in advance of an individual part, the entire set of interface speci�cation objects

for a part create the design speci�cation to which the part design must conform. By

de�ning common geometry and constraints in interface speci�cation objects, and

by restricting change propagation to individual aggregations, independent design

teams can simultaneously develop the design model for a part without impacting

related parts. By conforming to design constraints and goals identi�ed in interface

speci�cation objects, the independently designed components are more easily inte-

grated into the �nal assembly. Using pre-de�ned speci�cations, design teams with
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the appropriate expertise can develop, in parallel, major design subsystems such as

the suspension and brake assemblies of the formula automobile, which can shorten

the development period and enable the design to more accurately re
ect the desired

functionality. Unlike the interface speci�cation object in this research, other design

tools do not incorporate peer-to-peer constraints into their aggregation structures,

and so are not as useful for simultaneous design and integration of sub-assemblies.

7.3 Representing Design Functionality

This research presents the interface speci�cation object as a mechanism for

representing design functionality associated with the interaction between parts.

Since design functionality is manifest in the relationships between parts rather than

in individual parts [54], the interface speci�cation object should be appropriate for

representing most functional cases and styles of design. Kinematic functionality is

represented through various joint types as demonstrated in the spindle cartridge and

formula automobile examples. Representations for force constraints and connectors

are embedded in the interface speci�cation object and can be used to analyze force

capacities. With additional features, automated procedures, or links to separate

tools, the interface speci�cation object can also include representations of other

functional disciplines.

Eastman's EDM [18] represents functional design rules and property relations

between parts in an accumulation structure. The architectural examples discussed

by Eastman emphasize classi�cation properties such as the ability of a barrier to

transmit light. It is not clear that EDM would support dynamic properties such as

changing forces or moving parts.

Gui and M�antyl�a's multigraph [27] emphasizes the functional representation of

a design model. A functional node in the multigraph includes a description of

function or behavior or a speci�c representation for functional analysis such as

elements in a bond graph. Functional nodes are linked with connectors which

describe properties such as force transmission and relative motion. Although a

multigraph representation of the spindle cartridge or formula automobile might be
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useful for functional analysis, the designer must use a separate data structure for

developing and maintaining geometry and manufacturing details.

Bordegoni and Cugini [5] use an assembly feature for embedding functional in-

formation in an assembly. Their approach is to de�ne a template for the interaction

between parts. Within the template is a functional classi�cation, such as attach or

avoid interference, and a list of possible solutions for achieving this functionality.

The designer can also include a description of the interaction in the assembly

feature. This feature-based approach is limited, however, in that an application

expert must pre-de�ne all of the functional interaction possibilities that might be

needed in a design.

Baxter et al. [2] propose an enhanced entity-relationship diagram for representing

functionality. In this representation, designers use functional relationships such as

performed by, input of, output of, and has need of to link design entities. Baxter's

functional entity-relationship diagram is primarily concerned with functional con-

cepts, although the designer may link these concepts to separately de�ned geometric

components.

Gorti and Sriram [25] develop a conceptual design model from prede�ned ab-

stract geometric components and the functional and spatial relationships between

them. For example, a bridge is de�ned by three slabs that are connected with

functions such as supports, transmits load, or resists load. While this approach

is useful for visualizing high-level concepts, it can not easily be generalized to

accommodate detailed geometry or features. At a conceptual level, this is similar

to the high-level cylindrical shaft geometry associated with the spindle cartridge

components as demonstrated in the examples in Chapter 5.

Wolter and Chandrasekaran [63] state that designers can use geomes to map

functions to geometry or to classify components by function. As an example,

Wolter and Chandrasekaran describe a rack-and-pinion geome which transforms

rotational motion into translational motion. For the spindle cartridge example,

the appropriate kinematics, force transmission, and other functionality could be

embedded in a geome, along with the geometry, in a fashion similar to the interface
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speci�cation object presented in this research; however, Wolter and Chandrasekaran

have had limited success implementing geomes and support only two-dimensional

models.

7.4 Connectors and Fasteners

Bearing and bolt connectors are introduced by this research to embed detailed

geometry, manufacturing features, force constraints, and application parameters

associated with the connector into the interface speci�cation object. Designers

query electronic catalogs to automatically retrieve standardized bearings and bolts

which the designers insert into the connectors along with application parameters

such as fatigue life or joint thickness. Automated routines are associated with the

connector objects to enable the designer to analyze force capacities of the connector

and to automatically generate features such as bearing bores or threaded bolt holes

that are compatible with the connector.

