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ABSTRACT

This dissertation presents techniques for direct haptic rendering of complex

trimmed NURBS models. More specifically, the research concentrates on devel-

oping a complete collection of algorithms for haptic interaction with Computer

Aided Design (CAD) models without requiring any intermediate representations

or simplifications. The complex underlying structure of trimmed NURBS further

compounds the difficulty of haptically rendering them. However, for many reasons,

trimmed NURBS are a highly popular CAD representation. This approach allows

users to interact haptically with the massive collection of real-world NURBS models.

The design and implementation of a target application, APE (Active Prototyp-

ing Environment), as a test-bed system that integrates haptic rendering into the

Alpha 1 modeling package is described. Among the algorithms required for such

interaction are model proximity; global and local closest point tracking; surface

evaluation of contact point, normal and tangent vectors; and rapid and robust

transitioning across trimmed edges. Since current computer systems are not pow-

erful enough to perform all of the necessary tasks within the alloted time using a

single processing thread, distributed system techniques, including multiplatform,

multiprocessing and multithreading, are also presented. In addition, an approach

to verify the quality of a haptic algorithm is presented and applied to direct haptic

rendering.
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CHAPTER 1

INTRODUCTION

Current modeling systems offer limited feedback to a model designer. The

passive graphical display of complex models can convey only limited visual infor-

mation. Even with the array of presentation options supplied to a user by modeling

packages, such as iso-line drawings, shaded images, and animations, the designer is

often left without information that could easily be gathered if the model could be

interrogated by touch [1].

One promising approach for increasing the information available to a designer

is haptic rendering. Haptic rendering supplies touch feedback to the user by

simulating the forces generated by contact with, and surface tracing of, a virtual

model. In conjunction with visual feedback, haptic rendering increases the level of

interaction. This facilitates a greater understanding of complex models and adds

to the sense of realism in virtual environments [23, 24, 63].

While the graphical display of a model is almost exclusively accomplished by

first converting it to a collection of polygons, the model itself often starts with a

different geometric representation. In fact, a master CAD model is almost always

described by NURBS throughout its life [44]. Being a parametric representation,

NURBS surfaces have the advantage of compactness, higher order continuity, and

exact computation of surface tangents and normals. All of these properties are

useful in complex, realistic virtual environments [57].

The ability to trim away arbitrary portions of a NURBS surface and define

adjacencies under boolean set operations is a powerful extension to many modeling

packages. These constructive solid geometry results form a large class of models

which can be expressed much more readily and succinctly using trimmed rather than

nontrimmed NURBS. Furthermore, the use of trimmed NURBS is fairly widespread,
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making it important for a haptic rendering algorithm to handle them. This increase

in expressiveness does not come without a cost. Since the trimming curve (or

curves) representing the boundary of a surface is frequently expressed as a piecewise

linear curve with a high number of segments, determining when haptic contact is to

transition from one surface to another can be a complex task. However, once such

a transition is detected, topological adjacency information can allow for efficient

computation of the exact transition point.

The goal of the research reported here is to enable the user to trace directly

on the actual CAD model instead of an intermediate or alternate representation;

achieving the most accurate haptic rendering results. To this end, this research

introduces direct haptic rendering of complex models constructed from trimmed

NURBS surfaces. This approach is realized through development of algorithms

for model proximity testing; fast update of global and local closest point ap-

proximations; computationally efficient surface evaluation and normal evaluation

techniques; and smooth efficient transitioning across trimmed surface boundaries.

Furthermore, these results are extended to include model manipulation, dimen-

sioned probes, and multiple probe contact. A complete system, APE, is presented

as a target application in which the algorithmic results are tested. This distributed

system integrates the haptic rendering results, through various haptic devices, to

Alpha 1 [53, 54], a research CAD package.

1.1 The Problem

CAD systems are not built with real-time interaction as a primary goal. The

focus of CAD systems, secondary to the actual design process, tends to be directed

toward data management, representation, and complexity issues. While this is

appropriate for the overall task of product design, it is not an optimal space for

haptic rendering. Further, even when computation is shifted to concentrate on

haptic rendering of the CAD model, the complexity of trimmed NURBS models

results in their not lending themselves to haptic rate computation.
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Another difficulty in the development of a haptic design environment is that

tight update rate constraints on the visual and haptic displays must be met. It

may be acceptable for the visual display to update at twenty frames per second [9],

but the haptic display must maintain rates of several hundred Hz [40] for the virtual

surfaces to feel solid. Both the visual and haptic display individually tax a system;

therefore, it is necessary to distribute computation onto multiple processors or even

multiple machines [66, 67].

1.2 Trimmed NURBS Models

Non-Uniform Rational B-Spline (NURBS) surfaces are highly compact and yet

very expressive as a representation for modeling. A NURBS surface is a bivariate

vector-valued piecewise rational function of the form

S(u, v) =

∑m
i=0

∑n
j=0 Pi,jwi,jBj,kv

(v)Ni,ku
(u)

∑m
i=0

∑n
j=0wi,jBj,kv

(v)Ni,ku
(u)

, (1.1)

where the {Pi,j} form the control mesh, the {wi,j} are the weights, and the {Ni,ku
}

and {Bj,kv
} are the basis functions defined on the knot vectors {u} and {v} for a

surface of order ku in the u direction and kv in the v direction.

The various properties of a NURBS surface (presented in greater detail in

Appendix A), including a local convex hull property, and the ability to evaluate

surface points, normals and tangents, along with its intuitive control characteristics

make it a good representation for modeling and design. These properties have led

to NURBS becoming the de facto industry standard for the representation and data

exchange of geometric models [44].

Trimmed NURBS models are constructed by cutting away portions of a NURBS

surface using trimming curves in parametric space. In APE, trimming information

is represented in parametric space as directed closed polygons called trimming loops.

Each individual linear portion of the loop is called a segment. An ordered set of

connected segments that represents a shared boundary between two surfaces is

referred to as an edge. The trimming loop being directed enables the classification

of the surface domain. Portions of the surface domain to the “left” of a loop are
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considered cut-away while pieces to the “right” are deemed part of the model. Note

that each surface that is part of a model contains at least one trimming loop. If

there is no portion of the surface being cut away then this loop simply surrounds

the domain of the surface.

Consider the model in Figure 1.1a of a simple disc with a hole cut through it.

The top surface will have two trimming loops within its parametric domain as shown

in Figure 1.1b. Notice that the direction of the two loops indicate that the dark

regions are to be cut away. The outer clockwise loop cuts away the outermost region

while the inner counterclockwise loop cuts away the center region representing the

hole. The edges in Figure 1.1b are illustrated in alternating brightness to indicate

the patch in Figure 1.1a that is adjacent to each edge.

1.3 Haptic Rendering

The goal of a haptic rendering system is to reproduce a sense of physical presence

for a virtual model. One approach to achieving this result is to accurately generate

forces and apply them to a probe attached to a user’s hand or arm. A haptic device

renders the calculated forces and applies them to the probe. These forces, called

restoring forces, resist penetration into the virtual model and are calculated using

(a) (b)

Figure 1.1. A trimmed NURBS model (a) and its parametric domain containing
the trimming loop information (b).
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a response model called a wall model. The more accurate these forces are the more

realistic the simulation of reality.

1.3.1 Haptic Devices

Currently, there are not a large number of commercially available haptic devices.

Those that are available present interesting trade-offs in fidelity, workspace, and

degrees-of-freedom (dof). The device handling feature of APE is object oriented

and as such is extensible to further device development. At the University of Utah

we currently employ two highly disparate haptic devices: the Sensable Phantom

[37] and the Sarcos Dextrous Arm Master [26]. The APE system supports both of

these devices as well as other nonhaptic devices and trackers.

The Phantom (Figure 1.2a) is a small desktop force feedback device. It is a

low inertia device with 6-dof for input and 3-dof for force reflection. This device is

controlled by a Linux Dual 2.4GHz Intel Pentium4 processor based workstation.

The Dextrous Arm (Figure 1.2b) is an advanced hydraulic force-reflecting ex-

oskeleton. It is a high inertia device with 10-dof and a complex dynamic structure.

Among the 10-dof are two for the thumb and one for the finger, allowing force

reflection to two points on the hand instead of one. This device is controlled by a

hybrid PowerPC 604 and Motorola 68040 VME system.

One example of a nonhaptic device supported by APE is the Immersion Cyber-

Touch [12] tactile feedback glove (Figure 1.2c). The glove contains 18 sensors to

monitor the motions of the hand and fingers. Further, it provides small vibrotactile

stimulators for each finger and the palm. When used in conjunction with the

Ascension Bird [5], the hands position can be tracked with 6-dof.

1.3.2 Response Models

There are two basic types of response models: compliance and stiffness. The

compliance model [69] takes force measurements and uses a control strategy to ren-

der acceleration or another form of motion to the probe and the virtual object. The

stiffness model uses measured position to compute and display force. Wall models
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(a) (b) (c)

Figure 1.2. APE supported devices: Sensable Phantom (a), Sarcos Dextrous Arm
Master (b), and Immersion CyberTouch (c).

based on the stiffness response model often have a restoring force proportional to

the depth the probe penetrates into the model [11] and in the direction of the

surface normal at the contact point. The stiffness model is the prevalent approach

used for haptic rendering and the one adopted for APE.

The intrinsic differences in the two haptic devices supported by APE require

different wall model definitions for each. The combination of low inertia and low

friction in the Phantom allows a high fidelity force display to be produced with

a very simple wall model. The wall model, recommended by the manufacturer, is

defined as

F = kpx, (1.2)

where x is the penetration depth and kp is the spring coefficient. For the Phantom

we set the surface stiffness to 1500N/m.

The Dextrous Arm requires a more complex wall model that can compensate

for the inertia of the device. For the Dextrous Arm we use a nonlinear damping

model developed by Marhefka and Orin [35]. The wall model is defined as

F = kpx
n + kvx

nx′, (1.3)

where x′ is the velocity of the probe, and kv is the damping coefficient. Notice that

the penetration depth is present in the second term, which requires that the force

starts from zero during initial contact regardless of velocity. For the Dextrous Arm
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we use a surface stiffness of 6000N/m and through experimentation have found

n = 1/2 to be a sharp and stable exponent value.

1.3.3 Direct Haptic Rendering

At best, a haptic algorithm can accurately reproduce the model upon which

it acts. If this differs from the original even the most sophisticated algorithms

cannot faithfully reproduce the original model. Therefore, the most accurate haptic

rendition of a virtual model is produced when the haptic algorithm acts directly on

the actual model and not an intermediate or alternate representation.

In the modeling and design communities the de facto standard model rep-

resentation is NURBS [44]. Many systems also provide trimming information

that permits constructive solid geometry to be accurately represented. Further,

some more powerful systems provide adjacency information within the models

representation as well. APE and Alpha 1 support both trimming and topological

adjacency information. Obviously, the addition of trimming information to the

model representation complicates the haptic algorithm. The algorithm must detect

not only when a haptic trace exits the surface’s domain, but also any intersection

with trimming boundaries. However, the combination of trimming and topological

adjacency information can be used to both simplify and improve the efficiency of

the haptic algorithm. For example, if a haptic trace crosses a surface boundary,

indicated by an intersection with a trimming boundary, the adjacency information

can be used to efficiently and accurately calculate the contact point on the newly

contacted surface. This allows a collection of trimmed surfaces with adjacency

information to be treated as a solid model, both conceptually and within the haptic

algorithm.

1.4 Active Prototyping Environment

As both a test-bed application and proof of concept, we present the Active

Prototyping Environment (APE). While haptically tracing a virtual model can

provide information to a designer that visual rendering alone cannot, it is the
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combination of these two effects that most completely produces the experience of

tracing a physical model. This convergence of rendering techniques, however, is

neither straightforward nor an obvious combinatoric result.

Using currently available resources, it is not feasible to both visually and hapti-

cally portray a virtual model using a single computational thread. Decoupling the

computation of these two displays into simulation and haptic processes can alleviate

this computational bottleneck, but it introduces the problem of synchronizing the

presentation. For example, when the user feels contact with a virtual model through

the haptic device the visual display should, simultaneously, display the graphical

representation of the haptic device contacting the virtual model. Each feedback

channel re-enforces the other, producing a more powerful, and therefore realistic,

experience.

For this reason, APE is a highly distributed system that attempts to maximize

the use of available resources. Further, concentrated effort was placed on making

all data accessible, without mutex locking, as soon as it becomes available, the

combination of which results in a highly interactive environment with synchronized

visual and haptic feedback.

1.5 Document Overview

The dissertation continues in Chapter 2 with a review of previous work in haptic

rendering and environments that integrate haptic feedback. Chapter 3 focuses on

the ideas that have been developed to solve the Direct Haptic Rendering problem

for trimmed NURBS models. In particular, the problem is decomposed into several

phases and subproblems with a separate section discussing each in turn. Results are

reported for each individual section. Following this, Chapter 4 presents the APE

system by giving both a system overview and by addressing specific implementation

issues. Next, Chapter 5 brings the dissertation to a close with some conclusions

and final remarks. Finally, a collection of appendixes are provided to help explain,

in greater detail, some information related to research topics and data structures

discussed in the earlier chapters.
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PREVIOUS WORK

Many researchers have worked toward bringing the full design process into an

integrated computer design system. Each stage of the design process has been

targeted for research. This section provides an overview of previous work relevant

to the presented research. Primarily, work is included that is aimed at enabling a

user to use 3D input to perform meaningful work within a virtual environment.

Several groups have investigated the problem of bringing the conceptual stage

of design into a 3D environment. Not withstanding Hatvany’s [20] claims that it is

nearly impossible to sketch CAD designs, work in this area has progressed and the

results are becoming more usable.

Others have decided that the ability to store and track early sketches is of more

importance than having the sketch be actually in computer form. This approach is

actually rather sound since design ideas come to designers at random inspirational

moments throughout the day. Therefore, the initial sketches often occur on scraps

of paper found at that creative moment. These systems allow the sketches to be

scanned into image form and kept with the design throughout the design process.

The modeling stage of design is currently heavily supported with solid CAD

systems. Over time, as the power of the computer systems upon which these design

environments run has increased, many modeling systems have added support for a

variety of input and output devices. However, these are generally for the purposes of

visualization, such as the use of a head mounted display, or for passive manipulation,

such as 3D trackers for manipulating a collection of models.

The prototyping stage is important to the design process as the results may

signify the completion of the design. Problems that are not apparent in the design

can often be brought out quickly in the prototype. However, the construction of
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a physical prototype can be very expensive both in cost and time. The necessity

of both cutting costs and bringing products to their fruition more quickly has

given rise to the desire for virtual prototypes. There are three main problems to

making virtual prototypes a reality. These are the construction of an appropriate

virtual environment extension to the design space, development of haptic rendering

algorithms that work directly on the designer’s model, and the integration of these

two components into a single system via distributed computing methods.

2.1 Virtual Environment

An immersive environment permits the designer to enter the design space. This

is a powerful addition that allows the designer to view, manipulate, and explore

the design using natural and intuitive 3D body motions. The transfer of real world

skills into the virtual world in order to make the designer more efficient and reduce

training times is a formidable research challenge.

Current CAD systems provide rather basic visual display capabilities but re-

searchers in other disciplines have been working toward creating realistic virtual

worlds [32]. The first look into an overlaid virtual world was provided by Sutherland

in 1968 with his invention of the first computer graphics driven head-mounted

display [65]. The commercial success of such completely immersive systems has

been limited to entertainment and simulator purposes, but new applications have

been shown to be effective as well.

Architectural walk-throughs [6, 17] have been a success nearly from the begin-

ning. These environments are easy for the user to become immersed within since

they represent something familiar to the user. The combination of relatively simple

and mostly static geometry with algorithms that prune away geometry that is not

visible allows for high display rates.

The Virtual Wind Tunnel was developed by Bryson and Levit in 1991 to allow

testing of aircraft aerodynamics [7]. This was an important step in the virtual

reality community as it proved to be an effective application even though the

computation rate for the simulation was not able to keep up with the display rate.
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They have since improved this system to allow it to be extensible for new devices

and new visualization tools [8].

Medical applications that allow the surgeon or doctor to see a virtual version of

the operating space have also been developed. Augmented displays have been used

to show ultrasound images directly on a patient during ultrasound-guided needle

biopsies [62]. Some researchers have worked on constructing virtual environments

out of helical CT scan data to allow a doctor to fly through a patients colon in

presurgical exams and surgery planning procedures [25].

