HAPTIC RENDERING OF TRIMMED
NURBS MODELS WITHIN AN
ACTIVE PROTOTYPING
ENVIRONMENT

by

Thomas V Thompson II

A dissertation submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

School of Computing
The University of Utah

December 2006

Copyright (©) Thomas V Thompson IT 2006

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Thomas V Thompson II

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Elaine Cohen

Rich Riesenfeld

John Hollerbach

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Thomas V Thompson 11 in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Elaine Cohen
Chair: Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Director

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

This dissertation presents techniques for direct haptic rendering of complex
trimmed NURBS models. More specifically, the research concentrates on devel-
oping a complete collection of algorithms for haptic interaction with Computer
Aided Design (CAD) models without requiring any intermediate representations
or simplifications. The complex underlying structure of trimmed NURBS further
compounds the difficulty of haptically rendering them. However, for many reasons,
trimmed NURBS are a highly popular CAD representation. This approach allows
users to interact haptically with the massive collection of real-world NURBS models.

The design and implementation of a target application, APE (Active Prototyp-
ing Environment), as a test-bed system that integrates haptic rendering into the
Alpha_1 modeling package is described. Among the algorithms required for such
interaction are model proximity; global and local closest point tracking; surface
evaluation of contact point, normal and tangent vectors; and rapid and robust
transitioning across trimmed edges. Since current computer systems are not pow-
erful enough to perform all of the necessary tasks within the alloted time using a
single processing thread, distributed system techniques, including multiplatform,
multiprocessing and multithreading, are also presented. In addition, an approach
to verify the quality of a haptic algorithm is presented and applied to direct haptic

rendering.

To my grandmothers Margaret and Naomi.

Your faith and love got me here.

CONTENTS

ABSTRACT . . iv

LIST OF FIGURES. e ix

LIST OF TABLES xi

ACKNOWLEDGMENTS xii
CHAPTERS

1. INTRODUCTION 1

1.1 The Problem 2

1.2 Trimmed NURBS Models 3

1.3 Haptic Rendering 4

1.3.1 Haptic Devices. 5

1.3.2 Response Models)

1.3.3 Direct Haptic Rendering 7

1.4 Active Prototyping Environment 7

1.5 Document OvVerview. 8

2. PREVIOUS WORK 9

2.1 Virtual Environment 10

2.2 Haptic Rendering 11

2.3 Distributed Computation. 14

3. DIRECT HAPTIC RENDERING 17

3.1 Local vs Global Closest Point 18

3.2 Proximity Testing 21

3.2.1 Four Level Control............ 21

3.2.2 Proximity Testing Results 23

3.3 Contact and Tracing 24

3.3.1 DPT on Curves 24

3.3.2 DPTon Surfaces 27

3.3.3 Surface Evaluation................. 29

3.3.4 Trim Tracing 31

3.3.5 Boundary Normal 33

3.3.6 Eliminating False Contacts 36

3.3.7 Internal Edges 37

3.3.8 Contact and Tracing Results 38

3.4 Tracking. 42

3.4.1 LUB-Tree Construction 43

3.4.2 LUB-Tree Traversal 45

3.4.3 Hybrid Approach 46

3.4.4 Tracking Results 47

3.5 Transitioning 48

3.5.1 Grid Overlay 50

3.5.2 Grid Walking 51

3.5.3 Trim Intersection 53

3.5.4 Trim Release 54

3.5.5 Adjacency 55

3.5.6 Time Critical Operation 56

3.5.7 Error Management. Y

3.5.8 Transitioning Results. o8

3.6 Extensions 60

3.6.1 Modelsin Motion 60

3.6.2 Dimensioned Probe 62

3.6.3 Multiple Probe Rendering 63

3.7 SUMMATY . .o 64

4. APE: TARGET APPLICATION 66

4.1 User Environment 66

4.1.1 Interface. 67

4.1.2 Graphical Viewer 68

4.2 Model Manager 70

4.2.1 Distributed Managers 71

4.2.2 Model Locker 72

4.2.3 Tracking Deamons 73

4.3 Device Manager 74

4.3.1 Devices 74

4.3.2 Safety Levels 75

4.3.3 View Manipulation 76

4.3.4 Moving Models 7

4.4 CAD System Integration 78

4.5 Distributed Computation. 79

5. CONCLUSIONS e 83
APPENDICES

A. NURBS CURVES AND SURFACES 85

B. NURBS CURVE VELOCITY AT EVALUATION POINT 87

Vil

C. MINIMAL BOUNDING CONE AXIS PROOF..............

D. UTN FILE FORMAT ...

E. DEVICE CONFIG FILES

REFERENCES........... ..

viil

1.1

1.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

LIST OF FIGURES

A trimmed NURBS model (a) and its parametric domain containing
the trimming loop information (b). 4

APE supported devices: Sensable Phantom (a), Sarcos Dextrous Arm
Master (b), and Immersion CyberTouch (¢)., 6

A local closest point, C', bound to a surface crease is desired for
tracing (a) but not for noncontact tracking (b) where failing to use a
global closest point, C, would result in a missed contact detection (c). 19

Contact established at point C, (a). Use of global closest point, Cg

(b), would accelerate the probe through the model. 20
Contact established at point C, (a). Use of global closest point, Cg,
would cause a slip to be induced off the model (b). 20
Contact established at point C'p (a). Use of the global closest point,
Ceq, would induce an artificial edge (b). 21