Gui and M�antyl�a [27] use connectors to associate force transmission and kine-

matic information with the relationship between functional components. The con-

nector information is used to perform bond graph analysis of the energy 
ow in an

assembly. To associate geometry with a connector, designers must create links to

a geometrical representation in a separate data structure.

Salomons et al. [46] and Abrantes and Hill [1] incorporate fasteners and connec-

tors into the design model as geometric place holders. Neither of these implemen-

tations, however, uses connectors for representing information which can be used

for automated force analysis or assembly validation.

7.5 Alternative Solutions

This research represents alternative design solutions through the versioning ca-

pabilities presented in Chapter 6. A designer can create multiple alternative ver-

sions of an aggregation object, then select which alternative to use in the current

model, or embed di�erent alternatives into di�erent versions of a design model. An

alternative solution can evolve from an existing design model to maintain certain

constraints and to re-use common geometry and features.
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Figure 7.1 demonstrates the creation of an alternative version of the spindle-

housing interface speci�cation object used in the spindle cartridge design. In this

solution, the only thing that changes is the number of bearings in the connector.

This constrains the alternative to the same fundamental geometry and dimensions

as the original version of the interface. Any changes in the original version will

be automatically propagated to the alternative. The granularity of the changes

is exactly that necessary to completely capture the additional bearing { no data

objects other than the connector need to be included in the speci�cation of the

alternative version.

In product data management systems [4, 40, 42, 62], designers create structural

links to classify alternative versions of a design model. Alternatives are created

as complete design models, either by copying and modifying an existing model,

or by developing a completely new model. The alternative version of the spindle-

housing interface object, as shown Figure 7.1, would likely require a complete copy

of the spindle cartridge sub-assembly. Alternatives are linked at the document level,

meaning sub-components within a model can not be shared or linked to another

model. This means the designer must manually propagate any changes to common

sub-components to all alternatives which contain these sub-components.

Kim and Szykman [33] link alternate solutions with design decision relation-

ships in which the designer documents the rationale for creating a new version.

spindle_housing_intfc :< merge f

"This alternative only has two bearings";

bearingconn : bearingconn( array( bearing,

spacer,

bearingInvert( bearing ) ),

SpindleCartridge::FatigueLife,

SpindleCartridge::Speed );

g;

Figure 7.1. Alternative spindle-housing interface with two bearings in the con-
nector
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This mechanism allows the designer to derive di�erent alternatives from common

functional constraints, but requires the designer to explicitly de�ne the decision

relationship before creating a new version.

Eastman's EDM [18] uses aggregation variables and solution domains to rep-

resent alternative design models. A di�erent alternative assigns di�erent domain

values to the variables. Although aggregation variables can represent design pa-

rameters, it is not clear that they can represent complete design objects. If it is not

possible to represent complete design objects, then alternatives are di�erentiated

only by parameter values rather than by di�erent con�gurations of features and

constraints.

7.6 Alternative Views for Concurrent
Design

In this research, an alternative view is represented as an alternative solution

combined with procedural mechanisms for checking consistency between views.

Consistency among views is automatically maintained only through the use of com-

mon parameters, geometry, and constraints. Automated procedures identify which

views are out of synchronization, and the designer then updates these views using

the tools provided in this framework along with other available tools. In the formula

automobile example, the designers created a primary view containing functional

sub-assemblies and an alternative view with rigid sub-assemblies. If the designer

changes the primary view, then automated routines will identify the rigid assembly

view as inconsistent. The designer must then modify the rigid sub-assembly view

to make it consistent with the modi�cations made to the functional view.

In Eastman's EDM [18], accumulations are intended to be structures that de-

signers use to associate di�erent sets of constraints and rules with a particular

composition. Designers might embed functional rules and constraints in one accu-

mulation, dynamic analysis constraints in another accumulation, and manufactur-

ing constraints in a third accumulation. Specialized relationships can be generated

between two accumulations to ensure integrity.

Product data management systems [4, 62] can link the information associated
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with di�erent views at the document level; however, the large granularity inherent

in managing complete documents makes it di�cult for PDM systems to also manage

the �ne grain task of maintaining consistency between views.

Rosenman and Gero [45] describe architectural, mechanical, and structural views

of a building design which contain explicit links to a set of functional primitives.