Much of the virtual environment research has dealt with user interaction meth-

ods for manipulating items within the environment. There are two basic com-

ponents to this problem: selection and manipulation. The different techniques

developed make various trade-offs to meet these goals. Laser beam techniques [39]

provide superior selection but suffer from poor manipulation capabilities. Arm-

extension techniques such as Go-Go arms [51] provide intuitive hand-centered ma-

nipulation but imprecise selection. The worlds in miniature approach [48, 64]

provides both easy selection and manipulation but the usability of this method

may degrade as the environment size and number of objects increases. Image plane

techniques [49] allow hand centered manipulation and simple pointing selection,

however arm fatigue, eye dominance, and the hand obscuring objects all limit this

approach. Only recently has the sense of touch been considered feasible as an

additional channel of input for virtual environments.

2.2 Haptic Rendering

The goal of a haptic rendering system is to produce a sense of contact with a

virtual model. This is accomplished by generating forces that can be applied to the

user’s hand or arm via a haptic device. These forces, called restoring forces, prevent

penetration into the virtual model and are calculated using a wall model. There

are two basic types of response models, compliance and stiffness, with the stiffness

model being most prevalent in haptic rendering systems. Wall models based on the

stiffness model often have a restoring force proportional to the penetration depth
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[11] and in the direction of the closest point’s surface normal. In order to maintain

the stiffness of the virtual surface, the force servo loop must run at several hundred

Hz [40]. This high update rate limits the complexity of the algorithms that can be

used to find the closest point and has also restricted the types of models that can

be rendered.

Zilles and Salisbury have traced polygonal models using a constraint-based

system that tracks a point on the polyhedrons surface [70]. They calculate the

penetration depth and surface normal from the tracked surface point. In order

to portray sculptured models, they recommend interpolating the surface normals

(much like Phong shading in graphics). Systems of this type are often limited

to relatively simple models since too much processing time is required for complex

models with a high polygon count. Ruspini et al. have extended this work to handle

larger polygon counts as well as permit more general graphics primitives, such as

points and lines, to be traced by a dimensioned probe [56].

Adachi et al. [2] and Mark et al. [36] advocate the use of intermediate rep-

resentations to simplify haptic rendering of sculptured models. Stewart [63] also

demonstrated this approach by applying a globally convergent numerical method to

the system of equations describing the orthogonal projection onto a spline surface.

These systems haptically render the model by using relatively slowly changing

planar approximations to the virtual model. This method allows more complex

models to be rendered but is limited when trying to approximate surfaces with

high curvature. Further, since the planar approximations are sampled in time and

not by position, the surface felt by the user is not necessarily repeatable during

multiple tracings.

Free-form surfaces have been traced by Adachi using distribution functions

[1] and by Salisbury et al. using implicit surfaces [58]. Both approaches permit

quality tracing of smooth surfaces. However, parametric surfaces, such as NURBS,

have become the surface representation of choice in CAD. As such, to use these

methods requires a conversion from the original model into one of these other
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representations. This conversion is difficult and often results in models defined by

complex numerically unstable high order functions.

Thompson et al. have demonstrated direct haptic rendering of sculptured models

constructed from NURBS patches [66]. Parametric surfaces such as NURBS have

the advantage of a compact representation, higher order continuity, and exact

computation of surface normals which are all useful in complex, realistic virtual

environments [61]. This method has been extended to support more complex

trimmed NURBS models [68] and to permit the models to be manipulated [67].

Using this method, designers can touch, trace and manipulate a CAD model at

interactive rates without the use of an intermediate representation.

Subsequent to the work described here, Johnson and Cohen followed up upon

the results of Thompson et al. by extending direct parametric tracing to include

second order surface information [28]. Nelson et al. demonstrated surface-to-surface

haptic interaction of sculpted models [42]. Patoglu and Gillespie also presented a

surface-to-surface algorithm [45, 46]. Their method is based on control theory

and maintains the extremal distance even with imprecise seed values. The pair

has also presented a novel closest point tracking algorithm for parametric models

constructed from convex tiling [47]. The approach is shown to be both patch

invariant and globally uniformly asymptotically stable.

Dachille et al. simulated sculpting of surfaces through a physics based approach

[13, 14]. This approach allowed the haptic force to act upon a discreatized repre-

sentation constrained to the NURBS surface representation.

Research has continued using more recently available 6-dof devices. The addi-

tional degrees-of-freedom allow the resulting forces to include torques along with

translational forces.

Kim et al. have created incremental methods for computing the penetration

depth for collections of convex polygonal bodies [33]. The convex decomposition

approach was extended by Otaduy and Lin to include perceptual level of detailing

[43]. This can accelerate haptic rendering of very large models.
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Johnson et al. use spatialized normal cones combined with local descent to

facilitate polygonal model-model haptic rendering [30, 31]. This approach prevents

penetration by deriving repulsive forces and torques and is therefore suitable for

accessibility analysis.

Duan et al. propose a PDE-based surface flow approach [15]. Their work sup-

ports both implicit, distance-field based shape modeling, and dynamic, force-based

shape design. The work was embedded in an immersive stereo environment by Hua

et al. and extended to support locallized model modification [21].

Rather than use a method based on penetration depth, McNeely et al. at Boeing

have created a voxel-based approach [38]. Their system allows for interaction

with the voxelized scene by way of a point-sampled model. By creating the voxel

boundary they insure valid virtual prototyping.

Perhaps the most glaring absence in this body of work is the ability to readily

modify the underlying geometry of the model. Many of the above techniques

require significant preprocessing to setup hierarchical bounding structures in order

to speed contact detection. Others require a conversion from the design into an

alternate form before haptic rendering can begin. Those that use a distributed

model approach complicate geometry modification by introducing synchronization

issues. This problem must be solved if haptic rendering is to be pervasive to the

design process.

2.3 Distributed Computation

In order for a virtual environment to present a realistic and immersive experience

to the user the update rate for the visual display must be kept above 20Hz [9].

Similarly, a haptic display must have an update rate maintained at hundreds of Hz

[40]. Neither display can be allowed to slow the other’s update rate and therefore

each must be run in a separate process. These processes must maintain a consistent

view of the model if the visual and haptic presentations are to produce a realistic,

synchronized, portrayal of the tracing experience. This forces a distributed design

approach that can, if approached properly, drastically improve the quality of both



15

processes within one system. Previous work approached the distributed design

of virtual environments from a slightly different angle. In these prior works the

system needed to be segmented since the components were the visual display and

an environment simulation. The simulation would often run at much slower rates

than the visual display and therefore needed to be placed in its own process. This

would permit the visual display to be kept at a high enough update rate.

The Cognitive Coprocessor Architecture was developed at Xerox as a tool for

building virtual reality user interfaces [55]. This architecture was designed to

support smooth animation and multiple asynchronous interactive agents. This

work was based on the Three Agent Model for supervisory control and interactive

systems developed by Sheridan [60].

Distribution over multiple workstations to support the interactive rates of vir-

tual reality interfaces is a main goal in the IBM VUE system [4]. This system

assigns a workstation to each device including one for each graphics renderer. This

distribution of a single process for each device has become more common since 3D

devices are currently noisy and therefore require filtering. The more data used in

the filter the better it performs. Therefore, a separate process is used to gather

the data from the device at device rates and then supply the filtered results to the

application upon request.

The Decoupled Simulation Model is included within the MR toolkit and provides

low level support for the design of virtual reality environments [59]. This system

provides a unified view of a tracker so that the system need not be recompiled in

order to support new equipment or a new organization of equipment. A separate

process is created for each tracker, the simulation component and for a geometric

model component. This distribution is slightly different from the previous systems

as it allows for dynamic model geometry adjustment. The geometric model compo-

nent supplies different versions of the model to the viewer depending on the current

view update rate.

Adachi et al. [2] and Mark et al. [36] have both presented distributed systems for

haptic environments. The distribution consists of a graphical viewer and a haptic
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control process. The haptic device supplies its position to the viewer so that a

graphical representation of the devices end-effector can be presented for the user.

A simple local representation of the geometry is provided to the haptic controller

by the graphical process so that it can render an appropriate force for the user.



CHAPTER 3

DIRECT HAPTIC RENDERING

The goal of direct haptic rendering is to enable the user to feel the model

actually designed instead of some secondary representation. In addition to an

enhanced tracing experience, using the actual model allows the designer to modify

the model without having to wait for the haptic system to convert the model in a

time-consuming preprocessing step. We break direct haptic rendering of trimmed

NURBS models into several phases.

• The system checks each model for proximity to the probe and activates those

models deemed proximal.

• The tracking algorithm tracks the probe’s global closest point on the model

until contact is made.

• While in contact, the tracing algorithm maps the movement of the probe to

movement of a local closest point along the surface of the model.

• The transitioning algorithm computes the local closest point on an adjacent

surface when the probe’s movement intersects a trimming loop boundary.

As with other forms of haptic rendering, this direct approach must find an

appropriate closest point and surface normal for the force response model. These

computations must cycle at haptic rates of around 500Hz. More specifically, each

instance of these computations must complete in under 1/500sec. Therefore, we

can establish a budget to which the sum of all computations must adhere. The

difficulty in this approach is that the computation of the requisite data requires

surface evaluation, a time consuming operation when dealing with NURBS models.
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Minimizing the number of surface evaluations was therefore one of the primary

goals in the development of this approach.

3.1 Local vs Global Closest Point

The APE system uses two types of closest points: local and global. When the

probe is in contact with a surface, the tracing algorithm uses a local closest point

to determine the virtual point of contact with the model’s surface. However, when

the probe is not in contact, a global closest point is used to track the next possible

contact point. By using a global closest point, our system ensures proper contact

detection by permitting the closest point to jump across concavities and to climb

convex regions. Figure 3.1 illustrates the different closest point requirements.

During tracing, the probe (or end-effector in robotics terms), E, moves to a

location resulting in the local closest point, CL, becoming bound to the intersection

of two surfaces (Figure 3.1a). This is the correct response: the probe is trying

to move inside a second surface and should be restricted from movement in that

direction. If the same algorithm was used for tracking, a similar scenario could

occur (Figure 3.1b). Again the probe moves to a location resulting in the tracked

point being bound to an edge. In this case, however, the closest point should not be

bound since the tracked point is used to indicate the next possible point of contact.

In fact, if the probe were to continue along the current path and intersect the model

(Figure 3.1c), the contact would not be detected since the penetration would not

occur at CL. Instead, the global closest point, CG, is the proper point of contact.

Once the model has been contacted, the surface intersected is deemed current.

A virtual point of contact must be tracked that shadows the probe’s movement

locally on the current surface until either contact is lost or a transition occurs.

Regardless of the haptic algorithm, a global closest point can not be used without

producing several problems [66, 70]. Among these problems are pushing through a

model, force discontinuities, and inability to generate sufficient restoring forces due

to lack of penetration depth.
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(a) (b) (c)

Figure 3.1. A local closest point, CL, bound to a surface crease is desired for
tracing (a) but not for noncontact tracking (b) where failing to use a global closest
point, CG, would result in a missed contact detection (c).

All three of these problems are illustrated in Figure 3.2. The model in this figure

is a narrow rectangle constructed from multiple surfaces. Figure 3.2a shows the

probe entering the model through surface S1, which results in CL being established

as the current local closest point. The probe then continues to move into the model,

resulting in one of two possible new configurations.

Our method holds S1 as the current surface, therefore CL stays on that surface

resulting in a restoring force that is larger in magnitude but in the same direction

as the previous iteration (Figure 3.2b). However, if a global closest point, CG, was

used then a force smaller in magnitude and opposite in direction than that of the

previous iteration would result (Figure 3.2b). This clearly is not the characteristic

one would want since it results in the probe pushing through the model, the force

becoming discontinuous, and the penetration depth not growing high enough to

generate a sufficient restoring force.

Generating a discontinuous force is possible not only when pushing through a

model, but also at any time the global closest point differs from the local closest

point. Consider the case illustrated in Figure 3.3. In this example, contact has

been established with S1 resulting in the given CL (Figure 3.3a). The probe then

moves to a position that results in a CG that is not equal to CL (Figure 3.3b). Our

system would continue to generate restoring forces toward S1, but a system that
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(a) (b)

Figure 3.2. Contact established at point CL (a). Use of global closest point, CG

(b), would accelerate the probe through the model.

(a) (b)

Figure 3.3. Contact established at point CL (a). Use of global closest point, CG,
would cause a slip to be induced off the model (b).

uses CG would end up pushing the probe in a direction that it is already traveling,

accelerating the probe off the model.

Another reason for using a current surface and CL instead of CG is to enable

our system to trace out sharp edges (Figure 3.4). Consider a configuration where

the probe has established contact with a model as in Figure 3.4a. The probe then

moves out toward the edge (Figure 3.4b). CL rests near the edge of S1 while CG not

only lies on S2 but would result in a negative penetration depth. Using CG in this
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(a) (b)

Figure 3.4. Contact established at point CL (a). Use of the global closest point,
CG, would induce an artificial edge (b).

case would result in a zero restoring force, effectively portraying the probe falling

off an edge that is not present in the model. Instead, our method would use CL

until the probe moved out past the edge of S1 and then transition over the edge.

3.2 Proximity Testing

The haptic rendering algorithm presented needs to track only a single point per

model per probe. However, it is still advantageous to keep the number of active

models to a minimum. Doing so saves processor time which helps maintain high

update rates as well as allowing for a more densely populated environment. To

this end, our system checks the proximity of the probe to each model as the probe

moves throughout the environment. We establish four levels of proximity: distant,

near, active and current.

3.2.1 Four Level Control

By using four levels of proximity we can distribute the computational resources

of our system to tasks that require highest priority. A model is termed distant

if it cannot be reached by the haptic device (Figure 3.5). Such a model is of no

interest to the haptic process since it is not a model that can be contacted by the

haptic device. These distant models must still be checked for proximity since within
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Figure 3.5. Model proximity for distant models is tested in the simulation process
but no actual point need be determined. Near and active models require a global
closest point with active models using a hybrid approach. The current model require
a locally closest point.

a dynamic environment their status may change or the user may manipulate the

view in such a way that the model moves to within the workspace of the haptic

device. Since this computation is low in priority it is done within the simulation

process. Neither an exact closest point nor an exact distance is required to make

this determination. Using an algorithm that utilizes a LUB-Tree [27], we are able

to determine whether a model is within a given distance and then abort the search

without computing an exact answer. This approach makes it possible to test models

more quickly, therefore allowing more models to be tested.

Once a model is proximal enough to be within the device’s workspace the haptic

process is signaled and the model is deemed near. At this point a global closest

point, CG, must be tracked on the model for the given probe within the haptic

process (Figure 3.5). A model that is near, can be reached but is not a candidate for

immediate contact. For this reason a lower priority is placed upon this computation

than that for a model that is active.

An active model is one that is close enough to the probe that within the time

it takes to compute a global closest point the probe may contact the model. Since

the probe is still not in contact, a global closest point is required. However, the
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tracked point needs to be computed at haptic rates. We use a hybrid approach that

uses a local closest point between global closest point updates. The combination

provides a good approximate to the true global closest point but at haptic rates,

CH , (Figure 3.5).

The final level of proximity, current, is when the probe is actually in contact

with the model (Figure 3.5). This state requires the highest computation priority

since it is in this state that forces are actually applied to the user. When current, no

global closest point is tracked since a local closest point, CL, is required for haptic

tracing. A model remains current until contact is no longer present. At that point

the model returns to being active and a global closest point is once again tracked

along its surface.

3.2.2 Proximity Testing Results

The four level control methodology has proven to be highly effective at producing

quality proximity testing. By default, the value for distant is computed as the size

of the device workspace plus the distance a user can move the device within the

amount of time it takes for a near message to be sent to the haptic process. This

does not need to be exact but should err on the side of too loose rather than too

tight so that in the worst case a model is deemed near too early.

The value for the active distance must be set to a value equal to or greater

than the distance the user can move the device within the time it takes the haptic

process to compute the next global closest point. This is not an easy number to

establish as the more complex the model, or the more complex the scene within

the haptic process, the slower the overall rate of the process. Therefore we chose

a distance that assumes the worst case for our hardware and a hypothesized scene

complexity, which would be 10cm.