Model proximity for distant models is tested in the simulation process
but no actual point need be determined. Near and active models
require a global closest point with active models using a hybrid ap-
proach. The current model require a locally closest point. 22

Direct Parametric Tracing. Initial state (a). Probe moves (b). Pro-
jection of probe onto tangent (c). New evaluation point and tangent
plane via parametric projection (d)............. 25

Intersection of two surfaces formed by a single edge (a). Intersection
along multiple surfaces requires multiple edges even though visually
the intersection is the same (b). L., 31

Geometric view of trim trace(a). Multi-surface intersection point
represented by their trim segments (b). 32

The choice of normal at a surface boundary requires special care.
In both (a) and (b) neither surface normal correctly classifies both
shaded areas. However, Ng correctly classifies all areas. 34

The boundary normal, whether the probe is inside (a) or outside (b)
the model points out of the model and produces a smooth transition.. 35

High curvature and distance can result in false contact (a) unless a
tighter bound on contact is used (b). 37

3.12

3.13

3.14

3.15

3.16

3.17

3.18
3.19
3.20

3.21

3.22

3.23

3.24

4.1
4.2
4.3
4.4
4.5
C.1

Histograms for penetration depth in mm of goblet, teapot, brake, and
gear models. 39

Speed of surface evaluation for three techniques. Top three lines are
cached evaluation, next three are noncached evaluation, and the final
three are full refinement. In each case the three lines represent order
3,4, and 5 from top to bottom. 40

Mean penetration depth error (a) and mean normal error (b) vs. trace
curve offset depth. Each line represents a different step size along the
frace CUIVE. 41

Using convex hulls from the original surface produces loose overlap-
ping spheres (a). Converting to Bezier patches first produces tighter

nonoverlapping convex hulls which results in tighter spheres (b). 44
Global closest point replaces trace point when more accurate (a). It
is discarded when the trace point is better (b)., A7
The smallest feature size for a model (a) is determined by the distance
a probe can move between GCP updates (b)., 49
Transitioning across (a), onto (b), and off of a trim boundary (c). ... 50
A grid overlay on a trimmed surface. 51
Time sampled movement of probe (a) and directed line segment in
parametric space (b). 52
The next cell is chosen using the smaller of nezt_t, and next_t,(a).
The algorithm halts when both values exceed one (b).............. 53
Edge adjacency table example illustrating that edge three of surface
two is adjacent to edge one of surface four. 56
Model movement (a) transformed into probe movement (b) through
the inverse model xform. 61
Actual model (a). Initial offset model (b). Final offset model with
possible trace positions (¢). i 63
Four button device for off hand. 67
Graphical representations of Phantom (a) and Sarcos arm (b). 69
The graphical display space.. 70
APE is multiplatform, multiprocessor, and multithread capable. 79
System configuration for Phantom device. 80

The minimum bounding cone axis V4 is formed from the closest point,
P, on the convex hull of {N;} minus the sphere origin O. 92

LIST OF TABLES

3.1 DPT tracing results 38
3.2 DPT errorresults 42
3.3 Tracking results 47
3.4 Statistics on models used in system testing 59
3.5 Grid walking results 60

4.1 User interface bindings and device substitutes 68

ACKNOWLEDGMENT'S

I would like to sincerely thank the members of my committee, Elaine Cohen,
Rich Riesenfeld, and John Hollerbach, for their time and advice. Each of you has
helped improve and shape this research. Special thanks to the chair of my commit-
tee, Elaine Cohen, for creative ideas, interesting diversions, historical perspective,
and grounding my theories in reality. Thanks to the staff of the GDC research
group, Dave Johnson and Jim de St Germain, for their support and helping me
flesh out ideas. Thanks to the members of the Biorobotics group, Don Nelson,
Rod Freier, and Milan Ikits, for helping operate and setup the robotic devices,
their various control systems, and the networking software. Further thanks goes to
the graduate community and in particular David Weinstein, Helen Hu, and Steve
Parker.

I thank my parents and grandparents for giving me the drive to continue my
education. Without their encouragement I could not have succeeded. Thanks to
Don Smith and Joe Fuller for setting me down this path by inspiring me at West
Virgina Tech. And finally, great thanks to my wife Tamaryn. Without her love,
support, insistence, and willingness to pick up my slack during the long hours of
writing, I am certain this document would never have been completed.

This work has been supported in part by DARPA grant F33615-96-C-5621, NSF
Grant MIP-9420352, and by the NSF Science and Technology Center for Computer
Graphics and Scientific Visualization (ASC-89-20219). All opinion, findings, con-
clusions, or recommendations expressed in this document are those of the author

and do not necessarily reflect the views of the sponsoring agencies.

CHAPTER 1

INTRODUCTION

Current modeling systems offer limited feedback to a model designer. The
passive graphical display of complex models can convey only limited visual infor-
mation. Even with the array of presentation options supplied to a user by modeling
packages, such as iso-line drawings, shaded images, and animations, the designer is
often left without information that could easily be gathered if the model could be
interrogated by touch [1].

One promising approach for increasing the information available to a designer
is haptic rendering. Haptic rendering supplies touch feedback to the user by
simulating the forces generated by contact with, and surface tracing of, a virtual
model. In conjunction with visual feedback, haptic rendering increases the level of
interaction. This facilitates a greater understanding of complex models and adds
to the sense of realism in virtual environments [23, 24, 63].