Rather than using separate views to represent di�erent types of information as-

sociated with the same design object, Rosenman and Gero use views to form

di�erent con�gurations of the same primitive design objects. For example, both the

architectural and structural views of a building include a wall, but the architect is

interested in the wall as a space separator and the structural engineer is concerned

about the structural support provided by the wall. To accommodate these two

functions of a wall, designers generate a primitive object for the wall which includes

separate functionality for a space separator and a structural support. The architect

and structural engineer then incorporate the appropriate wall functionality into

their view of the building design. By basing the views on the previously de�ned

wall object, any changes in the wall object are propagated to the separate views. It

is not clear how to apply this approach to the functional, manufacturing, dynamic

analysis, or assembly views associated with a mechanical product such as the

formula automobile.

7.7 Design Recovery and Reuse

By using the versioning mechanisms introduced in this research, a designer can

recover a previous version of a design object and reuse it in a di�erent design model.

Unlike many design data models which embed information describing interaction

and hierarchical relationships into the actual components, this research incorporates

interaction and hierarchical information into independent relationship objects which

link the components. By removing this relationship information from individual

design components, and by encapsulating design information into aggregations,

the framework presented in this research supports the reuse of design objects that

were designed for separate product models. In the formula automobile example,
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the designers incorporate a model of the wheel assembly, designed completely

independent from the complexity management framework, into the automobile

model by simply transforming it to the current design space and linking it into

the automobile assembly with an interface speci�cation object.

Product data management systems [4, 40, 42, 62] allow the designer to reuse

complete design documents by copying the document from one model structure to

another. Since information describing the interaction between components is in the

related components instead of the structural relationships, this information must be

copied in addition to the design document being reused. This may involve manually

copying portions of related design models other than the one being reused.

7.8 Change Management and Analysis

The complexity management framework introduced in this research provides

support for controlling and propagating changes in a design model. A part or sub-

assembly can be changed only in ways consistent with its interface speci�cations.

When interfaces are used in the design of the part, as was done for the spindle

cartridge, for example, many part modi�cations can be performed only by changing

the interface. When components are developed independently, like the wheel of

the formula automobile, interface speci�cation objects can be used to verify that

changes to the components are compatible with the remainder of the design model.

By using the propagation mechanisms already in Alpha 1 in conjunction with

interface speci�cation objects, the framework guarantees that changes to one com-

ponent are automatically re
ected in related components. In this fashion, changes

to hierarchical or interface constraints are automatically propagated to all a�ected

components in a part or assembly.

To experiment with di�erent design possibilities, a designer may want to modify

and analyze a sub-assembly or part within a design model without a�ecting the

remainder of the model. A designer can use the long transaction capabilities of

this research to restrict changes to a particular aggregation object such as a sub-

assembly or part. Using these capabilities, the designer determines when to commit
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the changes and propagate them to the remainder of the model.

The designer can make a change, propagate it to the remainder of the design

model, and then analyze the impact of the change on the remainder of the model. If

the change adversely impacts the design model, the designer can use the versioning

mechanisms to revert to a previous version of the modi�ed component.

Product data management systems [4, 40, 42] provide limited change manage-

ment capabilities. In particular, many such systems provide change control mech-

anisms which restrict who can change a particular design document. Propagation

of design modi�cations, constraints, or impact analysis is rarely supported in these

tools.

Eastman's EDM [18] provides a limited amount of change control through its

use of variant and invariant constraints. Invariant constraints may be de�ned

in advance to ensure conformance of related design objects. Variant constraints

support controlled modi�cation of a design through manipulation of the constraints.

Brett et al. [6] de�ne propagation mechanisms for specifying relationships be-

tween two design objects such that changes in one object are automatically re
ected

in the related object. Use of this mechanism, however, has been limited to simple

geometric relationships between features on a single part.

7.9 Design History

The di�erent versions that result from the use of the versioning mechanisms

in this research re
ect the design history of an object. This history may be

documented by incorporating textual descriptions of design rationale and decisions

within the versioned aggregations.

Kim and Szykman [33] enforce design history documentation by requiring the

designer to describe design rational or decisions in the version relationships between

two variants of a component. This ensures documented reasoning for each version

of a design object.
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7.10 Design Analysis and Simulation

As demonstrated in both the spindle cartridge and the formula automobile

examples, by incorporating kinematic and force constraints into the interface speci�-

cation, the designer can use the automated framework from this research to analyze

the design and simulate movement. For example, in this research, automated

procedures have been created to both summarize and compare the forces acting

on an interface and to automatically check kinematic constraints of the joint. The

designer may also incorporate other information into the interface speci�cation to

use in di�erent types of analysis and simulation.