Perhaps the most important point to gather from this approach is that these

proximity values are system specific. As hardware improves, given the same im-

plementation, these value can be reduced. Further, the performance of the system
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can be monitored and the values adjusted dynamically. Both approaches allow for

more complex models and scenes.

3.3 Contact and Tracing

At the heart of a haptic system is its ability to detect the contact of the probe

with a virtual model and to simulate the act of tracing along the surface of the

model. Contact occurs when the probe first intersects the virtual model with

a positive penetration depth. Similarly, if after contact the penetration depth

becomes negative then contact is lost. The penetration depth is calculated by

projecting the probe onto the surface normal. In our system, surface normals point

out of a model. The projection must therefore be negated to result in a positive

penetration depth when the probe is within the model.

Once contact has been established, any lateral movement along the model’s

surface indicates tracing. As the probe moves, a local closest point on the surface

of the model is found to shadow the probe’s movement. The accuracy of the

computation for this closest point and its associated normal is essential since the

restoring force calculation depends directly upon these results.

We relate movement of the probe to movement along the surface using direct

parametric tracing (DPT) (Figure 3.6). This method works directly on the paramet-

ric surface and is fast enough to track a local closest point at haptic rates, making

it suitable for direct haptic rendering [66]. For clarity, we derive the method on

a NURBS curve and then show how the method is applied to NURBS surfaces.

Appendix A defines NURBS curves and surfaces and derives some of their useful

properties.

3.3.1 DPT on Curves

The DPT method is seeded with an evaluation point γ(u∗), calculated using

refinement [10, 52] where u∗ is the coordinate for the point of contact (Figure 3.6a).

At each time step as the probe moves (Figure 3.6b), the DPT method uses the

previous point on the curve γ(u∗), the tangent vector at γ(u∗), γ′(u∗), and the
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(a) (b)

(c) (d)

Figure 3.6. Direct Parametric Tracing. Initial state (a). Probe moves (b).
Projection of probe onto tangent (c). New evaluation point and tangent plane
via parametric projection (d).

current probe location, E, to determine a new approximate closest point on the

curve.

The velocity curve, γ ′(u), relates changes in position along the curve in Eu-

clidean space to changes in position in parametric space (Equation 3.1).

γ′(u) =
dγ

du
≈

∆γ

∆u
. (3.1)

Given an Euclidean movement along γ(u), the corresponding movement in the

parametric space of the curve is calculated as,

|∆u| ≈
‖∆γ‖

‖γ′(u)‖
. (3.2)
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In order to use Equation 3.2 as a closest point tracking method, movement

of the probe needs to be related to movement of the closest point on the curve.

The exact ∆γ, corresponding to movement of the closest point along the curve,

clearly involves finding the desired new closest point. Instead of finding an exact

∆γ, a linear approximation to the curve, the tangent γ ′(u), is used to compute an

approximate ∆γ. The movement of the probe can now be related to movement

of the closest point along the curve by projecting the offset vector, ψ , formed by

subtracting γ(u∗) from E, onto the curve tangent vector (Figure 3.6c). Thus,

∆γ ≈
〈 ψ , γ′(u) 〉

‖γ′(u)‖2
γ′(u). (3.3)

The equation for the velocity of a NURBS curve is derived in detail in Ap-

pendix B. The general form of the equation is given by,

γ′(u) = (k − 1)

∑n
i=1

∑n
j=0

wiwj(Pi−Pj)+wjwi−1(Pj−Pi−1)

ui+k−1−ui
Bj,k(u)Bi,k−1(u)

(

∑n
j=0wjBj,k(u)

)2 . (3.4)

The contact point, γ(u∗), is found by evaluating the curve with refinement by

inserting k − 1 knots into the knot vector with the value u∗. This results in a new

knot vector {ûi}, new weights {ŵi}, a new control polygon {P̂i}, and new basis

functions {B̂i,k} defined on the new knot vector. Further, γ(u∗) = P̂i∗ where i∗ + 1

is the location of the first knot in {ûi} with the value u∗. The properties of the

refined curve result in a greatly simplified form for Equation 3.4. Only two basis

functions remain active, B̂i∗,k(u
∗) and B̂i∗+1,k−1(u

∗), with both having a value of

one. The resulting simplified equation is,

γ′(u∗) =
(k − 1)

ûi∗+k − ûi∗+1

ŵi∗+1

ŵi∗
(P̂i∗+1 − P̂i∗). (3.5)

Since we wish to track points that are actually on the curve, Equation 3.2 is

used to convert back into parametric space. The key to efficient computation of

∆u is Equation 3.5. The control polygon through γ(u∗) lies in the tangent to the

curve, and the parametric velocity is calculated using only the control polygon,

knot vector, and curve order.
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Using this simple relation and the linear equation for ∆γ (Equation 3.3), Equa-

tion 3.2 can be expanded into

|∆u| ≈
‖∆γ‖

‖γ′(u∗)‖
≈

∣

∣

∣

∣

∣

〈 ψ , γ′(u∗) 〉

‖γ′(u∗)‖2

∣

∣

∣

∣

∣

. (3.6)

The sign of ∆u is determined by the sign of the projection in Equation 3.3.

This is directly related to the dot product in the numerator of Equation 3.6. Since

the numerator is the only term in Equation 3.6 that is signed, the absolute value

signs can be removed. The constant term representing the parametric speed can

be factored out leaving the result,

∆u ≈
〈 ψ , (P̂i∗+1 − P̂i∗) 〉

‖P̂i∗+1 − P̂i∗‖2

(

ûi∗+k − ûi∗+1

k − 1

)(

ŵi∗

ŵi∗+1

)

. (3.7)

The new curve location, γ(u∗ + ∆u), is a good approximation to the closest

point to E. The new closest point is evaluated through multiple knot insertions at

u∗ + ∆u , which maintains the conditions needed to use Equation 3.7 at the next

time step (Figure 3.6d).

Essentially, we make a first order approximation of the closest point movement

in Euclidean space with the tangent projection. The closest point movement is

converted into parametric movement through a first order approximation to the

parametric velocity at the previous closest point. The new closest point is then

converted back into Euclidean space through curve refinement and evaluation.

For small step sizes and penetration depths, which is the case for haptic rate

computations, this provides an excellent approximation.

3.3.2 DPT on Surfaces

The spatial movement of the probe is related to movement along a surface by

projecting onto the surface tangent plane at the previous tracked point. There are

an infinite number of tangent vectors at any surface evaluation point. To form

the tangent plane we require only two, but need the two selected to be linearly
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independent in order to form a basis for the tangent plane. A good choice for these

tangent vectors is the partial derivatives with respect to u and v,

Tu =
∂S

∂u

∣

∣

∣

∣

∣

(u∗,v∗)

, Tv =
∂S

∂v

∣

∣

∣

∣

∣

(u∗,v∗)

, (3.8)

since they can be computed efficiently. This efficiency derives from using surface

refinement to calculate the evaluation point S(u∗, v∗). This refinement results in

new knot vectors {û} and {v̂}, new weights {ŵi,j} and a new control polygon {P̂i,j}

where P̂i∗,j∗ = S(u∗, v∗). Furthermore, the i∗ column and j∗ row in the control

mesh form control polygons for iso-curves that pass through the evaluation point

P̂i∗,j∗. This allows the two tangent vectors to be calculated efficiently from the

refined surface as if they were curve tangents,

Tu∗ = (k−1)
ûi∗+ku

−ûi∗+1

ŵi∗+1,j∗

ŵi∗,j∗
(P̂i∗+1,j∗ − P̂i∗,j∗),

Tv∗ = (k−1)
v̂j∗+kv

−v̂j∗+1

ŵi∗,j∗+1

ŵi∗,j∗
(P̂i∗,j∗+1 − P̂i∗,j∗).

(3.9)

Since the tangent vectors need not be perpendicular to each other, it is incorrect

to find the probe’s coordinates within the tangent plane by projecting the offset

vector onto the tangents using orthogonal vector projection. Instead, we relate the

offset vector to a frame formed by the tangents and their cross product,

ψ = aTu + bTv + c(Tu × Tv), (3.10)

where a is the amount of movement along the surface in the direction of Tu, thus

equal to ∆u. Similarly, b = ∆v. The value of c represents the penetration depth

of the probe in relation to the closest point from the previous time step and is

therefore not needed. To solve for a and b we form a system of two equations in

two unknowns by taking the dot product of Equation 3.10 with each tangent in

turn. The resulting system is then,

[

〈 ψ , Tu 〉
〈 ψ , Tv 〉

]

=

[

〈 Tu , Tu 〉 〈 Tv , Tu 〉
〈 Tu , Tv 〉 〈 Tv , Tv 〉

] [

∆u
∆v

]

(3.11)
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where the final term in each case has been eliminated since the resulting dot product

will always equal zero. This system is solved efficiently using Cramer’s Rule since

the tangent vectors chosen are linearly independent,

∆u =
〈 ψ , Tu 〉〈 Tv , Tv 〉 − 〈 ψ , Tv 〉〈 Tu , Tv 〉

〈 Tu , Tu 〉〈 Tv , Tv 〉 − 〈 Tu , Tv 〉〈 Tu , Tv 〉
,

∆v =
〈 ψ , Tv 〉〈 Tu , Tu 〉 − 〈 ψ , Tu 〉〈 Tu , Tv 〉

〈 Tu , Tu 〉〈 Tv , Tv 〉 − 〈 Tu , Tv 〉〈 Tu , Tv 〉
.

(3.12)

Notice that the 2 × 2 matrix in Equation 3.11 is actually the first fundamental

form for surfaces. This quantity is invariant under coordinate transformation and

derives from calculations that determine distances between points that lie on a

surface.

3.3.3 Surface Evaluation

The DPT method is very efficient at finding the step size for the tracked

point given a new probe position. This efficiency derives from the use of the

control mesh and knot vectors of a surface evaluated at the tracked point from the

previous time step. The majority of the time spent in the DPT method is spent

performing this surface evaluation. It is possible to evaluate the surface by using

the weighted combination of the control points computed through evaluation of the

basis functions. This evaluation technique is not appropriate for DPT, however,

since it also requires surface tangents.

A second approach to evaluating a surface is to use refinement [10, 52]. The

process of surface refinement is to insert new knots into either knot vector. Multiple

knots can be inserted in a single pass, but into only one of the knot vectors at a

time. Depending on which knot vector is chosen, either a new row or column of

control points is created for each knot inserted. When a new row is created the value

of each new control point is calculated as the weighted sum of neighboring control

points from the original mesh that lie in the same column. These surrounding

control points also take on a new value based on a weighted sum of neighboring

control points. The number of control points that contribute to the weighted sum

is bounded by the order of the surface in that direction minus the number of knots



30

inserted with the same value. In the limit, as knots are inserted in both knot vectors

this process produces a control mesh that tightly approximates the surfaces.

Given a surface that is of order ku in one direction and kv in the other, inserting

ku − 1 knots with the value u∗ into the {û} knot vector and kv − 1 knots with the

value v∗ into the {v̂} knot vector results in one of the new control points being

an evaluation point S(u∗, v∗). The control point in the new control mesh is P̂i∗,j∗,

where the value of i∗ and j∗ are one less than the index of the first knot of value

u∗ and v∗ in their respective new knot vectors. As a side effect of this process,

tangent vectors can be efficiently calculated using the new control mesh and the

knot vectors (Equation 3.9).

The process of refinement is accomplished via the use of an alpha matrix [10].

This matrix holds blending coefficients that, when applied to the original control

mesh, produce the new refined control mesh. In the case of DPT, however, we do

not require a complete new control mesh. DPT requires only the surface evaluation

point and the two neighboring mesh points that determine the direction for the

two tangents. The value of each entry in the alpha matrix is not dependent on any

other, so we produce only those columns necessary for the needed points. Due to

the property of local control in a NURBS surface, a point in the new control mesh

will be the weighted sum of at most order number of points from the original mesh.

In the first pass, when refining the {û} knot vector, we have the complete original

control mesh as input. The output from this pass is a control mesh that is kv rows

by two columns. The two columns correspond to i∗ and i∗ +1 while the kv rows are

needed as input to the second pass for refining the columns. The second pass results

in a two by two control mesh that holds the three requisite points plus one unused

point. This is the minimum computation that can be performed to accumulate the

necessary information through refinement. Further savings can be found through

caching the alpha matrix for reuse in each pass. This computation is considered

local since the order of the surface alone determines the necessary size for both the

alpha matrix and the intermediate control mesh. The size of the surface’s control
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mesh does not matter. The overall complexity, in both memory and time, for this

approach is therefore determined solely by the order of the surface.

3.3.4 Trim Tracing

Another form of tracing is that of tracing along the intersection between sur-

faces. This intersection is defined by the trimming information. The intersection

between two surfaces is a single trim edge made up of perhaps multiple trim seg-

ments (Figure 3.7a). It is also possible for an intersection that appears continuous

on the model to actually be a collection of edges in series (Figure 3.7b).

It is possible to build a separate data structure that represents all of the surface

intersections as a collection of segments. However, doing so would significantly

increase model preprocessing time when in fact such a structure is not necessary.

Since adjacency information is available for all trim segments, moving along the

intersection, from edge to edge, is not computationally intense (Section 3.5.5).

Trim tracing relates closely to DPT. The trim tracing algorithm must slide along

the intersection in Euclidean space to a point locally close to the probes position.

The algorithm projects the probe onto the current trim segment. If the projection

is beyond either endpoint of the segment then we continue to project onto segments

(a) (b)

Figure 3.7. Intersection of two surfaces formed by a single edge (a). Intersection
along multiple surfaces requires multiple edges even though visually the intersection
is the same (b).
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along the loop in that direction until a local minimum is found. The final segment

is the one that the projection results in a value bounded as [0, 1) for that segment.

This removes any ambiguity at segment endpoints.

If the final projection was internal to a segment, meaning not at its endpoint,

then that projection is the final result. However, if the projection was at the

segments endpoint then it is possible that the slide should continue along the

intersection, but on an edge from an adjacent surface. For example, consider

the intersection in Figure 3.8a. Given the probes movement from X to Y the

slide along the trim will cease at the intersection of all four surfaces. Figure 3.8b

illustrates the trim segments at this multiple surface intersection point. The initial

slide results in trim segment B being the final result. Note that this is the case due

to the constraint on the projection value being [0, 1) for the segment, which rules

out segment A. Since this result is at an endpoint the adjacent segment is found

and trim tracing continues. In this case, the adjacent segment may appear to be

segment C; however, this would not satisfy the bound constraint. The adjacent

segment is actually segment D.

The algorithm terminates under two conditions. First, as mentioned previously,

the algorithm halts if the projection lies internal to a trim segment. This should be

(a) (b)

Figure 3.8. Geometric view of trim trace(a). Multi-surface intersection point
represented by their trim segments (b).
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obvious as the result would not be different if the adjacent segment was used since

it is identical to the final segment. The second case is that of the final result being

at a segment endpoint. If a trace ends at a trim endpoint, the adjacent segment is

found. If the trace for this, and each subsequent adjacent segment found, results

in a halt at an endpoint, without any sliding to neighboring segments, the original

segment will be found again, completing the cycle. This signals that the local

closest point on the trim is at a multiple surface intersection point and that the

algorithm should halt.

3.3.5 Boundary Normal

During haptic tracing along a surface, the normal used for both force reflection

and contact detection is the actual surface normal of the tracked point. This normal

is found by normalizing the cross product of the two tangent vectors used to form

the tangent plane. However, if the tracing determines that the closest point lies on

the boundary of two or more adjacent surfaces, such as during trim tracing, then

a special vector must be constructed for use as the boundary normal. This vector,

NB would then be used for both contact detection and force calculation.

Consider Figure 3.9a. If point E lies within the shaded area then the closest

point (either CL or CG) will be on the edge between S1 and S2. The entire shaded

area is outside the model. If the normal for S1, N1, is chosen for NB and E is

within the lower shaded area, a positive penetration depth would result and indicate

contact with the model. Since E lies outside the model, this result is deemed a false

contact. Similarly, if E is within the shaded area at the top and N2, the normal

for S2, is chosen for NB an incorrect penetration depth would be computed and

again a false contact would result. Figure 3.9b illustrates the converse where the

entire shaded area lies within the model. In this case, if E lies within either the

top or bottom shaded area a negative penetration depth would be computed if the

incorrect normal is chosen. The result is an incorrect release from the model.