While the graphical display of a model is almost exclusively accomplished by
first converting it to a collection of polygons, the model itself often starts with a
different geometric representation. In fact, a master CAD model is almost always
described by NURBS throughout its life [44]. Being a parametric representation,
NURBS surfaces have the advantage of compactness, higher order continuity, and
exact computation of surface tangents and normals. All of these properties are
useful in complex, realistic virtual environments [57].

The ability to trim away arbitrary portions of a NURBS surface and define
adjacencies under boolean set operations is a powerful extension to many modeling
packages. These constructive solid geometry results form a large class of models
which can be expressed much more readily and succinctly using trimmed rather than

nontrimmed NURBS. Furthermore, the use of trimmed NURBS is fairly widespread,

making it important for a haptic rendering algorithm to handle them. This increase
in expressiveness does not come without a cost. Since the trimming curve (or
curves) representing the boundary of a surface is frequently expressed as a piecewise
linear curve with a high number of segments, determining when haptic contact is to
transition from one surface to another can be a complex task. However, once such
a transition is detected, topological adjacency information can allow for efficient
computation of the exact transition point.

The goal of the research reported here is to enable the user to trace directly
on the actual CAD model instead of an intermediate or alternate representation;
achieving the most accurate haptic rendering results. To this end, this research
introduces direct haptic rendering of complex models constructed from trimmed
NURBS surfaces. This approach is realized through development of algorithms
for model proximity testing; fast update of global and local closest point ap-
proximations; computationally efficient surface evaluation and normal evaluation
techniques; and smooth efficient transitioning across trimmed surface boundaries.
Furthermore, these results are extended to include model manipulation, dimen-
sioned probes, and multiple probe contact. A complete system, APE, is presented
as a target application in which the algorithmic results are tested. This distributed
system integrates the haptic rendering results, through various haptic devices, to

Alpha_1 [53, 54], a research CAD package.

1.1 The Problem
CAD systems are not built with real-time interaction as a primary goal. The
focus of CAD systems, secondary to the actual design process, tends to be directed
toward data management, representation, and complexity issues. While this is
appropriate for the overall task of product design, it is not an optimal space for
haptic rendering. Further, even when computation is shifted to concentrate on
haptic rendering of the CAD model, the complexity of trimmed NURBS models

results in their not lending themselves to haptic rate computation.

Another difficulty in the development of a haptic design environment is that
tight update rate constraints on the visual and haptic displays must be met. It
may be acceptable for the visual display to update at twenty frames per second [9],
but the haptic display must maintain rates of several hundred Hz [40] for the virtual
surfaces to feel solid. Both the visual and haptic display individually tax a system;
therefore, it is necessary to distribute computation onto multiple processors or even

multiple machines [66, 67].

1.2 Trimmed NURBS Models
Non-Uniform Rational B-Spline (NURBS) surfaces are highly compact and yet
very expressive as a representation for modeling. A NURBS surface is a bivariate
vector-valued piecewise rational function of the form

im0 2 j=0 L jwi i Bjg, (V) Nig, (u)

im0 2 =0 Wi Bjk, (V) Nig, (u)

where the {P, ;} form the control mesh, the {w; ;} are the weights, and the {N; z, }

S(u,v) = (1.1)

and {Bj,} are the basis functions defined on the knot vectors {u} and {v} for a
surface of order k, in the u direction and k, in the v direction.

The various properties of a NURBS surface (presented in greater detail in
Appendix A), including a local convex hull property, and the ability to evaluate
surface points, normals and tangents, along with its intuitive control characteristics
make it a good representation for modeling and design. These properties have led
to NURBS becoming the de facto industry standard for the representation and data
exchange of geometric models [44].

Trimmed NURBS models are constructed by cutting away portions of a NURBS
surface using trimming curves in parametric space. In APE, trimming information
is represented in parametric space as directed closed polygons called trimming loops.
Each individual linear portion of the loop is called a segment. An ordered set of
connected segments that represents a shared boundary between two surfaces is
referred to as an edge. The trimming loop being directed enables the classification

of the surface domain. Portions of the surface domain to the “left” of a loop are

considered cut-away while pieces to the “right” are deemed part of the model. Note
that each surface that is part of a model contains at least one trimming loop. If
there is no portion of the surface being cut away then this loop simply surrounds
the domain of the surface.

Consider the model in Figure 1.1a of a simple disc with a hole cut through it.
The top surface will have two trimming loops within its parametric domain as shown
in Figure 1.1b. Notice that the direction of the two loops indicate that the dark
regions are to be cut away. The outer clockwise loop cuts away the outermost region
while the inner counterclockwise loop cuts away the center region representing the
hole. The edges in Figure 1.1b are illustrated in alternating brightness to indicate

the patch in Figure 1.1a that is adjacent to each edge.

1.3 Haptic Rendering
The goal of a haptic rendering system is to reproduce a sense of physical presence
for a virtual model. One approach to achieving this result is to accurately generate
forces and apply them to a probe attached to a user’s hand or arm. A haptic device
renders the calculated forces and applies them to the probe. These forces, called

restoring forces, resist penetration into the virtual model and are calculated using

(a) (b)

Figure 1.1. A trimmed NURBS model (a) and its parametric domain containing
the trimming loop information (b).

a response model called a wall model. The more accurate these forces are the more

realistic the simulation of reality.