Limited support for analysis and simulation is available in other design data

models. Gui and M�antyl�a [27] use the information embedded in connectors to

demonstrate bond graph analysis of the energy transmission between components

in their multigraph data structure. Baxter et al. [2] analyze how well a concep-

tual design satis�es the functionality speci�ed in an enhanced entity-relationship

diagram.

7.11 Usability

One of the goals of this research is to create automated mechanisms that a

designer can integrate into new or existing design processes to manage design com-

plexity without a signi�cant amount of additional e�ort. To achieve this goal, the

aggregation and interaction mechanisms in this research are implemented as special

types of fundamental Alpha 1 design objects that embody the relationships between

design components. As fundamental design objects, their constructor commands

are invoked in the same way as those for curves, surfaces, and other design objects.

Interaction and aggregation objects are accessible in the same fashion as any other

design object in the Alpha 1 design system. By being integrated, the designer can

use these design objects together with other design objects in Alpha 1.

While variation mechanisms are not accessible as independent design objects,

little overhead is required of the designers to activate these mechanisms. Designers

create revised and alternative versions of an object with an assignment operator
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and they use simple commands to select and edit di�erent versions of an object.

In addition to being easy to invoke and manipulate, the complexity management

mechanisms signi�cantly improve the usability of the entire system. When applied

to the milling machine and the formula automobile examples, these complexity

management mechanisms added signi�cant organization and understanding to the

design models while, at the same time, their application reduced the total amount

of work required of the designer.

To demonstrate compatibility and to illustrate the bene�ts of the complexity

management mechanisms, designers of the formula automobile example modi�ed

an existing model to �t into the interaction and aggregation structures. In doing

so, interface speci�cation objects were used to incorporate bearings, bolts, and

common parameters into the design. Along with the dependency mechanisms of

Alpha 1, this ensured consistency between the interacting parts and also reduced the

design language speci�cation of those parts by nearly twenty per cent. Designers

decomposed the design model into individual parts and decomposed those parts

into separate features so that they could easily distinguish which geometric and

manufacturing features were included in a particular component.

In the spindle cartridge example, the designer constructed interface speci�cations

before designing individual parts, and then embedded the interface information

into the part models with aggregation mechanisms. By so doing, the designer

could modify multiple interacting parts by making changes only in the interface

speci�cation. These changes were then propagated by the system to all a�ected

parts. By ensuring consistency among the parts, the designer did not need to

manually maintain records of which parts were a�ected and also was relieved of

making changes in multiple components.

Being able to have variations in the complexity management framework is some-

what limited by the lack of a shared database for design models. Without a shared

database, it is possible for designers to maintain di�erent versions of a design model,

in separate databases, with no mechanism for ensuring consistency or compatibility.

Without a database management system, users of Alpha 1 are also limited in their
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ability to access individual objects from a data �le which a�ects their ability to

control the granularity of changes. Despite the lack of a database, the system still

supports the maintenance of consistent versions and controlled granularity while

the designer is editing a model interactively.

7.12 Extensibility

With the large range of possibilities, it is di�cult to develop automated mecha-

nisms to support every potential design scenario. Instead, this research is aimed at

presenting a framework which can be easily extended to accommodate additional

design disciplines and capabilities as well as a set of design speci�c tools. Incor-

porating complexity information into relationships between design objects rather

than requiring modi�cations to the actual design components accomplishes this

goal. The interaction and aggregation relationships facilitate extensibility of this

framework by allowing designers to independently manipulate information which

contributes to design complexity.

During the development of procedures for assisting the designer with analy-

sis, the automated complexity management framework was used as an e�cient

means to extend analysis capabilities to di�erent mechanical applications. Once

the primary aggregation and interaction structures were in place, it was a simple,

straightforward task to add new connectors, constraint analysis, and management

information to the interaction and aggregation objects. For example, in adding

the screw connector, the developer de�ned a design object with the necessary

parameters. Basic attributes and methods for the design object were inherited

through the object-oriented structure of the complexity management framework

implementation. The Alpha 1 development environment then automatically gener-

ated most of the code required to integrate with the rest of the system. The only

code the developer needed to generate manually was to specify the screw geometry

and the force capacity calculations.

Design of a product is performed across multiple design disciplines and, in

practice, across multiple CAD tools. This research has created a a framework
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with the intent that it can be incorporated into other CAD tools by implementing

the interaction and aggregation mechanisms as independent design objects. The

complexity management mechanisms were integrated into the Alpha 1 user interface

tools by providing references to the constructors and methods implemented for

the aggregation and interface objects. Similarly, other tools could integrate these

mechanisms by developing a compatible object structure and linking the object

constructors and methods into the tool interface.