Consider first the case of the probe being in contact with the model and the

tracked point lying on a surface intersection. In this case, a good solution for
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(a) (b)

Figure 3.9. The choice of normal at a surface boundary requires special care.
In both (a) and (b) neither surface normal correctly classifies both shaded areas.
However, NB correctly classifies all areas.

NB is the normalized vector formed by subtracting E from CL. This vector

points out of the model and can therefore be used in contact detection and force

reflection. Further, it produces a smooth C1 transition from one surface to the next

(Figure 3.10a). Similarly, when the probe is not in contact with the model and the

tracked point lies on a surface intersection, the negation of the above formulation

can be used for NB. Again, this vector will point out of the model and produce

a C1 transition across surface boundaries (Figure 3.10b). However, this raises the

problem that the direction of the boundary normal requires previous knowledge of

the probe’s contact status.

The construction of the boundary normal is the same regardless of contact status

up to the point of the possible final negation. For this reason, we form NB under

the assumption of no contact since this formulation is simply the normalized offset

vector ψ. This vector is then negated if it points into the model.

At this point we make a couple of observations about the collection of surface

normals, Ni, calculated from the adjacent surfaces, Si. If there are only two adjacent

surfaces then the two normals define the edge. If there are more than two normals

then every pair of normals defines a virtual edge in the model. Given that there are

n surface normals, there are (n

2 ) virtual edges. The angle between any two normals
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(a) (b)

Figure 3.10. The boundary normal, whether the probe is inside (a) or outside (b)
the model points out of the model and produces a smooth transition.

must be less than π since any larger angle would define a negative volume between

the associated adjacent surfaces. Further, since all Ni are less than π apart from

all other Ni, all Ni must lie within a single hemisphere of the unit sphere.

Since all Ni exist in a single hemisphere, there exists a single vector that best

represents the collection. This vector, NA, is the axis of the tightest cone bounding

all Ni. This cone also bounds all space points that map to the CL lying along a

surface intersection since the extremal Ni also represent edges of the open-ended

polytope bounding this space. Therefore, if the dot product of NB and NA is

negative then the boundary normal must be negated to point out of the model.

The problem of calculating a boundary normal is therefore reduced to finding

NA. However, it can be shown that if Ni are taken as points on the unit sphere

then NA must pass through the closest point from the origin to the 3D convex hull

of that point set. A proof of this is presented in Appendix C. Further, the convex

hull of Ni is exactly defined by the points Ni since any collection of points on a

sphere define their convex hull. We use Gilbert’s algorithm [18] to find this closest

point, and therefore NA, in linear time.
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3.3.6 Eliminating False Contacts

Proper selection of a boundary normal eliminates one form of false contact;

however, a second form can arise if the tracking algorithm produces sufficiently

incorrect results in an area of high curvature (Figure 3.11a). While the error from

the tracking algorithm is generally small, its use of the tangent plane as an approx-

imation to the surface is less correct in areas of high curvature. This can result in

larger errors, especially as the distance to the surface increases (Section 3.3.8).

To eliminate this form of false contact, after determining what side of the

tangent plane the probe lies, we check the accuracy of the tracked point. We

form a new offset vector ψ∗ by subtracting the current tracked point, γ(u∗), from

the probe location, E, and then normalizing. If the tracked point is exact then the

surface normal and ψ∗ will be coincident. Therefore, a good measure of accuracy

is the angle between these two vectors. Since the tracking algorithm produces an

approximate closest point there will typically be some angle between these vectors.

However, as shown in Section 3.3.8 the error is usually very small.

As a result, our solution is to construct a contact cone that ψ∗ must lie within

for contact to be detected (Figure 3.11b). Essentially, we are placing a tighter

constraint on contact detection by selecting an angle of confidence that reflects the

worst case we are willing to accept. The choice for this angle is dependent on the

error of the tracking algorithm when a model is active. Since a model is deemed

active at a specific distance the selection of the angle for the contact cone can be

easily chosen. In practice, we have found that 25 degrees works well at eliminating

false contacts while not discarding true contacts.

It is important to note that since the application of forces to the user during

contact keeps the probe very near the surface, a false release is generally not a

problem. For this reason, we do not use this accuracy based approach for release

detection.
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(a) (b)

Figure 3.11. High curvature and distance can result in false contact (a) unless a
tighter bound on contact is used (b).

3.3.7 Internal Edges

It is necessary to use the boundary normal generation algorithm discussed above

whenever there is an edge in the model. Edges can occur internal to a single surface

as well as where multiple surfaces are adjacent to one another. If a surface knot

vector of order k has k−1 knots of equal value the surface will be only C0 continuous

along the iso-curve at that value. It is possible for the surface to still be smooth

across this iso-curve despite the drop in continuity, such as during knot insertion

for surface evaluation. However, it is possible for the surface to form a sharp edge

at any point along the iso-curve. Any sharp edge on a surface that is not formed

by a trimming loop is called an internal edge.

At such a parametric location the tracing algorithm can not insert knots for

refinement in order to produce a new control mesh. The original control mesh

could still be used to form the surface tangents, but it is possible that the tangents

on each side of the internal edge will be different. The tracing algorithm assumes

that the tangent plane forms a good approximation to the surface, but at such an

edge this is obviously not the case.

To alleviate the need for special purpose code to detect and properly handle

these internal edges, we eliminate them. As a model is input into the system it is
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checked for internal edges. Each surface that has an internal edge is subdivided

into two surfaces with their shared edge being the previously internal edge. Thus,

the internal edge is replaced by a trimming edge along the boundary of the two new

surfaces. The resulting model will have more surfaces than the original; however,

since the tracing algorithm is model based, the increase in surface count does not

adversely effect the performance of the trace algorithm. In fact, it has the converse

effect of maintaining the algorithm’s performance.

3.3.8 Contact and Tracing Results

Using the Phantom, we traced a number of virtual models with direct parametric

tracing and recorded the results. One measure of the quality of a haptic rendering

is the amount of penetration depth into the model. A lower penetration depth

indicates better surface normal and penetration depth calculation. However, having

a small average penetration depth is not sufficient to demonstrate a smooth tracing

experience. Penetration depth must also be shown to be consistently near the mean.

Table 3.1 shows that DPT easily meets the 500Hz goal for all models tested.

The accuracy is approximately the same for all models. The mean is given to show

the average penetration depth, but perhaps the better measure is the median. The

median shows a lower value than the mean, which demonstrates that the depth

produced by the trace is typically lower than the average. The maximum depth is

near the mean which shows good contact response by DPT. The final two columns

Table 3.1. DPT tracing results

Update Trace Depth Percent Below
Model Rate Samples Mean Median Max Mean 3mm
Cube 8426 1940 3.57 2.85 5.61 64.95 52.78
Goblet 1182 2310 3.30 2.01 6.27 81.00 78.53
Teapot 2142 2522 4.30 3.37 6.85 76.45 36.48
Brake 2451 2000 3.33 2.28 5.30 76.03 66.50
Gear 1671 2000 4.06 2.99 8.18 77.80 50.30

DPT update rate in Hz, mean, median, and maximum penetration depth in mm,
and percent samples below the mean and 3mm.
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show the percentage of the trace that resulted in values below the mean and below

a good 3mm trace depth.

To further illustrate the consistency of the trace algorithm, histograms are given

in Figure 3.12 for the goblet, teapot, brake, and gear models. These histograms

show a tight distribution of penetration depths with peaks at less than 4mm. The

combination of Table 3.1 and Figure 3.12 illustrate a consistent and smooth tracing

experience.

Surface evaluation is a major component of the computation cost for DPT. Our

method of surface evaluation computes only those elements of the alpha matrix

necessary and stores them in cached memory. In comparison to full refinement

and noncaching evaluation, this is significantly faster (Figure 3.13). Further, this

evaluation technique is dependent only on the order of the surface and not the

dimension whereas full refinement is dependent on both factors. For this reason

the two evaluation groups, the top and middle, in the figure are near linear while

the refinement approach degrades at increased control mesh dimensions.
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Figure 3.12. Histograms for penetration depth in mm of goblet, teapot, brake,
and gear models.



40

6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
x 10

4

Surface diminsion

E
va

lu
at

io
ns

 p
er

 s
ec

on
d

Figure 3.13. Speed of surface evaluation for three techniques. Top three lines are
cached evaluation, next three are noncached evaluation, and the final three are full
refinement. In each case the three lines represent order 3, 4, and 5 from top to
bottom.

Note that the trace results given also include tracing along surface boundaries,

which means both trim tracing and boundary normal calculation were required.

Since both of these values are completely deterministic, no accuracy results need to

be given. However, both computations contribute to the computational time and

therefore must meet the same rigorous requirements. Our tests have shown that at

500Hz we can trace over 5000 trim segments. Similarly swift, given an intersection

of 20 surfaces our algorithm can properly compute the boundary normal at over

67000Hz. Neither of these cases is likely to occur, showing the approach easily

satisfies the constraints.

In order to separate out error introduced by limitations in the Phantom and in

the wall model, we also ran a number of simulated tracings on a bumpy surface.

The results of direct parametric tracing were compared to those for global closest

point on surface. The tracing path was generated by creating a nonisoparametric

offset curve from the surface and evaluating the curve at fixed parametric steps.
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Figure 3.14 shows the difference in penetration depth and surface normal found

using the direct parametric tracing method with that found using the optimal

solution. These two metrics are shown since they directly represent the resulting

force that will be reflected upon the user.

Note that the method was tested under a wide range of conditions. The largest

offset curve depth corresponds to a tracking distance of 10cm and a Euclidean

movement of 2mm between each sample. Even under these extreme (and unlikely to

be encountered) conditions, the algorithm performed reasonably well. This graceful

degradation shows the algorithm has time-critical qualities [16], a useful property

in real-time systems. In more typical cases, with small penetration and small step

sizes, the penetration error was below our numerical precision and the difference in

surface normals was in the hundredths of a degree (Table 3.2).

The Euclidean distance error for the surface point (Table 3.2) shows that under

the conditions we measured, parametric tracing was capable of resolving the closest

point on the surface to within 0.01032mm. In combination with the error in the
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Figure 3.14. Mean penetration depth error (a) and mean normal error (b) vs.
trace curve offset depth. Each line represents a different step size along the trace
curve.
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Table 3.2. DPT error results

Error Depth (mm)
Metric 1.0 2.0 4.0 7.0 10.0
Penetration 0.00000 0.00000 0.00000 0.00000 0.00000
Normal 0.00115 0.00286 0.00573 0.00974 0.01375
Surface Point 0.01032 0.01102 0.02721 0.04607 0.06130

Error values (in mm and degrees) as compared to an optimal solution when tracing
at a step size of 1.5mm at five depths beneath the surface.

normal being below 0.1 degrees, the force vector as computed would be highly

accurate giving a true representation of the underlying geometry. Further, the low

error in the normal illustrates the validity of our cone approach to eliminating false

contacts.

3.4 Tracking

Any movement around a model deemed near or active is referred to as tracking.

Since tracking requires a global closest point be used in order to indicate the next

possible contact point, the tracing algorithm cannot be used exclusively. The

tracing algorithm correlates probe movement to movement of a local closest point

bound to the surface of the model. The goal being to restrict the probe’s movement

to a path along the models surface. During tracking, however, there should be no

restrictions on the probe’s movement or the closest point which shadows it.

When a model is near, but not active, the global closest point tracked does

not need to be updated at haptic rates since the model is not a candidate for

imminent contact. In this case, the global point tracked is used to determine when

the model should become active. Once active, however, the global closest point

must be updated at haptic rates to ensure correct contact detection.

The method used to calculate the global closest point is based on a LUB-Tree

approach [27]. In this approach a hierarchy is constructed that facilitates efficient

upper and lower bound computations for the contained geometry. Using these

bounds in conjunction with a breadth first search, nodes that cannot possibly hold
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the answer are pruned away quickly without the need to recurse to the leaf nodes.

This approach is modified to handle trimmed NURBS surfaces and to use a final

numerical solver instead of a more time consuming subdivision technique.

3.4.1 LUB-Tree Construction

There are many possible choices for the LUB-Tree bounding volumes. Since

speed is a main concern, we choose the bounding volume with the lowest time cost:

the sphere. The main disadvantage to using spheres as a bounding primitive is

that in general they do not fit the underlying geometry tightly. However, its speed

in checking distance allows for more levels in the hierarchy without loss of overall

computation time when compared to tighter bounding volumes.

We build the hierarchy so that a leaf sphere bounds a surface patch represented

by the parametric domain within each paired span of the knot vectors. One choice

for the location and radius of the sphere is to build the sphere so that it tightly

contains the convex hull for the surface patch under consideration. This convex

hull is formed from the surfaces control points (Figure 3.15a). These convex hulls

however do not necessarily fit the surface tightly and also overlap one another

considerably as the order of the surface increases.

The overlap can be eliminated and the convex hull tightened simultaneously by

converting the surface into a collection of Bezier patches through refinement. A

single patch is built for each of the span regions. Each patch has its own convex

hull for the underlying surface that is much tighter than the convex hull from the

original surface (Figure 3.15b). Computations on the underlying geometry are more

expensive than those performed on the bounding volume. Further, the bounding

volume chosen allows for additional levels in the hierarchy without significant cost

increase. Therefore, we insert an additional knot into the middle of each knot

vector span prior to the Bezier conversion. This creates four times as many leaf

nodes while only adding at most two levels to the binary tree hierarchy.

Before a sphere is built, we first check to see if the patch in question has valid

surface domain. If the patch is completely trimmed away by a trimming loop then
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(a) (b)

Figure 3.15. Using convex hulls from the original surface produces loose overlap-
ping spheres (a). Converting to Bezier patches first produces tighter nonoverlapping
convex hulls which results in tighter spheres (b).

no sphere is formed. If there is valid domain then a leaf node is constructed with a

sphere fit to tightly bound the convex hull of the patch. Also stored in the patch is a

single parametric point centered within the patch as well as a single valid Euclidean

point on the surface patch that can be used for upper bound computations.

The remainder of the LUB-Tree is built by successively pairing the nodes. Each

pair is bound by the tightest fitting sphere to contain the component spheres. The

diameter of the new parent sphere is equal to the sum of the radii of the child

spheres plus the distance between their mid-points. Its center point is located

along a segment connecting the center points of the child spheres. Its parametric

location from the center of the first sphere is the parent radius minus the radius

of the first sphere divided by the distance between the child spheres. One special

cases exists and that is the case where one of the two sphere’s is contained within

the other. In this case the new parent sphere will simply be a copy of the larger

child sphere. A collection of the Euclidean surface points stored in the child nodes

is gathered within the new node. The number of points in the collection is kept

below six and randomly chosen to represent the underlying geometry. This process

continues until the tree is fully constructed resulting in a single root node.
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3.4.2 LUB-Tree Traversal

Finding the global closest point involves a breadth first search of the LUB-Tree.

The main advantage of this approach is its use of bounds on the possible distance

to the closest point. If a lower bound to a node is greater than the current upper

bound the geometry within that node cannot contain the closest point and the node

can be pruned away.

The search algorithm begins by finding the global closest point to the trim

segments of the model. This result is stored as a possible solution and the distance

to this point is used to set the initial value of the upper bound on the solution.

Meaning, the global closest point can obviously be no further away than the closest

point on the trim segments. However, the global closest point might be closer so

the initial lower bound is set to zero. These bounds make all geometry part of the

solution space.

Following the initial trimming segment check, the algorithm searches across each

level of the binary tree. The distance to each sphere is used to find a new lower

bound on the solution. Any node that has a lower bound greater than the current

global upper bound is pruned away, along with its subtree. A new upper bound is

computed using the node found with the least lower bound. The minimum distance

from the probe to each of the points stored within the chosen node is the upper

bound for the node. If this upper bound is smaller than the current global upper

bound it becomes the new global upper bound. At this point the search drops to

the next level in the tree and repeats the lower bound pruning process.