1.3.1 Haptic Devices

Currently, there are not a large number of commercially available haptic devices.
Those that are available present interesting trade-offs in fidelity, workspace, and
degrees-of-freedom (dof). The device handling feature of APE is object oriented
and as such is extensible to further device development. At the University of Utah
we currently employ two highly disparate haptic devices: the Sensable Phantom
[37] and the Sarcos Dextrous Arm Master [26]. The APE system supports both of
these devices as well as other nonhaptic devices and trackers.

The Phantom (Figure 1.2a) is a small desktop force feedback device. It is a
low inertia device with 6-dof for input and 3-dof for force reflection. This device is
controlled by a Linux Dual 2.4 GHz Intel Pentium4 processor based workstation.

The Dextrous Arm (Figure 1.2b) is an advanced hydraulic force-reflecting ex-
oskeleton. It is a high inertia device with 10-dof and a complex dynamic structure.
Among the 10-dof are two for the thumb and one for the finger, allowing force
reflection to two points on the hand instead of one. This device is controlled by a
hybrid PowerPC 604 and Motorola 68040 VME system.

One example of a nonhaptic device supported by APE is the Immersion Cyber-
Touch [12] tactile feedback glove (Figure 1.2c¢). The glove contains 18 sensors to
monitor the motions of the hand and fingers. Further, it provides small vibrotactile
stimulators for each finger and the palm. When used in conjunction with the

Ascension Bird [5], the hands position can be tracked with 6-dof.

1.3.2 Response Models

There are two basic types of response models: compliance and stiffness. The
compliance model [69] takes force measurements and uses a control strategy to ren-
der acceleration or another form of motion to the probe and the virtual object. The

stiffness model uses measured position to compute and display force. Wall models

Figure 1.2. APE supported devices: Sensable Phantom (a), Sarcos Dextrous Arm
Master (b), and Immersion CyberTouch (c).

based on the stiffness response model often have a restoring force proportional to
the depth the probe penetrates into the model [11] and in the direction of the
surface normal at the contact point. The stiffness model is the prevalent approach
used for haptic rendering and the one adopted for APE.

The intrinsic differences in the two haptic devices supported by APE require
different wall model definitions for each. The combination of low inertia and low
friction in the Phantom allows a high fidelity force display to be produced with
a very simple wall model. The wall model, recommended by the manufacturer, is
defined as

F = kyz, (1.2)

where x is the penetration depth and k, is the spring coefficient. For the Phantom
we set the surface stiffness to 1500 N/ m.
The Dextrous Arm requires a more complex wall model that can compensate

for the inertia of the device. For the Dextrous Arm we use a nonlinear damping

model developed by Marhefka and Orin [35]. The wall model is defined as
F = kya" + kya"a, (1.3)

where 2’ is the velocity of the probe, and k, is the damping coefficient. Notice that
the penetration depth is present in the second term, which requires that the force

starts from zero during initial contact regardless of velocity. For the Dextrous Arm

we use a surface stiffness of 6000N/m and through experimentation have found

n = 4 to be a sharp and stable exponent value.

1.3.3 Direct Haptic Rendering

At best, a haptic algorithm can accurately reproduce the model upon which
it acts. If this differs from the original even the most sophisticated algorithms
cannot faithfully reproduce the original model. Therefore, the most accurate haptic
rendition of a virtual model is produced when the haptic algorithm acts directly on
the actual model and not an intermediate or alternate representation.

In the modeling and design communities the de facto standard model rep-
resentation is NURBS [44]. Many systems also provide trimming information
that permits constructive solid geometry to be accurately represented. Further,
some more powerful systems provide adjacency information within the models
representation as well. APE and Alpha_1 support both trimming and topological
adjacency information. Obviously, the addition of trimming information to the
model representation complicates the haptic algorithm. The algorithm must detect
not only when a haptic trace exits the surface’s domain, but also any intersection
with trimming boundaries. However, the combination of trimming and topological
adjacency information can be used to both simplify and improve the efficiency of
the haptic algorithm. For example, if a haptic trace crosses a surface boundary,
indicated by an intersection with a trimming boundary, the adjacency information
can be used to efficiently and accurately calculate the contact point on the newly
contacted surface. This allows a collection of trimmed surfaces with adjacency
information to be treated as a solid model, both conceptually and within the haptic

algorithm.

1.4 Active Prototyping Environment
As both a test-bed application and proof of concept, we present the Active
Prototyping Environment (APE). While haptically tracing a virtual model can

provide information to a designer that visual rendering alone cannot, it is the

combination of these two effects that most completely produces the experience of
tracing a physical model. This convergence of rendering techniques, however, is
neither straightforward nor an obvious combinatoric result.

Using currently available resources, it is not feasible to both visually and hapti-
cally portray a virtual model using a single computational thread. Decoupling the
computation of these two displays into simulation and haptic processes can alleviate
this computational bottleneck, but it introduces the problem of synchronizing the
presentation. For example, when the user feels contact with a virtual model through
the haptic device the visual display should, simultaneously, display the graphical
representation of the haptic device contacting the virtual model. Each feedback
channel re-enforces the other, producing a more powerful, and therefore realistic,
experience.

For this reason, APE is a highly distributed system that attempts to maximize
the use of available resources. Further, concentrated effort was placed on making
all data accessible, without mutex locking, as soon as it becomes available, the
combination of which results in a highly interactive environment with synchronized

visual and haptic feedback.