The bene�ts of embedding complexity information in relationships which are

implemented as independent design objects becomes more apparent when compared

to the versioning mechanisms developed in this research. The versioning capabilities

are not implemented as relationships making it more di�cult to modify these

capabilities once they are embedded into a model. Since versioning representations

are built into the model graph framework of Alpha 1 they are not easily separated

and extended to other applications. The concepts, however, are equally applicable

in other design environments.



CHAPTER 8

SUMMARY, CONCLUSIONS, AND

FUTURE WORK

8.1 Summary and Conclusions

This research introduces a comprehensive framework for representing, analyzing,

and managing complex design models as they evolve from functional concepts to

detailed manufacturable designs. This complexity management framework over-

comes many of the de�ciencies associated with other CAD environments by bringing

together the intricate relationships between design components, detailed constraints

and design information associated with these relationships, and methods for com-

municating and managing this information throughout the design model. The

aggregation, interaction, and variational relationships of this framework facilitate

the representation of complex design information at multiple levels of detail, and

they provide focal points for managing design complexity and controlling design

evolution.

Aggregation relationships and objects are used to capture the decomposition

hierarchy of a model and to organize the model into aggregations of features, parts,

and sub-assemblies. An aggregation encapsulates multiple design components into

a single design object. Designers can restrict access to individual components and

limit the e�ect of changes made within an aggregation. Aggregations also control

the granularity at which design components can be manipulated.

An aggregation is a 
exible entity for which the designer has complete control

over the contents, size, and organization. With this 
exibility, the aggregation

mechanisms facilitate a variety of design processes and representations. In a top-

down design process, designers use aggregation mechanisms to decompose the

design problem into less complex, more easily managed sub-problems. Evolution
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of a design, from functional concepts to manufacturing details, is represented in

multiple aggregations that are linked through variational mechanisms. Designers

recon�gure the aggregation hierarchy to form di�erent variations of a design or

to perform di�erent types of analysis. At high levels, design understanding is

facilitated by abstracting away lower level aggregations and components and, at

lower levels, understanding is simpli�ed by focusing only on the objects within a

single aggregation.

This research introduces an interface speci�cation object to represent and control

the considerable design complexity and risk associated with the interaction between

parts or sub-assemblies. Interface speci�cation objects describe how components

are combined to produce additional functionality and complexity, and they contain

compatible features for identifying geometric, functional, kinematic, and other

constraints between interacting components. Using aggregation relationships, de-

signers can also incorporate other information, such as fasteners, connectors, or

force constraints, into the interface speci�cation object.

Interface speci�cation objects create a design speci�cation for simultaneous de-

sign of interacting components and they facilitate integration of completed com-

ponents into higher level aggregations. Through their ability to validate com-

patibility between components, interface speci�cation objects simplify reuse of

existing designs or standardized components from electronic catalogs. If speci�ed

in advance of interacting parts, designers can incorporate features of interface

speci�cation objects into the actual design models of parts to constrain certain

design characteristics and to facilitate the propagation of changes throughout an

assembly. By incorporating interface speci�cation objects into part design models,

the work required of designers is reduced since the details are speci�ed only once

in the interface speci�cation object rather than once in each part. Designers can

also invoke automated procedures which use the interface speci�cation object to

analyze force capacity, kinematics, or other design functionality.

Variational relationships in this research are maintained with versioning mecha-

nisms which capture the history of a design as it evolves from conceptual to detailed
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models. With the versioning mechanisms, designers can create alternative design

solutions and views of a design model to facilitate design exploration and concurrent

analysis. By interactively selecting di�erent revisions, views, or alternatives of a

component, designers can build di�erent con�gurations of versioned aggregations,

recover from adverse changes, or analyze multiple alternatives.

By implementing the complexity management framework with relationships be-

tween components, no modi�cations are required to the individual design compo-

nents. Using these relationships, designers can represent interacting components,

conceptual and detailed design models, di�erent design disciplines, design history,

and functional constraints in a single design model, yet each representation can

be independently manipulated and analyzed. By maintaining independence among

design objects, this framework is more easily integrated into other design models

and extended to other design applications.