When a leaf node is reached its lower bound is first checked to see if the node

can be pruned away. If it cannot be pruned, then an exact closest point must be

found. The parametric point saved within the node is used as a seed point for a

Newton search. The search is performed on the original surface with the search

point not being constrained to be within the trims or within the defined bounds

of the patch the node represents. Once the algorithm has converged, the point is

checked against the trim loops to verify it is a valid surface point. Upon passing this

test the point is compared against the current stored closest point. Even though
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the point found may not lie within the patch, it is still used as it may be the correct

answer. There is no reason to discard it only to search for it again later. Further,

if it is not the final answer it still may provide a tighter upper bound that can

eliminate other nodes from consideration. A point that does not pass the trim test

is discarded.

This traversal algorithm continues until all nodes have been pruned. If no answer

was found during the traversal then the point found on the trimming loops is the

globally correct answer. Any answer found during traversal that is closer than the

trim point will replace it as the global answer.

3.4.3 Hybrid Approach

It is currently not feasible to use this, or any other, global closest point routine

for trimmed NURBS surfaces exclusively since the routines cannot run at haptic

rates. Therefore we use a hybrid approach where the tracing algorithm for tracking

a local closest point is used between global closest point updates. If upon the

completion of the global closest point calculation the answer is found to be better

than the current point found using the trace algorithm, it is used to reseed the trace

algorithm (Figure 3.16a). Otherwise the local point is used until the next available

global closest point can be found (Figure 3.16b). This comparison is necessary since

the global closest point algorithm uses a probe position that is a few iterations old

by the time the computation has completed. The trace algorithm updates its closest

point every cycle so may have a more accurate result for the current probe position.

This periodic reseeding allows the tracing algorithm to form a good approxima-

tion to the global closest point between updates. We have found this to be very

effective since the probe typically does not move very far between updates. Even

though contact detection may be delayed for several cycles, the cycle rate is so high

that the delay is, in practice, imperceptible to the user.
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(a) (b)

Figure 3.16. Global closest point replaces trace point when more accurate (a). It
is discarded when the trace point is better (b).

3.4.4 Tracking Results

Table 3.3 summarizes the important data concerning the use of a LUB-Tree

representation as presented in the previous sections. The first column shows the

time to setup the tree for the five test models. In all cases the setup took well under

a second, not affecting user interaction.

The next two columns give results for searching the tree. When determining if a

model should be considered near the actual closest point need not be computed. It

is only important to know the relationship of the model to the distance separating

near from distant. For this reason the rates in the Near column are better than

Table 3.3. Tracking results

Model Setup Near Active GCP LCP Mean Used
Cube 0.0109 2802.40 1959.66 18058 54069 2.99 81.88
Goblet 0.1404 593.43 286.19 8082 27116 3.36 84.82
Teapot 0.1653 209.88 130.23 6972 25556 3.67 89.13
Brake 0.2970 351.87 166.38 7924 26506 3.35 77.03
Gear 0.3984 70.12 64.29 2664 12011 4.51 84.72

Time to setup LUB-tree in seconds, rate to determine near in Hz, rate to compute
GCP when active, number of GCP and LCP computed, mean number of LCP
between GCP updates, and percentage of GCP used to update tracking point.
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those in the Active column. An active model requires the final GCP be computed

in order to update the tracked point using our hybrid algorithm.

The final four columns illustrate the use of the GCP as computed from the

LUB-Tree within the hybrid tracking algorithm. The GCP and LCP columns give

the number of values computed during a session where the probe circled the model.

The Mean column shows the average number of LCP values that were needed

between GCP updates. Finally, the Used column indicates the percentage of GCP

values used to update the LCP to obtain our tracking point. This final column can

be misleading as its results depend on how often the tracked point crosses either

trimmed away regions or local concavities. It can also be affected by the distance

the probe is from the surface as the direct parametric tracing becomes less accurate

at greater distances. In this case the probe was circling just within the active

distance of 10cm at a step size of near 2mm. Table 3.3 shows direct parametric

tracing to be fairly accurate for this combination, but an update by the GCP value

may still be warranted.

It is important to note that the speed of the tracking algorithm, in particular

the GCP update, directly determines the feature size that can be traced. Consider

the grooved slots in the brake model (Figure 3.17a). If the user can move the probe

1mm between GCP updates, then the smallest width that any feature can have is

2mm. This results from the possibility that the GCP is computed while the probe

is directly in the center of the groove and results in a point on the opposite wall

from the direction the probe is moving (Figure 3.17b). The next GCP needs to

be computed within the time it takes the probe to traverse the remaining 1mm to

contact the model.

3.5 Transitioning

Most CAD models consist of multiple surfaces. It is necessary for the tracing

algorithm to allow smooth transitions (a) across, (b) onto, or (c) off of surface

boundaries if the probe traces out such a path (Figure 3.18). This computation di-
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(a) (b)

Figure 3.17. The smallest feature size for a model (a) is determined by the distance
a probe can move between GCP updates (b).

rectly affects the resulting closest point, normal, and penetration depth. Therefore,

it must be efficient enough to operate at haptic rates.

The trimming loops of the current surface are of primary concern since all tran-

sitioning occurs at trimmed surface boundaries. In the first form of transitioning,

across a trim boundary (Figure 3.18a), the algorithm must detect an intersection

of the probe’s path with a segment of the surface’s trimming loops. Following this

determination, the adjacent surface and an equivalent point on that surface must

then be determined in order for the trace to continue.

The second and third forms can be thought of as a partitioning of the first

form across multiple trace cycles. The second form, onto a trim boundary, requires

the same trim intersection calculation, but if it is determined that the trace point

cannot cleanly transition onto the adjacent surface, the transition is instead made

to trim tracing (Figure 3.18b). The third form, off of a trim boundary, occurs when

it is determined that the trace should leave the trim (Figure 3.18c). This ability

to detect a release from the trim is the same functionality required by the first

form when it must be determined where on the adjacent surface the trace should

continue.
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(a) (b) (c)

Figure 3.18. Transitioning across (a), onto (b), and off of a trim boundary (c).

3.5.1 Grid Overlay

A complex trimmed model can have thousands of trim segments on a single

surface. Using a brute force intersection algorithm to check every trim segment on

the current surface is not feasible, given the time constraints of a haptic algorithm.

Our solution to this problem overlays each surface with a grid where each cell

contains any trim segments that lie within or intersect it (Figure 3.19). Ideally, each

cell would contain one segment and each segment would be contained in exactly

one cell, resulting in the number of cells equaling the number of segments. Such a

grid would result in heavy preprocessing overhead, and would preclude the use of

a uniform grid. This is neither practical nor is it necessary.

The size of the grid is set such that it tightly bounds the outer most trimming

loop for the surface. Since any domain outside the outer most trimming loop is

not valid, the grid need not contain it. We then construct a square grid such that

each dimension is twice the square root of the number of total trim segments for

the surface. This results in 4n total cells and has proven an effective heuristic for

maintaining low segment counts within each cell without introducing unnecessary

complexity to the grid structure.
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Figure 3.19. A grid overlay on a trimmed surface.

3.5.2 Grid Walking

Once the grid has been constructed, it is necessary to have an efficient method

to move from cell to cell within the grid as the probe traces along the surface. We

describe this movement through the grid as grid walking. The first step to solving

this problem is locating where within the grid a point lies. Given a parametric

point (u, v) the coordinates of the cell are given by

ci = b(u− umin)/udimc , cj = b(v − vmin)/vdimc, (3.13)

where umin and vmin are the minimum u and v values of the grid and udim and vdim

are the dimensions of each u column and v row. If either ci or cj is equal to size,

the number of rows (or columns since the two are equal), then it is decremented

by one. This is necessary in order for the last column and last row to contain the

outer most edge of the cell.

While the movement of the haptic device by the user is continuous, the move-

ment of the probe is discrete since it is a time sampled version of the actual device

(Figure 3.20a). Discrete motion along the surface corresponds to a directed line
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segment in parametric space (Figure 3.20b). This segment, or movement vector,

has as its start point the current contact point’s parametric coordinates, (u∗, v∗).

The end point is the next closest point computed using DPT, (u∗ + ∆u, v∗ + ∆v).

The resulting vector has a value (∆u,∆v).

Given the location in the grid of the start point for the movement vector

(first calculated when the probe is deemed near and subsequently known from

the previous iteration), we wish to walk along the vector, stepping through each

cell it intersects until the end point of the vector is reached. Define t to be the

parameter along the movement vector, and next t to be the value of t at the entry

of the next cell the vector intersects. We can then define and initialize next tu and

next tv as,

next tu =











(umin + (ci + 1) · udim − u∗)/∆u ∆u > 0
(umin + ci · udim − u∗)/∆u ∆u < 0
∞ ∆u = 0

,

next tv =











(vmin + (cj + 1) · vdim − v∗)/∆v ∆v > 0
(vmin + cj · vdim − v∗)/∆v ∆v < 0
∞ ∆v = 0

,

(3.14)

where each is the next t value for an intersection with a u or v grid line respectively

(Figure 3.21a). The four variables, next tu, next tv, ci, and cj, are all that is needed

(a) (b)

Figure 3.20. Time sampled movement of probe (a) and directed line segment in
parametric space (b).
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to walk the grid. The algorithm chooses the smaller of next tu and next tv. If next tu

is chosen then the walk steps into one of the adjacent column cells. Which cell to

step into is determined by the sign of ∆u. When positive ci is incremented by one

and next tu is incremented by udim/∆u. When negative both of the increments are

negated. The same discussion holds when next tv is the smaller of the two next t

values.

The algorithm continues until the smaller of next tu and next tv is greater than

one (Figure 3.21b). With both greater than one the next step would be beyond the

end of the movement vector, therefore the algorithm halts. The cell in which the

algorithm halts is the cell the end point is located within, satisfying the assumption

for the next iteration when the current end point will become the next start point.

3.5.3 Trim Intersection

As stated above, the movement vector relates motion along the surface to motion

in the parametric domain of the surface. Since surface boundaries are represented

in parametric space using trimming loops, it is along the movement vector that

intersections with the surface boundary must be detected. Further, since the

trimming segments represent the common boundary of the current surface and

(a) (b)

Figure 3.21. The next cell is chosen using the smaller of next tu and next tv(a).
The algorithm halts when both values exceed one (b).
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its adjacent surface, finding the first intersection along the movement vector (i.e.,

the one closest to the starting point) is all that is required. Any intersections past

this initial one would represent an intersection with an edge that cannot be reached

without traversing across invalid surface domain.

An efficient solution is to check only those segments lying within the cells the

movement vector intersects. Further, these cells can be checked in the order the

movement vector traverses through them. As the grid walking algorithm steps into

a cell the movement vector is checked for intersections with all segments contained

in that cell using an efficient parametric segment-segment intersection algorithm

[3]. The intersection algorithm returns a value t when an intersection is found. If

this t value is less than the next t to be used in the grid walking algorithm, then

the intersection is within the current cell. The smallest valid t found is the point of

intersection. When no valid intersections are found the walk algorithm steps into

the next cell and the algorithm repeats until either an intersection is found or the

end point is reached.

3.5.4 Trim Release

There are two cases when it is necessary to determine if a tracked point should

release from a trim intersection. First, when a trim intersection is detected, the

transitioning algorithm must determine if the tracked point should release from the

trim immediately to allow the trace to continue on an adjacent surface. Second,

if the trace algorithm is tracing along a surface boundary (trim tracing) then the

transitioning algorithm must determine when to release and onto which of the

adjacent surfaces the transition should take place.

It is possible that a point on a trimming loop can be adjacent to multiple

surfaces, such is the case at the corner of a cube where three surfaces intersect at a

point. It should be noted that this can only occur at the endpoint of a trim segment

and not interior to a trim segment. This comes straight from the definition of a

trimming segment. A trimming edge is a collection of segments that represents a

shared boundary of two surfaces. Only at the point where trimming edges connect
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can multiple surfaces become adjacent. This connection point is the endpoint of

two trimming segments from two neighboring edges.

If the tracked point is to release onto a surface it will do so onto only one of the

adjacent surfaces. For this reason, the trim release algorithm checks each surface

adjacent to the tracked point in turn. When the adjacent surface is found the

parametric value for the tracked point on that surface is determined directly from

the trimming segment information. Using this value, the surface is evaluated to

permit DPT to be used on this new surface. While the Euclidean value of the

tracked point will not change (actually the value may change slightly since the

trimming information does not exactly express the intersection of the surfaces) the

normal and tangent vectors may differ depending on the continuity of the surface

boundary. Using this information and the probe location, DPT can determine a

candidate location for the next tracked point. If this candidate point has parametric

coordinates that are valid, then the trace is released from the trim. If the point

does not release then the algorithm continues with the next adjacent surface. In

the case that the tracked point does not release onto any of the adjacent surfaces,

trim tracing is indicated.

3.5.5 Adjacency

In order to smoothly transition from one surface to another it is necessary to

calculate an accurate transition point on the neighboring surface. Our system

maintains an edge adjacency table (EAT) for each surface. A row in the table

represents an edge and consists of four items: the index of the end of that edge,

pointer to the adjacent surface, pointer to the adjacent trim loop, and the index

of the start of the adjacent edge. These four items, along with the percent along

the trim segment where the intersection occurred, is sufficient for determining the

exact point on the adjacent surface.

As an example consider Figure 3.22. In this case assume that surface two

is current and the intersection occurred on trimming loop one, edge three, and

segment six. The EAT entry for edge three indicates that its last segment has an
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Figure 3.22. Edge adjacency table example illustrating that edge three of surface
two is adjacent to edge one of surface four.

index of seven, surface four is adjacent, trimming loop zero contains the proper

edge, and that the edge starts at segment index two. Since adjacent trimming

edges run in opposite directions, we can determine that the intersected segment is

at index 7−6+2 within surface four’s number zero trimming loop. The exact point

on the new segment which corresponds to the intersection point is found at 1 − p

along the new segment, where p is the percent along the original segment that the

intersection occurred. The one special case here is when p = 0. In this case the

newly found segment index is incremented by one so that its intersection point will

also reside at the start point (maintaining our [0, 1) constraint).

3.5.6 Time Critical Operation

As discussed earlier, there is a budget that must be adhered to within the

haptic process. Each cycle must complete in under 1/500sec in order to maintain

our targeted 500Hz haptic rate. Given this budget, we can analyze each component

of the direct haptic rendering algorithm and determine how much time it takes

to complete. For example, when tracing a surface, DPT must perform a surface

evaluation and check for trim intersections. If a trim is intersected then a number

of surface evaluations are done in order to determine if the trace can release from

the trim.
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By collecting data on the amount of time for each operation, we can assign a

maximum number of evaluations allowed. Our trace routine specifies a cap to be

placed on the number of evaluations. If at any point the number of evaluation

exceeds our max, the routine can abort out. This is not the usual case, and

experimentally has not produced ill effects in the tracing experience. As machine

performance improves, this cap can be raised.

Another factor in maintaining a budget is accuracy. A computer is only so

precise when calculating trim intersections and surface evaluations. For this reason,

we break the basic trace algorithm into two parts. If a trace intersects a trim we

determine if it can release onto the neighboring surface. If it cannot release we

stop for that cycle (i.e., we do not proceed with trim tracing until the next cycle).

Continuing would allow the possibility of the trace sliding down the trim a short

distance, releasing, then actually intersecting the same trim again. This should not

occur, but it does since the trims are piecewise linear and therefore not an exact

seam between surfaces. This one cycle delay has proven to inhibit this problem and

has not been noticed by users.

3.5.7 Error Management

Since nearly all computations are either floating point or performed at very high

rates, or both, it is important to maintain control over any errors in our results. In

many areas this amounts to judicious use of epsilons. For example, when generating

the grid to bound all of the trimming loops a small epsilon is applied so that the

boundary trim segments fall within a cell instead of along its boundary. Nearly

every stage of the haptic rendering process has some form of error management.

In the pre-processing stage we take a few steps to improve our results when

dealing with trims. Foremost of these is reparameterizing the knot vectors. Both

knot vectors are shifted so that they are centered about zero since that is where

floating point numbers are most accurate. Furthermore, the knot vectors are scaled

so that the node distance is no less than five times the control point distance. This

relates the parametric movement more closely to the Euclidean. This is especially
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important when a model has been scaled up in size. Recall that a scaled up model is

actually handled by scaling down the probe movement. Therefore, a rather normal

movement by the user could equate to a very small movement on the original model.

This would in turn have produced an extremely small movement in parametric

space. By altering the knot vectors, the model can be scaled upwards of 100 times

its original size before movement vector lengths equate to those that would be

present on the original model with a knot vector ranging from zero to one.