1.5 Document Overview

The dissertation continues in Chapter 2 with a review of previous work in haptic
rendering and environments that integrate haptic feedback. Chapter 3 focuses on
the ideas that have been developed to solve the Direct Haptic Rendering problem
for trimmed NURBS models. In particular, the problem is decomposed into several
phases and subproblems with a separate section discussing each in turn. Results are
reported for each individual section. Following this, Chapter 4 presents the APE
system by giving both a system overview and by addressing specific implementation
issues. Next, Chapter 5 brings the dissertation to a close with some conclusions
and final remarks. Finally, a collection of appendixes are provided to help explain,
in greater detail, some information related to research topics and data structures

discussed in the earlier chapters.

CHAPTER 2

PREVIOUS WORK

Many researchers have worked toward bringing the full design process into an
integrated computer design system. Each stage of the design process has been
targeted for research. This section provides an overview of previous work relevant
to the presented research. Primarily, work is included that is aimed at enabling a
user to use 3D input to perform meaningful work within a virtual environment.

Several groups have investigated the problem of bringing the conceptual stage
of design into a 3D environment. Not withstanding Hatvany’s [20] claims that it is
nearly impossible to sketch CAD designs, work in this area has progressed and the
results are becoming more usable.

Others have decided that the ability to store and track early sketches is of more
importance than having the sketch be actually in computer form. This approach is
actually rather sound since design ideas come to designers at random inspirational
moments throughout the day. Therefore, the initial sketches often occur on scraps
of paper found at that creative moment. These systems allow the sketches to be
scanned into image form and kept with the design throughout the design process.

The modeling stage of design is currently heavily supported with solid CAD
systems. Over time, as the power of the computer systems upon which these design
environments run has increased, many modeling systems have added support for a
variety of input and output devices. However, these are generally for the purposes of
visualization, such as the use of a head mounted display, or for passive manipulation,
such as 3D trackers for manipulating a collection of models.

The prototyping stage is important to the design process as the results may
signify the completion of the design. Problems that are not apparent in the design

can often be brought out quickly in the prototype. However, the construction of

10

a physical prototype can be very expensive both in cost and time. The necessity
of both cutting costs and bringing products to their fruition more quickly has
given rise to the desire for virtual prototypes. There are three main problems to
making virtual prototypes a reality. These are the construction of an appropriate
virtual environment extension to the design space, development of haptic rendering
algorithms that work directly on the designer’s model, and the integration of these

two components into a single system via distributed computing methods.

2.1 Virtual Environment

An immersive environment permits the designer to enter the design space. This
is a powerful addition that allows the designer to view, manipulate, and explore
the design using natural and intuitive 3D body motions. The transfer of real world
skills into the virtual world in order to make the designer more efficient and reduce
training times is a formidable research challenge.

Current CAD systems provide rather basic visual display capabilities but re-
searchers in other disciplines have been working toward creating realistic virtual
worlds [32]. The first look into an overlaid virtual world was provided by Sutherland
in 1968 with his invention of the first computer graphics driven head-mounted
display [65]. The commercial success of such completely immersive systems has
been limited to entertainment and simulator purposes, but new applications have
been shown to be effective as well.

Architectural walk-throughs [6, 17] have been a success nearly from the begin-
ning. These environments are easy for the user to become immersed within since
they represent something familiar to the user. The combination of relatively simple
and mostly static geometry with algorithms that prune away geometry that is not
visible allows for high display rates.

The Virtual Wind Tunnel was developed by Bryson and Levit in 1991 to allow
testing of aircraft aerodynamics [7]. This was an important step in the virtual
reality community as it proved to be an effective application even though the

computation rate for the simulation was not able to keep up with the display rate.

11

They have since improved this system to allow it to be extensible for new devices
and new visualization tools [8].

Medical applications that allow the surgeon or doctor to see a virtual version of
the operating space have also been developed. Augmented displays have been used
to show ultrasound images directly on a patient during ultrasound-guided needle
biopsies [62]. Some researchers have worked on constructing virtual environments
out of helical CT scan data to allow a doctor to fly through a patients colon in
presurgical exams and surgery planning procedures [25].

Much of the virtual environment research has dealt with user interaction meth-
ods for manipulating items within the environment. There are two basic com-
ponents to this problem: selection and manipulation. The different techniques
developed make various trade-offs to meet these goals. Laser beam techniques [39]
provide superior selection but suffer from poor manipulation capabilities. Arm-
extension techniques such as Go-Go arms [51] provide intuitive hand-centered ma-
nipulation but imprecise selection. The worlds in miniature approach [48, 64]
provides both easy selection and manipulation but the usability of this method
may degrade as the environment size and number of objects increases. Image plane
techniques [49] allow hand centered manipulation and simple pointing selection,
however arm fatigue, eye dominance, and the hand obscuring objects all limit this
approach. Only recently has the sense of touch been considered feasible as an

additional channel of input for virtual environments.