The aggregation, interaction, and variational relationships of this research are

implemented as fundamental design objects in Alpha 1, a research software sys-

tem for computer-aided design and manufacturing. As Alpha 1 design objects,

the complexity management relationships are easily manipulated and accessed in

the Alpha 1 design environment. This enables the designer to incorporate these

mechanisms into an Alpha 1 design model with no additional procedures or user

interfaces.

A milling machine example demonstrates many of the capabilities of the com-

plexity management framework presented in this research. In this example, the de-

signer focuses on the innovative design of a spindle cartridge which is a particularly

complex sub-assembly with strict requirements on accuracy and tool compatibility.

The designer follows an incremental design process in which part models are derived

from carefully de�ned interface speci�cations that constrain how the parts evolve.

The designer explores multiple alternatives, incrementally re�nes the design by

adding additional detail to existing parts and interfaces, and analyzes the forces

and kinematics of the design model after each increment to identify de�ciencies and

to determine the best approach for proceeding with the design.
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A formula automobile design example illustrates additional capabilities of this

framework. For the formula automobile, designers build a conceptual model which

identi�es the major subsystems of the design. These subsystems are assigned to

separate sub-teams for simultaneous development. Design sub-teams use interface

speci�cation objects to control the evolution of their independent designs and

to validate the compatibility of existing designs for integration into higher level

aggregations. Existing design models, developed prior to the existence of the

complexity management framework, are modi�ed by the designers and integrated

into the complexity management framework. In this manner, designers organize

the existing designs into specialized parts and features, and they separate interface

information which is duplicated in multiple parts. The resulting design models are

more easily understood, and the part speci�cations are reduced by nearly twenty

per cent.

In the milling machine and formula automobile examples, designers use the

complexity management framework presented in this research to perform many of

the activities associated with the design of complex products. Using this framework,

designers have greater control over the evolution of the design model, they can

organize the model to improve understanding, and they can better represent the

information necessary to analyze and manage the design.

8.2 Future Work

To demonstrate the capabilities of the complexity management framework and to

represent key aspects of the milling machine and formula automobile examples, this

research implements a limited sample of manufacturing features, kinematic joints,

and mechanical connectors. While the framework supports the representation

of a wide variety of design information and does not require features, joints, or

connectors, these abstract objects greatly simplify the analysis and management of

complex design information. The implementation of additional joint combinations,

connectors such as gears or springs, or additional manufacturing, assembly, or func-

tional features would enable this complexity management framework to represent
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other design problems or application areas.

In Alpha 1, persistent data is maintained in individual �les with no common

links between these �les. The versioning and reuse capabilities of the complexity

management framework, in particular, would be considerably more powerful if

design objects were accessible through a common database. Since the automated

mechanisms are implemented as software objects inC++, database management ca-

pabilities could be accommodated by many commercially available object-oriented

database management systems.

This framework improves a designer's ability to manage the many relationships,

design objects, and aggregations which might exist in a complex design; however, it

is still di�cult for a designer to visualize the hierarchical decomposition structures,

related versions, or interacting components. A hierarchical browser, which tra-

verses the complexity management relationships available in this framework, would

signi�cantly enhance a designer's ability to visualize and navigate complex model

structures and design histories.

While the relationships in this framework provide a focal point for representing

any type of design information, no single tool is likely to provide all of the analysis

and design capabilities required in a complex design. Instead, some of the data will

need to be transformed into di�erent formats for compatibility with other tools.

While this framework facilitates the extraction of information, the framework would

be more useful if it could be shared among multiple tools. This would also enable

separate design teams using di�erent design tools to share their design data. This

is a likely scenario where di�erent companies develop individual sub-assemblies

of a design. To accommodate data sharing, a standardized data representation

must be developed for the aggregation, interaction, and variation structures in this

framework.

A signi�cant motivation for this research was the possibility for adapting the

complexity management framework for use in other design areas such as software

design. Many of the capabilities and activities are similar including, among oth-

ers, hierarchical decomposition, simultaneous design, evolution from conceptual
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to detailed design, and reuse of existing components. Although versioning and

aggregation mechanisms are already available in software design tools, interaction

information is typically embedded within the actual components and exported via

a public interface such as that for a C++ class. Changing the interface generally

requires a change to the associated object or class. If the interfaces between

software objects were speci�ed in independent relationships similar to the interface

speci�cation objects in this research, designers would have increased 
exibility for

ensuring object compatibility and for reusing existing objects. This would improve

the development of software building block objects which could be incorporated

into other designs to reduce the need for reprogramming these objects each time

similar functionality is needed.
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