During tracing we take steps to not only reduce error, but also improve sta-

bility. Even if the user holds the probe perfectly still, the device may have small

positional errors. This would end up being interpreted by the trace algorithm as

user movement, producing slightly different contact points and restoring forces.

Therefore, the trace algorithm accepts a noise threshold for each probe. If the

reported movement is less than this distance, then no new point is calculated. In

addition to the noise threshold, the users true movement is forced to exceed a

small epsilon before a new trace point will be found. This cuts down on possible

chatter due to the slight error in DPT itself. Similarly, if there has been a sufficient

euclidean movement but DPT reports the next parametric point is within some

small epsilon of the previous, no new point is calculated.

3.5.8 Transitioning Results

Trimmed NURBS models vary greatly in the number of surfaces and trim

segments required to represent them. Table 3.4 lists a sampling of models against

which we tested the system. The Surfaces column indicates the total number of

surfaces for the model. Segments indicates the average number of trim segments

per surface. Grid statistics are represented in the final four columns. The Grid

column relays the average number of segments per grid overlay. The column

labeled Empty gives a percentage for the number of cells in a surfaces grid that

contain no trim segments. Empty cells translate into essentially zero work for the

transitioning algorithm. Max gives the maximum number of segments in any one

cell. This number represents the worst case for the transitioning algorithm for the
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Table 3.4. Statistics on models used in system testing

Model Surfaces Segments Grid Empty Max Mean
Cube 6 4.00 16.00 25.00 2 1.33
Goblet 3 236.00 342.00 89.57 13 3.33
Teapot 7 370.29 547.71 89.47 29 3.32
Brake 28 168.14 332.57 77.64 6 2.08
Gear 198 168.26 260.57 87.11 13 2.84

given model. Finally, the Mean column shows the average number of segments in

cells that actually contain segments. This number indicates the amount of work the

transitioning algorithm can be expected to perform when near a surface boundary.

Note that both the Max and the Mean columns contain very small numbers in

comparison to the Segments column. These numbers indicate the drastic reduction

in work the transitioning algorithm must perform when compared to an algorithm

that would check every segment. Setting up the grid overlay for each model took

under three seconds on average.

Our grid walking algorithm has constant time complexity in the number of

steps. Table 3.5 shows that during tracing sessions with tens of thousands of

cells being traversed the mean number was always very near one. The maximum

number of cells traversed for each is small, limiting the worse case performance.

The largest component of cost for transitioning, much as it is for tracing, is the

surface evaluation. As shown in Table 3.5 the number of evaluations per walk also

was very near one. More importantly, the maximum number was always recorded

at five or less. This demonstrates predictable performance for the transitioning

algorithm.

There are three other contributors to the computational cost for the transition-

ing algorithm: computing a trim intersection, determining the adjacent surface,

and gathering surface normals for use in the boundary normal computation for

trim tracing. Since our implementation of the grid overlay references directly into

the trimming loops, the EAT can be used to determine the adjacent surface in
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Table 3.5. Grid walking results

Walks Evals
Model Cells Mean Max Total Mean Max
Cube 56623 1.00 2 58267 1.02 3
Goblet 55938 1.05 15 53137 1.00 3
Teapot 51151 1.04 13 57931 1.11 5
Brake 45918 1.03 4 49992 1.08 4
Gear 36215 1.04 19 41603 1.12 4

Number of cells walked, mean walked per trace call, and max cells walked in any
one call. DPT update rate in Hz, mean and maximum penetration depth in mm,
and mean and maximum surface evaluations.

constant time. The gathering of surface normals is also essentially free since the

normal is a side effect of the surface evaluation. As each neighboring surface is

evaluated to test for a release the resulting normal is collected and cached. The

cost is therefore already included in the surface evaluation accounting. Finally, we

have computed that we can check the movement vector against over 3000 segments

at 500Hz. In the worst case, our results showed a walk of 19 cells and a maximum

of 29 segments in any cell. In this scenario our algorithm would need to check only

551 segments, illustrating it easily fits within our time constraints.

3.6 Extensions

Using the direct haptic rendering algorithm as a black box entity, several worth-

while extensions are possible. Three extensions have been implemented: model

manipulation, dimensioned probes, and multiprobe contact. While these are but

a few of the potential improvements and extensions, they demonstrate the power

and flexibility of the algorithm.

3.6.1 Models in Motion

Whether through manipulation, animation, or dynamic properties, mobile mod-

els are a fundamental property of virtual environments. The direct haptic rendering

algorithm presented is designed for probe movement with static models, but can
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be extended so that both the probe and the model can be moving. Basically, three

approaches can solve this problem. First, the models can be physically transformed

as they are moved. There are several drawbacks to this approach. Incremental

object transformation has been shown to induce numerical errors over time. In

addition, the transform calculations are all done when the processing power of the

haptic processors is most needed – when the dynamics and tracing are both being

calculated.

The second and third approaches involve storing a transformation matrix, xform,

for each model. By using an xform, these methods avoid the problems found in

incremental updates. A new absolute xform can be computed at each time step.

The second approach is to use an xform to transform the current model and perform

DPT on it as usual. This approach has a similar drawback as the first method in

that the current model is transformed during tracing. In fact, transformations

must be calculated even when the probe is not in contact with a model so that the

tracking of near and active models can still be successful.

We have adopted a third approach (Figure 3.23) which involves using DPT on

the original (nontransformed) model with a probe that has been transformed into

model space [67].

(a) (b)

Figure 3.23. Model movement (a) transformed into probe movement (b) through
the inverse model xform.
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For each model being traced or tracked, the probe is transformed through the

inverse of the model’s xform. This process transforms the movement of the model

into a component of the probe’s movement. The resulting closest point and normal

are then transformed from model space into world space.

One obvious advantage to this approach is efficiency. If the combined number

of models being traced and tracked is n then there will be n×3 vectors transformed

(probe, closest point and normal). Like the second method, these transformations

must be computed for each cycle through DPT. However, since n×3 is far less than

the number of control points in all of the surfaces for the n models, this approach

is more efficient than either of the other two approaches. This embedding of the

tracing algorithm requires minimal overhead and does not affect the update rate of

the haptic process.

Given this extension, we were able to perform several dynamic simulations.

Among these are simple movement through force application, push buttons with

detent, and a dynamic pendulum [67]. Further extension allowed kinematic chains

where a collection of models connected by either spherical, universal, prismatic, or

revolution joints. These assemblies are solved through an efficient “self-assembly”

technique developed specifically for haptics and CAD [41].

3.6.2 Dimensioned Probe

One of the drawbacks to point probe methods is the dimensionless nature of

the probe. If two models are placed directly adjacent to one another, a probe

without finite size could still move between the two models without making contact.

To eliminate this possibility we compute a model that is projected outward by

the radius of the desired probe. A model of this type is often referred to as an

offset model [22]. Our system uses the offset model in the haptic rendering process

while using the original model for the visual display. Figure 3.24 illustrates the

construction and use of an offset model.

The original model in Figure 3.24a is offset by the radius of the probe in the

direction of the surface normal resulting in the model in Figure 3.24b. Isolated
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(a) (b) (c)

Figure 3.24. Actual model (a). Initial offset model (b). Final offset model with
possible trace positions (c).

regions are trimmed away, producing the offset model in Figure 3.24c. Contact

with the surface of this offset model represents contact with the original model

with a dimensioned probe (Figure 3.24c). Notice that any part of the offset model

that is trimmed away represents a portion of the original model that could not be

contacted with the dimensioned probe. Tracing with a point probe along an edge

created by trimming away a region corresponds to tracing multiple contact points

of the original model with a dimensioned probe (Figure 3.24c).

It is important to note that this process depends on trimming and adjacency

information. Further, while this approach uses an “auxiliary” representation it

is not a simplifying “intermediate” representation, since the offset model exactly

represents the parts of the original model that can be contacted by the dimensioned

probe. Producing the offset model adds significant preprocessing, but it does not

affect performance of the tracing algorithm as long as the model geometry does not

change during the trace.

3.6.3 Multiple Probe Rendering

Our current implementation of direct haptic rendering of trimmed models runs

at over 1000Hz. However, when using the Sarcos arm we notice no improvement

when running at any rate over 500Hz. By running at this lower rate, there is extra

time within each cycle of the haptic process. Since the Sarcos device can reflect
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forces to multiple end-effectors, we make two calls to the trace algorithm using the

location of the finger and thumb as the probe locations.

Similarly, the CyberTouch glove provides six vibrotactile stimulators. Each of

these can be tracked individually. Since this device is not haptic, it does not require

the same high update rates. We have found rates as low as 100Hz to be very effective

for this device.

To implement this feature, the trace state information for each probe (current

surface point, tangents, and proximity) is stored as an attribute of each model.

With this minimal data overhead and negligible impact on the tracing algorithms

performance, multiple probe rendering is possible. This has been found to signifi-

cantly add to the overall tracing experience. Further, the combination of multiple

probes with movable models has been used to demonstrate object grasping and

manipulating [34].

3.7 Summary

This chapter presented direct haptic rendering of trimmed NURBS models.

We established two primary goals for the algorithm: efficient enough for inclusion

within a haptic controller and accurate enough to faithfully reproduce the CAD

design haptically. Each of the results sections above demonstrated success with a

particular component of our complete algorithm. This section summarizes those

results in order to show that both goals were met.

Section 3.3.8 showed that for all of our test models DPT performed at over

1000Hz. This included both surface tracing and boundary tracing. In no small

part, this speed derives from our cached alpha matrix surface evaluation technique.

Since we want to prove that our algorithm fits our budget in the worst case, and

not just on average, we add up the cost of tracing from one surface, across a trim

boundary, and onto a second surface. In this case we essentially have two trace

calls, one for each surface with the added cost of detecting the trim intersection

and determining the neighboring surface.



65

The transitioning results presented in Section 3.5.8 showed that the cost of grid

walking, segment intersection, and adjacency were negligible in comparison to the

actual surface tracing. Therefore, since the tracing algorithm was over twice as

fast as required, and the problem breaks down to tracing twice, we have met our

efficiency goal. Further, the power of the machines on which we tested our systems

has been surpassed more that two fold during the writing of this document.

The results given in section 3.3.8 illustrate the accuracy of DPT. Both the sur-

face normal and the local closest point had low computational errors. Additionally,

in simulation we found that the penetration depth computed produced an error

to small to measure. The combination of these three factors illustrate the high

degree of accuracy of DPT, and therefore the ability of the algorithm to faithfully

reproduce the underlying CAD model.



CHAPTER 4

APE: TARGET APPLICATION

As a target application for Direct Haptic Rendering we present APE, the Active

Prototyping Environment. The goal of APE is to allow the haptic rendering results

presented in this document to be applied to real models from a real CAD system.

The CAD system chosen is Alpha 1, a research system developed at the University

of Utah. There are several subproblems to the design and development of this

target application, including the user environment, managing models, managing

multiple devices, user safety, distributing computation, and of course the actual

CAD integration.

4.1 User Environment

Most, if not all, CAD systems provide at least one form of graphical user

interface. Whether it be as simple as a wire-frame display or as complex as a 3D

display that permits translucency and arbitrary cutting planes the goal is the same;

help the user to better understand the model being designed. There is a fine line

between providing the most information possible to the designer and complicating

the interaction with information overload.

The virtual environment of APE is a stand-alone fish-tank display. There are

three reason for this choice. First, the GUI of the design system is unchanged and

therefore remains familiar to the designer. Second, APE need not be integrated

tightly within any one design system. This allows APE to be used stand-alone

or loosely integrated with any design system. Third, the APE system requires

significant computational resources. The design chosen permits APE to run on

a separate machine, most likely a more powerful multiprocessor system, than the

design system.
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4.1.1 Interface

Most haptic devices require some amount of user attachment. For instance,

the Sarcos arm requires a user to be strapped into the arm and stand on a fixed

platform. It is simply not convenient to use a keyboard or mouse at such times.

For this reason mouse and keyboard use is kept to a minimum and most interaction

has an alternate form that can be performed using the haptic device in conjunction

with a 4 button device (Figure 4.1) we have built for the user to hold in his off

hand. Table 4.1 shows the set of actions and bindings of APE.

The substitution of the button box for “center view,” “default view,” and “quit”

are obvious. In the case of “translate” and “rotate” it is not. When using the

mouse the two actions are decoupled. This is not the case when using the device

substitute. When button 1 is pressed the user has effectively “grasped space.”

Subsequent movement of the device causes the entire view to translate and rotate

about the probe.

Some interaction is, despite the device attachment, still more convenient from

the keyboard. An example of this is loading a new model into the environment.

Figure 4.1. Four button device for off hand.
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Table 4.1. User interface bindings and device substitutes

Action Key/Mouse Binding Device Substitute
Center View C Button 2
Default View D Button 3
Load Model L
New Session N
Quit Q Button 4
Rotate Button2 Button 1
Scale Button3
Translate Button1 Button 1

This currently can be accomplished in two ways: opening a file or receiving a model

from a CAD package.

4.1.2 Graphical Viewer

The graphical display for the environment uses OpenGL. This open standard

provides for a wide variety of effects such as texture mapping, anti-aliasing and fog

for depth cuing. More importantly, APE was designed and tested on SGI work-

stations that have highly optimized hardware implementations of OpenGL. Later

porting to Linux and advanced graphics processors proved even further performance

gains. APE also takes advantage of any options OpenGL provides that will further

accelerate its display such as one sided polygons, backface culling, display lists, and

materials properties for shading. All tested models were able to be displayed at

rates well over the 20 frames per second required.

Several types of objects can be displayed within the virtual environment. Most

important among these are the model being traced and the graphical representation

of the haptic device being used. In all cases, object-oriented design was used such

that an object has a method to draw itself. Each model is drawn using the OpenGL

NURBS tessellator. However, since this is not the greatest tessellator the display

system has been designed to allow alternate renderers to be used. The haptic

devices are rendered in a fashion that illustrates the degrees of freedom inherent to
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the device. For example, a single point device like the Phantom is represented by a

single sphere while the Sarcos arm has a more complex representation (Figure 4.2).

There are three different spaces within which objects in APE can be displayed

(Figure 4.3). The first is view space and is the default. In view space objects

are transformed by the view matrix and then the perspective projection matrix.

The second space is object space and in this space objects are transformed by the

projection matrix alone. An example of an object that would be placed in this

space is the graphical representation of the haptic device. The display of the device

must remain outside of the view matrix so that movement of the physical device

is mirrored within the graphical display. The third space is a special view called

sticker space and is provided for placing graphics directly on the screen similar to

old style pixel displays. For example, the APE logo is placed in the lower right

hand corner of the window using this space. Another use for this space is to show

context sensitive help relative to the probes location. Only 2D objects make sense

in sticker space and therefore the projection matrix is simply orthogonal with a

viewport set to the size of the window in pixels.

The quality of the haptic experience is greatly increased with the addition of

a stereo display. By showing the model and the device in 3D stereo the haptic

rendition fuses with the visual and the object becomes more real to the user. This

(a) (b)

Figure 4.2. Graphical representations of Phantom (a) and Sarcos arm (b).
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Figure 4.3. The graphical display space.

experience is heightened with the inclusion of head tracking. APE provides the

ability to display the environment in mono or stereo with or without head tracking.

4.2 Model Manager

Central to the APE environment are the models under investigation. Several

types of queries, from separate threads of computation, must be facilitated without

delaying the processing of these time critical threads. In APE there is a central

master repository of models within the user environment that is controlled by the

Model Manager. Models can be loaded either through the user interface (Sec-

tion 4.1.1) or through a connection with a CAD system (Section 4.4). It is the

responsibility of this master model manager to distribute the models to the various

device controllers, allow controlled access from different processing threads, and

determine when a model is near a device.
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4.2.1 Distributed Managers

The distributed design of APE, and the computational needs of a haptic system,

often results in each device controller running on a separate machine than that of

the user environment. This model of computation requires that the model cache of

the master model manager be mirrored into a model manager residing within each

device controller. Mirroring the models in this way permits the device ready access

to the models without having to traverse a network connection.

It is important that these model caches be kept consistent or the visual display

and the haptic display will not correspond. As a model is loaded into the environ-

ment a copy is sent to each device controller. The position and orientation of each

model is determined by an xform from model space to world space. The master

manager and all devices initialize this xform to the same value. In actuality, it is

the xforms that must be synchronized at all times.