2.2 Haptic Rendering
The goal of a haptic rendering system is to produce a sense of contact with a
virtual model. This is accomplished by generating forces that can be applied to the
user’s hand or arm via a haptic device. These forces, called restoring forces, prevent
penetration into the virtual model and are calculated using a wall model. There
are two basic types of response models, compliance and stiffness, with the stiffness
model being most prevalent in haptic rendering systems. Wall models based on the

stiffness model often have a restoring force proportional to the penetration depth

12

[11] and in the direction of the closest point’s surface normal. In order to maintain
the stiffness of the virtual surface, the force servo loop must run at several hundred
Hz [40]. This high update rate limits the complexity of the algorithms that can be
used to find the closest point and has also restricted the types of models that can
be rendered.

Zilles and Salisbury have traced polygonal models using a constraint-based
system that tracks a point on the polyhedrons surface [70]. They calculate the
penetration depth and surface normal from the tracked surface point. In order
to portray sculptured models, they recommend interpolating the surface normals
(much like Phong shading in graphics). Systems of this type are often limited
to relatively simple models since too much processing time is required for complex
models with a high polygon count. Ruspini et al. have extended this work to handle
larger polygon counts as well as permit more general graphics primitives, such as
points and lines, to be traced by a dimensioned probe [56].

Adachi et al. [2] and Mark et al. [36] advocate the use of intermediate rep-
resentations to simplify haptic rendering of sculptured models. Stewart [63] also
demonstrated this approach by applying a globally convergent numerical method to
the system of equations describing the orthogonal projection onto a spline surface.
These systems haptically render the model by using relatively slowly changing
planar approximations to the virtual model. This method allows more complex
models to be rendered but is limited when trying to approximate surfaces with
high curvature. Further, since the planar approximations are sampled in time and
not by position, the surface felt by the user is not necessarily repeatable during
multiple tracings.

Free-form surfaces have been traced by Adachi using distribution functions
[1] and by Salisbury et al. using implicit surfaces [58]. Both approaches permit
quality tracing of smooth surfaces. However, parametric surfaces, such as NURBS,
have become the surface representation of choice in CAD. As such, to use these

methods requires a conversion from the original model into one of these other

13

representations. This conversion is difficult and often results in models defined by
complex numerically unstable high order functions.

Thompson et al. have demonstrated direct haptic rendering of sculptured models
constructed from NURBS patches [66]. Parametric surfaces such as NURBS have
the advantage of a compact representation, higher order continuity, and exact
computation of surface normals which are all useful in complex, realistic virtual
environments [61]. This method has been extended to support more complex
trimmed NURBS models [68] and to permit the models to be manipulated [67].
Using this method, designers can touch, trace and manipulate a CAD model at
interactive rates without the use of an intermediate representation.

Subsequent to the work described here, Johnson and Cohen followed up upon
the results of Thompson et al. by extending direct parametric tracing to include
second order surface information [28]. Nelson et al. demonstrated surface-to-surface
haptic interaction of sculpted models [42]. Patoglu and Gillespie also presented a
surface-to-surface algorithm [45, 46]. Their method is based on control theory
and maintains the extremal distance even with imprecise seed values. The pair
has also presented a novel closest point tracking algorithm for parametric models
constructed from convex tiling [47]. The approach is shown to be both patch
invariant and globally uniformly asymptotically stable.

Dachille et al. simulated sculpting of surfaces through a physics based approach
[13, 14]. This approach allowed the haptic force to act upon a discreatized repre-
sentation constrained to the NURBS surface representation.

Research has continued using more recently available 6-dof devices. The addi-
tional degrees-of-freedom allow the resulting forces to include torques along with
translational forces.

Kim et al. have created incremental methods for computing the penetration
depth for collections of convex polygonal bodies [33]. The convex decomposition
approach was extended by Otaduy and Lin to include perceptual level of detailing

[43]. This can accelerate haptic rendering of very large models.

14

Johnson et al. use spatialized normal cones combined with local descent to
facilitate polygonal model-model haptic rendering [30, 31]. This approach prevents
penetration by deriving repulsive forces and torques and is therefore suitable for
accessibility analysis.

Duan et al. propose a PDE-based surface flow approach [15]. Their work sup-
ports both implicit, distance-field based shape modeling, and dynamic, force-based
shape design. The work was embedded in an immersive stereo environment by Hua
et al. and extended to support locallized model modification [21].

Rather than use a method based on penetration depth, McNeely et al. at Boeing
have created a voxel-based approach [38]. Their system allows for interaction
with the voxelized scene by way of a point-sampled model. By creating the voxel
boundary they insure valid virtual prototyping.

Perhaps the most glaring absence in this body of work is the ability to readily
modify the underlying geometry of the model. Many of the above techniques
require significant preprocessing to setup hierarchical bounding structures in order
to speed contact detection. Others require a conversion from the design into an
alternate form before haptic rendering can begin. Those that use a distributed
model approach complicate geometry modification by introducing synchronization
issues. This problem must be solved if haptic rendering is to be pervasive to the

design process.

2.3 Distributed Computation

In order for a virtual environment to present a realistic and immersive experience
to the user the update rate for the visual display must be kept above 20Hz [9].
Similarly, a haptic display must have an update rate maintained at hundreds of Hz
[40]. Neither display can be allowed to slow the other’s update rate and therefore
each must be run in a separate process. These processes must maintain a consistent
view of the model if the visual and haptic presentations are to produce a realistic,
synchronized, portrayal of the tracing experience. This forces a distributed design

approach that can, if approached properly, drastically improve the quality of both

15

processes within one system. Previous work approached the distributed design
of virtual environments from a slightly different angle. In these prior works the
system needed to be segmented since the components were the visual display and
an environment simulation. The simulation would often run at much slower rates
than the visual display and therefore needed to be placed in its own process. This
would permit the visual display to be kept at a high enough update rate.