While the submanagers are very similar in design to the master manager, there

are a few differences. Chief among these is the requirement that the manager hold

a tracing state for each model. This state indicates if the model is near, active,

or current to any probe of the device. When active or current, the state will hold

all geometric data necessary for direct haptic rendering. This data is used by the

trace routine during each cycle of the haptic controller, allowing the algorithm to

be implemented without knowledge of the type of device or significant local data

caching.

Another important item stored by the submanagers is the inverse view matrix

for the graphical viewer. As discussed in Section 3.6.1 this matrix is required to

map the probe movement into model space, thus saving the computational cost

of transforming the models. For efficiency, the view matrix is also stored as it is

required to transform the resulting contact point and normal from model space into

world space.
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4.2.2 Model Locker

Each model manager controls access to its model cache through the use of a

model locker. Basically, models are stored within a locker with each model being

accessed through its own key. When a process requires the use of a model it requests

a key for either read or read/write access. This key is unique per check-out, ensuring

a model cannot continue to be accessed after it has been checked-in.

Writing to a model requires exclusive access whereas multiple readers can share

the model at once. To prevent starvation of processes requiring write access, readers

are only allowed access to a model if there are no waiting writers. Therefore, when

a key is checked in waiting writers are awakened first, but only if there are no more

readers holding a key. If there are no waiting writers then all waiting readers are

awakened. While this approach could potentially result in processes requiring read

access to starve, in practice this is not a problem. The locker provides an iterator

that can be used by the read process to checkout the “next available model,” which

is most often what is desired.

Programmatically this control is granted through the use of a single data mutex

and two conditionals, one for the readers and one for the writers. The mutex is used

to control access to the lockers key control data. The conditionals allow processes

that are willing to be blocked until the model is available to wait without occupying

the data mutex. Essentially, the conditional is a waiting area for processes. All

readers share a conditional, regardless of what model they are waiting for. The

same is true of writers. This separation of wait areas allows us to signal only the

appropriate waiting pool when a model is checked-in, if any should be awakened at

all.

In addition to the data mutex, the locker contains a mutex for complete locker

control. This mutex is used when an operation will change the contents of the

locker, for example when a model is loaded or removed. Locking the entire locker is

equivalent to locking all members for writing with the difference being that a single

key can then be used to access all models. Unlocking is made more efficient in this
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case as a single broadcast to wake-up the waiting readers and writers can be made

once all models have been checked-in.

4.2.3 Tracking Deamons

Each model manager spawns a tracking deamon. Since all models must be

constantly checked for their near proximity status, the master model manager

deamon is used for this task. This proximity thread loops over each probe for

each device and checks its proximity to all models. Determining if a model is near

enough to be of interest to a device does not require an exact closest point be found.

For this reason we provide a cutoff distance to the LUB-tree search equal to our

near distance. This allows the search for the global closest point to abort if either

the distance from the probe to the models lower bound is greater than the cutoff

or the upper bound is less than the cutoff. Only when the search aborts from the

upper bound being less than our near distance do we deem the model near and

send a message to the device. Similarly, if the model is not near, and previously

was, then a message would be sent to the device as well.

Once a device is signaled that a model is near, its submanager deamon will

begin tracking a global closest point. Unlike in the proximity thread, this tracking

requires that the LUB-tree search actually converges to a solution. The distance

from the probe to the tracked point is used to determine if the model should be

made active. Once active, the tracked point is used, in conjunction with a local

closest point, to determine a potential contact point. When a model is deemed

current, therefore being traced and requiring only a local closest point, the deamon

will skip the model for the probe in contact.

The master manager’s deamon works with all models in the scene, but doesn’t

require exact results. The submanager’s deamon does require exact results, but

it works on only a subset of the scenes models. In practice this division of labor

has been found to be very effective in distributing the computation costs as well as

producing better tracking results for direct haptic rendering.
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4.3 Device Manager

While the most common usage of APE is with a single device, perhaps with

multiple end-effectors, APE can also handle multiple devices through its Device

Manager. At startup the APE system is given a config file (Appendix E) which

indicates the devices for the session along with any device specific information (e.g.,

the machine on which the controller should run, the network ports to use, etc.).

The device manager reads the config file and creates each device passing on the

rest of the information in the config file to the devices constructor. This allows the

device to parse the data and complete its initialization. This same config file is

later read by the device controller program when it is started to ensure that both

processes are initialized identically.

Each device has specific requirements and as such they contain the necessary

code to communicate with their controller. That said, all communications from the

user environment to the devices are funneled through the device manager. This

common interface makes possible communication to individual devices, broadcast-

ing to the whole collection, and broadcasting to all but a given device. This final

feature is helpful when one device is controlling the environment and the other

devices need to be placed into a different safety level.

Another responsibility of the device manager is arbitrating device control over

the view and models. If multiple devices request to manipulate the view or move a

model, the device manager will chose a winner and then notify the losers to cease.

This approach allows all devices immediate feedback and access without first having

to request permission from the device manager. If multiple devices begin to modify

a models position, one will win and have continuous real-time haptic feedback, while

the others would simple be placed into a safety level that would prevent further

manipulation.

4.3.1 Devices

APE provides an abstract device class with which the rest of the system can

interface. Derived from this abstract class are type specific classes for each type of
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device. These subclasses communicate with their particular controller in whatever

fashion is optimal for that device while still providing a single interface to the rest of

the system. Due to this design choice APE supports three different haptic devices

that communicate with type specific controllers.

Communicating with the controller is the singular responsibility of the device

deamon. Spawned at the time of creation by the device manager, the deamon

continuously reads device configuration packets. The polling technique is specific

to the device and may involve querying a port or communicating across a network.

Regardless, the results are cached using a scheme called n+2 buffering [50], where

n is the number of readers. This scheme is guaranteed to always provide the most

recent data to the readers and never block readers or writers.

In APE there are two readers: the UI and the master model managers proxy

thread. As described in Section 4.2.3, the proximity thread requires only the

location of the probe for its distance tracking. Conversely, the UI needs the full

device configuration in order to display each device within the graphical viewer. For

each cycle of the visual display each device will redraw itself using its configuration

data. This method ensures that the visual display is in sync with that of the haptic.

4.3.2 Safety Levels

There are three different safety levels that a device can be placed into during a

haptic session. The first, level 0, is deemed safe which means forces can be applied

when the device is in contact with a model. The remaining modes indicate the

possibility of an unsafe condition and result in no forces being applied to the user.

Level 1 is indicated when a transient event has occurred. The device should

not produce forces until the probe enters a confirmed safe area in the environment.

Each probe has its own safety level so each can move into a safe area individually. A

safe area is defined as a location close enough to the model to accurately determine

that the probe is above, and not within, the model.

Finally, level 2 signals an ongoing event within the APE viewer that is outside

the control of a device. The device must not generate forces until the event is
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completed. An example is active view manipulation. When a device is modifying

the view it does not want to have objects that are moving about the view cause

impact, and force generation, with the device. For this reason all devices are enter

level 2 when the view is modified. Another example is model manipulation. While

the device doing the manipulation certainly does want forces applied, the movement

may be unexpected to other devices within the environment and therefore they are

placed into level 2. Unlike level 1, the device cannot remove itself from this level.

Instead, it must rely on the environment to signal it to drop back to level 1 from

where it can follow the level 1 protocols to return to safety.

These three levels ensure that all force generation is under the control of the

user (assuming no mechanism animation). This eliminates jolting forces without

having to wait for control to be granted by the environment.

4.3.3 View Manipulation

Users can manipulate the view via the mouse or through any device. A device

initiates manipulation of the view by sending a button status (Section 4.1.1) from

the controller to the device deamon. Manipulation itself will take the form of the

user “grabbing” the view with the device with the objects in the view then being

moved about the device as if attached through an either. The device manager will

detect the request and determine if the request will be granted. The only cause for

refusal would be another device already manipulating the view.

When the request is granted the device manager will send a safety level 2

message to all devices, including the controlling device. This will prevent any

wildly moving models from colliding with a probe and therefore exerting undue

force upon the user. The position and orientation of the device and the current

view matrix are recorded as a baseline for computing the new view matrix.

Each subsequent call to update the view will result in a view matrix computed

relative to the original view and device orientation. This prevents errors from

creeping in through matrix operations. The matrix operation to compute the new

view matrix is defined as:
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V̂ = [T̂ X̂X−1T̂−1][T−1T̂ ]V, (4.1)

where V̂ is the new view matrix, V is the view matrix when the view was grabbed,

T̂ is the current position as a translation matrix, T is the position when grabbed,

X̂ is the current orientation, and X is orientation when grabbed.

Only when the device releases control over the view matrix does the device

manager update the devices. First, the updated view matrix, its inverse, and scale

component are sent to the controllers. These values need to be present before

the device can be placed into safety level 1. The devices can then resume haptic

interaction once they find a safe configuration.

4.3.4 Moving Models

The device managers function during model manipulation is similar to that of

view manipulation. Primarily it is to arbitrate control over the manipulation. At

current, when any device requests to manipulate a model the other devices are

placed into safety level two. However, unlike view manipulation, the active device

is left to continue receiving force feedback.

When a device moves a model, whether it be through direct force or from an

assembly simulation, that models new xform is sent to the device deamon. The

device manager recognizes the change and makes note of the devices request. The

device does not wait for the managers approval, instead it begins the simulation with

the assumption it will be approved. If multiple requests are received the manager

will decide who should be granted control. Those devices that do not receive

permission will be placed into safety level 2 and consequently their simulation will

cease.

The device that is granted control will continue with its simulation. The models

xform will be streamed from the controller to the device deamon where it will be

read by the graphical viewer. The result is the visualization of the model will match

that of the model being haptically rendered.

Finally, when the device has completed its simulation the models final xform

will be transmitted to the device deamon. The device manager receives this event
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and turns the xform around to all other devices. This returns all devices to a state

of synchronization to the state in the model manager. Once this has completed, a

safety level 1 message is sent to all of other devices so that they can resume their

haptic interaction.

4.4 CAD System Integration

One of the primary goals in the design of APE was to integrate it within a CAD

system, but do so loosely to allow maximum freedom in balancing computational

resources. Further, I decided to not support specific application formats within

APE but instead provide an exchange format that other applications could export,

or to which other formates could be converted. This format is called Utah NURBS

(UTN) and is described in Appendix D.

The APE system can load UTN files directly via a file dialog. To do so a user

hits the “L” hotkey and then browses for their UTN file. Alternatively, the model

can be sent from Alpha 1. Within Alpha 1 a user can work on a design using all of

the commands afforded to them by the design environment. At any point they can

send their model into the APE environment through the apeModelMsg command.

This command will verify the model is correct and compatible with APE. For

example, it checks that all surfaces have at least one trimming loop and that all

edges have an adjacency defined. Once the model passes these checks, it is dumped

to disk onto a server accessible by the running APE process. Upon successful

completion of the models export, the command will write a message file onto the

tmp drive of the machine running APE. This file signals APE of a waiting model

and also includes where the file is located. Once a second the Message Manager

in APE searches for this file. When found the model is immediately loaded by the

Model Manager. Both the message file and the model are then cleaned from the

disk as they were intended to be transient data.

The UTN converter allows any shell (with the exception of those that don’t

have the full adjacencies defined) to be used in the APE system. This makes it an

integral part of the design environment, even though it is not part of the same code
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base. All translation between formats is hidden allowing the design environment to

run on a different machine than the APE system, further increasing performance

of both applications.

4.5 Distributed Computation

In its most complete configuration, APE is a multiapplication, multiplatform,

multiprocessor, and multitreaded system with multiple network channels and ttys

open for communicating between the main application and the devices (Figure 4.4).

Minimally, in its simplest configuration, APE is multithreaded with local tty device

communication. In all cases careful consideration was given to try and balance the

needs of the various components against the available system resources.

Consider for example the system configuration given in Figure 4.5. In this

configuration a single Phantom device is being used in conjunction with the Alpha 1

modeling system. Alpha 1 is run on a separate machine from the APE user interface

and in fact could actually be executing under a different operating system. The only

requirement is that it have write access to the machine on which APE is executing.

This allows Alpha 1 to send the model messages to APE loosely binding the two

systems.

Figure 4.4. APE is multiplatform, multiprocessor, and multithread capable.
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Figure 4.5. System configuration for Phantom device.

The Phantom requires real-time access to its controlling computer to maintain

device stability. As such, APE runs the device controller on a separate machine than

the user environment (note that this is not a requirement but does produce better

results). The device controller for the Phantom is broken into two processes that

communicate via shared memory. One process actually interfaces with the device

and must maintain 500Hz. In practice, the Phantom consistently will maintain

near 1000Hz. This interface process queries the device for its probe location and

writes it into shared memory using triple-buffering. The second process contains

the model manager and the tracking thread. It is responsible for taking the probe

location and performing DPT. If the probe is in contact then the appropriate force

vector is computed and placed into shared memory, again using triple-buffering.

The result is a completely decoupled computation model. The trace process can,

if necessary, run slower than the interface process without causing missed cycles in

the controller. It can also, if possible, run faster than the interface and produce

better results in its tracking deamon.

Within APE the Phantom device communicates with the controller via multiple

network channels. Acting as a server, the Phantom device controller continuously

gathers, packages, and sends device configuration data across a UDP connection.
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The device deamon, using the n+2 buffering algorithm, reads and caches this data,

making it immediately available to the system readers.

The configuration packet for the Phantom contains the position and contact

information for the end-effector; button status and finally, if a model is being moved,

the contacted models id, position and orientation. All told this amounts to 33

floating point numbers. As a comparison, the Sarcos Dextrous Arm configuration

packet contains 60 floating point numbers including the elbow, wrist, finger and

thumb joint locations and orientations. The end-effector positions are read by the

master model manager for use in its proximity detection thread. The user interface

uses all remaining data to graphically display the device.

Two other TCP network channels connect APE to the device controller. The

device uses one channel for sending all messages, such as models, safety levels, near

proximity notification, xforms, and view matrix changes, to the controller. The

second is used by the controller to send the xform changes of models being moved

through assembly manipulation but that are not in direct contact with the probe.

By using the UDP packet for the contacted model the display of this model remains

completely in sync with the haptic display, the remaining models can better handle

any lag that might result from having to use the slower TCP protocol.

This simple single device setup amounts to a rather distributed computation

model. There are two applications: CAD system and APE. Three machines are

used to logically distribute core components: CAD system, APE user environment,

and the haptic controller for the Phantom. Both the APE user environment and the

device controller are multithreaded. The user environment has three threads: GUI

main loop, master model manager proximity deamon, and the device configuration

deamon. Finally, the device controller is both multiprocess and multithreaded.

There are two processes: the tracing process and the arm interface process. The

tracing process has a thread for the trace loop and one for its model manager

deamon. In total, this particular APE setup uses three machines, two applications,

four processes, and seven threads of computation.
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As a result of this distribution model, all core components can maximize their

computational potential. In practice we have found that the display frame rate is

not affected by device connections. The haptic display is not affected by either

the user environment or the design system. Given enough processors, the system

scales naturally because of it multithreaded design. All tested configurations ran

smoothly with no one component dominating the computational resources or oth-

erwise delaying the processing of any other component.



CHAPTER 5

CONCLUSIONS

We have presented a powerful algorithm that supports the direct haptic ren-

dering of models constructed from trimmed NURBS. Direct Parametric Tracing

computes a local closest point that shadows the movement of a haptic probe a rates

suitable for inclusion in a haptic controller. Haptic rendering is improved because

the DPT method supports exact computation of surface normals as well as higher

order continuity of surface representation. The parametric surfaces being rendered

have compact representations, allowing for haptic rendering of complex models

within the same memory as would be used by an approach utilizing a secondary

representation. In addition, some of the complications of using an intermediate

representation, such as force discontinuity artifacts, do not appear in direct haptic

rendering.

A grid overlay and efficient grid walking algorithm allow our approach to be

model based with only a single point being tracked per model. This model-

based grid approach permits highly trimmed models to be included without loss

of efficiency while also permitting more complex scenes to be haptically rendered.

Additionally, we have demonstrated the ability of the haptic algorithm to be ex-

tended in order to permit model manipulation, tracing by a dimensioned probe,

and multiprobe contact.

As a test-bed system, we developed an Active Prototyping Environment. APE

integrates our haptic algorithm with a fish-tank virtual environment and loosely

couples it to a CAD system. The result is a complete system that supports

multiple haptic, and nonhaptic, devices. The distributed system design allows

high update rates on both sides of the system, resulting in an interactive visual
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display coupled with an accurate haptic rendition produced from the actual model.

This combination greatly improves the amount of information a designer can gather

about a design while he is immersed within the design environment.



APPENDIX A

NURBS CURVES AND SURFACES

A B-spline curve, γ(u), of order k is determined by a set of points, P = {Pi}
n
i=0,

its knot vector, u = {ui}
k+n
i=0 , and its basis functions, B = {Bi,k}

n
i=0. The definition

of the curve is given by,

γ(u) =
n
∑

i=0

PiBi,k(u). (A.1)

The basis functions have a nice recursive form and are a generalization of the

Bernstein/Bezier blending functions. The definition for the basis functions is given

by,

Bi,1(u) =
{

1, ui ≤ u < ui+1

0, otherwise
(A.2)

and for k > 1,

Bi,k(u) =

{

u−ui

ui+k−1−ui
Bi,k−1(u) + ui+k−u

ui+k−ui+1
Bi+1,k−1(u), ui < ui+k

0, otherwise
(A.3)

where each successive basis function is a convex combination of two basis functions

of a lower order. The Bi,1 define piecewise constant polynomials, Bi,2 piecewise

linear, Bi,3 piecewise quadratic and so forth. This definition ensures a Ck−2 curve

when the Bi,k basis functions are used. Also, each piecewise segment of the curve

is within the convex hull of the control points defining it.

A powerful extension to standard B-Spline curve is the Non-Uniform Rational

B-Spline (NURBS) curve. As the name indicates, NURBS provide the ability to

exactly represent rational curves like circles. The definition of a NURBS curve is

given by,

γ(u) =

∑n
i=0 PiwiBi,k(u)
∑n

i=0 wiBi,k(u)
, (A.4)

where w = {wi}
n
i=0 are the rational weights for each control point in P. A NURBS

curve has all of the same properties that a standard B-Spline exhibits. Indeed,
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if the weights are all defined to be equal to one then Equation A.4 reduces to

Equation A.1. Conversely, all B-Spline curves can be written as NURBS curves by

assigning all of the weights the value of one.

There is more than one way to evaluate a NURBS curve. The weighted combi-

nation of control points can be computed through evaluation of the basis functions

as in Equation A.1, or curve refinement may be used [10, 52]. Inserting k− 1 knots

into u with the value u∗ will create a new representation of the NURBS curve with

a control point P̂i∗ that is the value of γ(u∗). This point is called an evaluation

point and results because only one basis function, B̂i∗,k, is nonzero at u∗. The value

of i∗ is one less than the index of the first knot of value u∗ in the new knot vector.

The curve refinement method is computationally efficient when only the necessary

values are computed.

The tensor product NURBS surface has a similar definition. The surface S(u, v)

with the collection P = {Pi,j} and w = {wi,j} as it’s control mesh is defined as

S(u, v) =

∑m
i=0

∑n
j=0 Pi,jwi,jBj,kv

(v)Ni,ku
(u)

∑m
i=0

∑n
j=0wi,jBj,kv

(v)Ni,ku
(u)

, (A.5)

where ku is the order, u = {ui}
ku+m
i=0 is the knot vector, and N = {Ni,ku

}m
i=0 are

the basis functions for the rows of the control mesh. Similarly, kv is the order,

v = {vj}
kv+n
j=0 is the knot vector, and B = {Bj,kv

}n
j=0 are the basis functions for the

columns of the control mesh.

A NURBS surface, with its compact parametric representation, efficient exact

evaluation techniques, convex hull property, and higher order continuity, is a pow-

erful tool for design and has made it the de facto standard in the design community.



APPENDIX B

NURBS CURVE VELOCITY AT

EVALUATION POINT

In this appendix a compact, computationally efficient equation for the velocity

of a curve at an evaluation point is derived. For clarity, and to allow the equations

to fit within the bounds of the page, the derivation will be done in parts. Recall

the definition of a NURBS curve,

γ(u) =

∑n
i=0 PiwiBi,k(u)
∑n

i=0 wiBi,k(u)
=
N(u)

D(u)
, (B.1)

where N and D are functions representing the numerator and denominator respec-

tively.

The velocity of a NURBS curve (when it exists) is given by the quotient rule

as,

γ′(u) =
N ′(u)D(u)−N(u)D′(u)

D(u)2
(B.2)

where

N ′(u) =
n
∑

i=0

PiwiB
′

i,k(u), (B.3)

D′(u) =
n
∑

i=0

wiB
′

i,k(u), (B.4)

and by definition,

B′

i,k(u) = (k − 1)

[

Bi,k−1(u)

ui+k−1 − ui

−
Bi+1,k−1(u)

ui+k − ui+1

]

. (B.5)

We now continue with Equation B.3 noting that Equation B.4 will follow a

similar path. Expanding Equation B.3 with the definition of B ′

i,k(u) yields,

N ′(u) = (k − 1)
n
∑

i=0

Piwi

[

Bi,k−1(u)

ui+k−1 − ui

−
Bi+1,k−1(u)

ui+k − ui+1

]

, (B.6)
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= (k − 1)





n
∑

i=1

PiwiBi,k−1(u)

ui+k−1 − ui

−
n−1
∑

j=0

PjwjBj+1,k−1(u)

uj+k − uj+1



 . (B.7)

Notice that after distributing the summation the bounds of the two summations

have changed. This is because the basis function Bi,k−1(u) evaluates to zero at i = 0

and basis function Bj+1,k−1(u) evaluates to zero at j = n. In both cases this is true

since the basis functions exist outside the domain of the original curve. The two

summations bounds can be made to once again agree by variable substitution.

Replacing j in the second summation with i− 1 the equation becomes,

N ′(u) = (k − 1)

[

n
∑

i=1

PiwiBi,k−1(u)

ui+k−1 − ui

−
n
∑

i=1

Pi−1wi−1Bi,k−1(u)

ui+k−1 − ui

]

, (B.8)

and then combining the two summations we get, for both N ′ and D′,

N ′(u) = (k − 1)
n
∑

i=1

(Piwi − Pi−1wi−1)

ui+k−1 − ui

Bi,k−1(u),

D′(u) = (k − 1)
n
∑

i=1

(wi − wi−1)

ui+k−1 − ui

Bi,k−1(u).

Returning to Equation B.2, we can now construct the two products of the

numerator,

N ′(u)D(u) = (k − 1)
n
∑

i=1

Piwi − Pi−1wi−1

ui+k−1 − ui

Bi,k−1(u)
n
∑

j=0

wjBj,k(u),

= (k − 1)
n
∑

i=1

n
∑

j=0

Piwiwj − Pi−1wi−1wj

ui+k−1 − ui

Bj,k(u)Bi,k−1(u),

N(u)D′(u) = (k − 1)
n
∑

j=0

PjwjBj,k(u)
n
∑

i=1

wi − wi−1

ui+k−1 − ui

Bi,k−1(u),

= (k − 1)
n
∑

i=1

n
∑

j=0

Pjwiwj − Pjwi−1wj

ui+k−1 − ui

Bj,k(u)Bi,k−1(u),

and finally write the final general form of the velocity curve,

γ′(u) = (k − 1)

∑n
i=1

∑n
j=0

wiwj(Pi−Pj)+wjwi−1(Pj−Pi−1)

ui+k−1−ui
Bj,k(u)Bi,k−1(u)

(

∑n
j=0 wjBj,k(u)

)2 . (B.9)

Consider now that γ(u) is the result of previous refinement whereby k−1 knots

of value u∗ have been introduced at location i∗ + 1 within the curves knot vector.
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Then Pi∗ is an evaluation point. In Equation B.9, only basis functions Bi∗,k(u
∗)

and Bi∗+1,k−1(u
∗) exist at u∗ and have a value of one. Noting this we reduce the

equation and get,

γ′(u∗) = (k − 1)
wi∗+1wi∗(Pi∗+1 − Pi∗) − wi∗wi∗(Pi∗ − Pi∗)

(wi∗wi∗)(ui∗+k − ui∗+1)
, (B.10)

=
(k − 1)

ui∗+k − ui∗+1

wi∗+1

wi∗
(Pi∗+1 − Pi∗), (B.11)

for the velocity of the curve at time u∗. An important point to notice in Equa-

tion B.11 is that the velocity at time u∗ can be determined by two control points

and a scaling factor. This relates the Euclidean tangent direction to the parametric

speed.

Therefore, refining the original curve with k − 1 knots of value u∗ yields both

the evaluation point, Pi∗, and the tangent vector, γ ′(u∗).



APPENDIX C

MINIMAL BOUNDING CONE AXIS

PROOF

This appendix gives a proof based on one originally by X. Gu and modified by

S. Gortler [19]. The version shown below has been further modified for readability,

consistency with this documents notation, and completeness. We set the stage with

lemmas that aid in the development of the final proof.

Lemma 1 Given finite point set N = {Ni}, let HULL(N)=boundary of the convex

hull of N. If point O is not in HULL(N), then there is a single closest point P on

HULL(N) to point O.

Lemma 2 Given finite point set N = {Ni}, any plane that intersects HULL(N)

and is not coincident with any face of HULL(N) will divide HULL(N) such that at

least one Ni is on each side of the plane.

Lemma 1 is true since all convex hulls are convex and compact by definition.

Lemma 2 derives from the construction of a convex hull from planes defining half

spaces and basically states that any plane that intersects the interior of a convex

hull will “clip away” at least one of the defining vertices of the convex hull.

Theorem 1 Given finite point set N = {Ni} lying within a single hemisphere of

the unit sphere, then if P is the closest point from HULL(N) to the sphere origin

O, then P is the center of C, the smallest circle on the sphere bounding the points.
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Proof:

I.

The plane orthogonal to ~OP , through P , cuts the sphere in a circle, C, and P

is the center of that circle.

II.

Suppose there is another circle C∗, centered at P ∗, that bounds the point set

more tightly than C. The plane of C∗ must separate P from O. If this were not

the case then P and O would lie on the same side of the C∗ plane, resulting in the

C∗ plane intersecting HULL(N). This would imply that C∗ would not bound all of

Ni (Lemma 2). Let the intersection of ~OP with the plane of C∗ be the point D.

III.

‖ ~OP‖ > ‖ ~OD‖ since the plane of C∗ intersected ~PO at D.

‖ ~OD‖ > ‖ ~OP ∗‖ since P ∗ is the closest point on the plane of C∗ to O.

‖ ~OP‖ > ‖ ~OP ∗‖ by transitivity.

Therefore, The radius of C∗ must be greater than the radius of C, so C is the

minimum radius bounding circle of Ni.

Since the theorem is proven, we can now state the relevant Lemma needed for

the computation of the boundary normal in Section 3.3.5.

Lemma 3 Given point set N = {Ni}, lying within a single hemisphere of the unit

sphere, and circle C with center P , the smallest circle on the sphere bounding the

points, then the tightest fitting bounding cone for the point set has C as a cross

section and NA = P − O as its axis (Figure C.1).
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Figure C.1. The minimum bounding cone axis NA is formed from the closest
point, P , on the convex hull of {Ni} minus the sphere origin O.



APPENDIX D

UTN FILE FORMAT

In order to facilitate the transfer of models between the CAD environment and

APE, I have developed a simple file format called Utah NURBS (UTN). The main

goal of this format was to provide a common ground for converting third party

CAD application data into a format that APE could process. Secondary to that

was the ability to hand encode models for testing purposes. It was not feasible

to use the Alpha 1 file format (binIO) as that would have required supporting all

native types within Alpha 1 (this is truly a proprietary format). The use of a

custom format better facilitates the use of APE in conjunction with other third

party CAD systems.

The format, a combination of TAG and STATE based stream IO, is described

using a unit cube as an example. Any line beginning with a “#” is deemed a

comment line and ignored. The first token expected within the file is the Model

token and that is indicated by a “M” in column one. Following the token is a

model ID, center of mass as a 3d point, and the mass of the model. Both the center

of mass and mass are used when dealing with the model in a dynamic simulation

(such as an assembly).

M 0 6 0.0000 0.0000 0.0000 1.0000

Each model is constructed from one or more surfaces. The start of a surface

is signaled when the “S” token is read in column one. Following this token is the

surface ID, number of knots in the U and V knot vectors, number of rows and

columns in the control mesh, and the order of the surface in U and V.

S 0 6 6 3 3 3 3
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Directly following the surface information line are the U and V knot vectors on

separate lines.

-1.0000 -1.0000 -1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

The control mesh follows the knot vectors in row major order. Each element of

the mesh is a rational space point with the rational component premultiplied.

0.5000 0.5000 0.5000 1.0000

0.5000 0.0000 0.5000 1.0000

0.5000 -0.5000 0.5000 1.0000

0.5000 0.5000 0.0000 1.0000

0.5000 0.0000 0.0000 1.0000

0.5000 -0.5000 0.0000 1.0000

0.5000 0.5000 -0.5000 1.0000

0.5000 0.0000 -0.5000 1.0000

0.5000 -0.5000 -0.5000 1.0000

Any trimming loops associated with the surface will follow the control mesh and

precede the next surface token. The trimming token is a “T” in the first column.

If a trimming loop is “simple” (on the boundary of the patches parameterization)

then the token will have a “2” appended, otherwise a “1” is appended. This is just

for internal optimization and not strictly required.

T2

The trimming data itself is then laid out such that the process of reading, and

constructing, the internal structures is optimized. The total number of trim edges

for all loops comes first. This is followed on a new line by the number of edges in

a given loop and the number of points in that same loop.

4

4 5

In this case the surface has four total edges (which is expected since it is a

simple trim). The next line starts the loop and indicates four edges in that loop

represented by five points. Each edge of the loop is then specified by a line holding

the adjacent surface’s ID, the adjacent edge ID on that surface, and the number
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of points representing the edge. Trailing this header information are the points

making up the segments for the edge. A shared point between edges is not doubled

(except for the final point of the loop) but is instead listed in the second segment

to contain it.

5 2 1

-1.0000 0.0000 0.5000 0.5000 0.5000

4 0 1

0.0000 0.0000 0.5000 -0.5000 0.5000

2 0 1

0.0000 1.0000 0.5000 -0.5000 -0.5000

1 0 2

-1.0000 1.0000 0.5000 0.5000 -0.5000

-1.0000 0.0000 0.5000 0.5000 0.5000

The file reader will continue until enough edges have been read as specified on

the first trimming data line. Therefore, if further loops need to be listed they can be

appended here by simply specifying the number edges in the loop and the number

of points in that new loop. Processing would then continue with the edges as above.

The remaining five surfaces would follow, each with its own ID and trimming

loops. Optionally, a color token, “C”, can be specified. If one follows the model

token then the color will be assigned to the model as a whole. If it follows any

given surface then that surface will have a color assigned that overrides that of

the model. This token simply supplies the red, green, and blue color values as

normalized components.

C 1.0 0.7412 0.3121



APPENDIX E

DEVICE CONFIG FILES

APE uses configuration files to define which devices will be used per session.

The config file also contains any device specific setup data. As an example, if two

active devices require TCP ports the config file would allocate them such that they

do not conflict.

The format for the config file defines any line beginning with a “#” as a com-

ment. All other lines must supply a valid device name as the first word. The device

manager uses this to determine which device class to construct. Any remaining

test on the line is passed onto the device class to be interpreted, therefore can be

different for each device. The specific requirements for each device configuration

line are as follows:

sarcos <mach> <tcps-port> <tcpr-port> <udpb-port>

phantom <mach> <tcps-port> <tcpr-port> <udpb-port>

bird <bird-ttyd> <button-ttyd>

glove <mach> (ttys) <glove> <bird> <button> (ports) <tcps> <tcpr> <udpb>

As an example, consider the follow config file that initializes a session to use

all of the currently supported devices. In practice, the config file would define one

or two devices to be used by a single user, but the system does allow for as many

devices as requested, as well as duplicate devices.

#

# This device config file causes the device manager to setup

# the sarcos arm, phantom arm, and the glove/bird combination.

#

sarcos vxw0-gw 5050 5060 5070

phantom surreal 5000 5001 5002

glove surreal /dev/ttyd2 /dev/ttyd3 /dev/ttyd058 5003 5004 5005
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