The Cognitive Coprocessor Architecture was developed at Xerox as a tool for
building virtual reality user interfaces [55]. This architecture was designed to
support smooth animation and multiple asynchronous interactive agents. This
work was based on the Three Agent Model for supervisory control and interactive
systems developed by Sheridan [60].

Distribution over multiple workstations to support the interactive rates of vir-
tual reality interfaces is a main goal in the IBM VUE system [4]. This system
assigns a workstation to each device including one for each graphics renderer. This
distribution of a single process for each device has become more common since 3D
devices are currently noisy and therefore require filtering. The more data used in
the filter the better it performs. Therefore, a separate process is used to gather
the data from the device at device rates and then supply the filtered results to the
application upon request.

The Decoupled Simulation Model is included within the MR toolkit and provides
low level support for the design of virtual reality environments [59]. This system
provides a unified view of a tracker so that the system need not be recompiled in
order to support new equipment or a new organization of equipment. A separate
process is created for each tracker, the simulation component and for a geometric
model component. This distribution is slightly different from the previous systems
as it allows for dynamic model geometry adjustment. The geometric model compo-
nent supplies different versions of the model to the viewer depending on the current
view update rate.

Adachi et al. [2] and Mark et al. [36] have both presented distributed systems for

haptic environments. The distribution consists of a graphical viewer and a haptic

16

control process. The haptic device supplies its position to the viewer so that a
graphical representation of the devices end-effector can be presented for the user.
A simple local representation of the geometry is provided to the haptic controller

by the graphical process so that it can render an appropriate force for the user.

CHAPTER 3

DIRECT HAPTIC RENDERING

The goal of direct haptic rendering is to enable the user to feel the model
actually designed instead of some secondary representation. In addition to an
enhanced tracing experience, using the actual model allows the designer to modify
the model without having to wait for the haptic system to convert the model in a
time-consuming preprocessing step. We break direct haptic rendering of trimmed

NURBS models into several phases.

e The system checks each model for proximity to the probe and activates those

models deemed proximal.

e The tracking algorithm tracks the probe’s global closest point on the model

until contact is made.

e While in contact, the tracing algorithm maps the movement of the probe to

movement of a local closest point along the surface of the model.

e The transitioning algorithm computes the local closest point on an adjacent

surface when the probe’s movement intersects a trimming loop boundary.

As with other forms of haptic rendering, this direct approach must find an
appropriate closest point and surface normal for the force response model. These
computations must cycle at haptic rates of around 500Hz. More specifically, each
instance of these computations must complete in under 1/500sec. Therefore, we
can establish a budget to which the sum of all computations must adhere. The
difficulty in this approach is that the computation of the requisite data requires

surface evaluation, a time consuming operation when dealing with NURBS models.

18

Minimizing the number of surface evaluations was therefore one of the primary

goals in the development of this approach.

3.1 Local vs Global Closest Point

The APE system uses two types of closest points: local and global. When the
probe is in contact with a surface, the tracing algorithm uses a local closest point
to determine the virtual point of contact with the model’s surface. However, when
the probe is not in contact, a global closest point is used to track the next possible
contact point. By using a global closest point, our system ensures proper contact
detection by permitting the closest point to jump across concavities and to climb
convex regions. Figure 3.1 illustrates the different closest point requirements.

During tracing, the probe (or end-effector in robotics terms), E, moves to a
location resulting in the local closest point, C', becoming bound to the intersection
of two surfaces (Figure 3.1a). This is the correct response: the probe is trying
to move inside a second surface and should be restricted from movement in that
direction. If the same algorithm was used for tracking, a similar scenario could
occur (Figure 3.1b). Again the probe moves to a location resulting in the tracked
point being bound to an edge. In this case, however, the closest point should not be
bound since the tracked point is used to indicate the next possible point of contact.
In fact, if the probe were to continue along the current path and intersect the model
(Figure 3.1c), the contact would not be detected since the penetration would not
occur at C'. Instead, the global closest point, C's, is the proper point of contact.

Once the model has been contacted, the surface intersected is deemed current.
A virtual point of contact must be tracked that shadows the probe’s movement
locally on the current surface until either contact is lost or a transition occurs.
Regardless of the haptic algorithm, a global closest point can not be used without
producing several problems [66, 70]. Among these problems are pushing through a
model, force discontinuities, and inability to generate sufficient restoring forces due

to lack of penetration depth.

19

Figure 3.1. A local closest point, C';, bound to a surface crease is desired for
tracing (a) but not for noncontact tracking (b) where failing to use a global closest
point, Cg, would result in a missed contact detection (c).

All three of these problems are illustrated in Figure 3.2. The model in this figure
is a narrow rectangle constructed from multiple surfaces. Figure 3.2a shows the
probe entering the model through surface Sy, which results in C'y, being established
as the current local closest point. The probe then continues to move into the model,
resulting in one of two possible new configurations.

Our method holds S, as the current surface, therefore C', stays on that surface
resulting in a restoring force that is larger in magnitude but in the same direction
as the previous iteration (Figure 3.2b). However, if a global closest point, C¢, was
used then a force smaller in magnitude and opposite in direction than that of the
previous iteration would result (Figure 3.2b). This clearly is not the characteristic
one would want since it results in the probe pushing through the model, the force
becoming discontinuous, and the penetration depth not growing high enough to
generate a sufficient restoring force.

Generating a discontinuous force is possible not only when pushing through a
model, but also at any time the global closest point differs from the local closest
point. Consider the case illustrated in Figure 3.3. In this example, contact has
been established with S; resulting in the given C (Figure 3.3a). The probe then
moves to a position that results in a C that is not equal to Cp, (Figure 3.3b). Our

system would continue to generate restoring forces toward S;, but a system that

20

Figure 3.2. Contact established at point C', (a). Use of global closest point, Cg
(b), would accelerate the probe through the model.

Figure 3.3. Contact established at point C, (a). Use of global closest point, Cg,
would cause a slip to be induced off the model (b).

uses C would end up pushing the probe in a direction that it is already traveling,
accelerating the probe off the model.

Another reason for using a current surface and C, instead of Cg is to enable
our system to trace out sharp edges (Figure 3.4). Consider a configuration where
the probe has established contact with a model as in Figure 3.4a. The probe then
moves out toward the edge (Figure 3.4b). C, rests near the edge of S; while Cz not

only lies on Sy but would result in a negative penetration depth. Using Cs in this

21

Figure 3.4. Contact established at point C, (a). Use of the global closest point,
C¢, would induce an artificial edge (b).

case would result in a zero restoring force, effectively portraying the probe falling
off an edge that is not present in the model. Instead, our method would use C'p

until the probe moved out past the edge of S} and then transition over the edge.

3.2 Proximity Testing
The haptic rendering algorithm presented needs to track only a single point per
model per probe. However, it is still advantageous to keep the number of active
models to a minimum. Doing so saves processor time which helps maintain high
update rates as well as allowing for a more densely populated environment. To
this end, our system checks the proximity of the probe to each model as the probe
moves throughout the environment. We establish four levels of proximity: distant,

near, active and current.

3.2.1 Four Level Control

By using four levels of proximity we can distribute the computational resources
of our system to tasks that require highest priority. A model is termed distant
if it cannot be reached by the haptic device (Figure 3.5). Such a model is of no
interest to the haptic process since it is not a model that can be contacted by the

haptic device. These distant models must still be checked for proximity since within

22

[] [)
[] ° e
[]
® °
® °
O []
> ®
[]
. [)
: : C,
° []
[] []
° ° C .
[] CG . L
[] A E
[)
[]
[)
Distant o Near ° Active Current

Figure 3.5. Model proximity for distant models is tested in the simulation process
but no actual point need be determined. Near and active models require a global
closest point with active models using a hybrid approach. The current model require
a locally closest point.

a dynamic environment their status may change or the user may manipulate the
view in such a way that the model moves to within the workspace of the haptic
device. Since this computation is low in priority it is done within the simulation
process. Neither an exact closest point nor an exact distance is required to make
this determination. Using an algorithm that utilizes a LUB-Tree [27], we are able
to determine whether a model is within a given distance and then abort the search
without computing an exact answer. This approach makes it possible to test models
more quickly, therefore allowing more models to be tested.

Once a model is proximal enough to be within the device’s workspace the haptic
process is signaled and the model is deemed near. At this point a global closest
point, Cg, must be tracked on the model for the given probe within the haptic
process (Figure 3.5). A model that is near, can be reached but is not a candidate for
immediate contact. For this reason a lower priority is placed upon this computation
than that for a model that is active.

An active model is one that is close enough to the probe that within the time
it takes to compute a global closest point the probe may contact the model. Since

the probe is still not in contact, a global closest point is required. However, the

23

tracked point needs to be computed at haptic rates. We use a hybrid approach that
uses a local closest point between global closest point updates. The combination
provides a good approximate to the true global closest point but at haptic rates,
Cu, (Figure 3.5).

The final level of proximity, current, is when the probe is actually in contact
with the model (Figure 3.5). This state requires the highest computation priority
since it is in this state that forces are actually applied to the user. When current, no
global closest point is tracked since a local closest point, C', is required for haptic
tracing. A model remains current until contact is no longer present. At that point
the model returns to being active and a global closest point is once again tracked

along its surface.

3.2.2 Proximity Testing Results

The four level control methodology has proven to be highly effective at producing
quality proximity testing. By default, the value for distant is computed as the size
of the device workspace plus the distance a user can move the device within the
amount of time it takes for a near message to be sent to the haptic process. This
does not need to be exact but should err on the side of too loose rather than too
tight so that in the worst case a model is deemed near too early.

The value for the active distance must be set to a value equal to or greater
than the distance the user can move the device within the time it takes the haptic
process to compute the next global closest point. This is not an easy number to
establish as the more complex the model, or the more complex the scene within
the haptic process, the slower the overall rate of the process. Therefore we chose
a distance that assumes the worst case for our hardware and a hypothesized scene
complexity, which would be 10cm.

Perhaps the most important point to gather from this approach is that these
proximity values are system specific. As hardware improves, given the same im-

plementation, these value can be reduced. Further, the performance of the system

24

can be monitored and the values adjusted dynamically. Both approaches allow for

more complex models and scenes.

3.3 Contact and Tracing

At the heart of a haptic system is its ability to detect the contact of the probe
with a virtual model and to simulate the act of tracing along the surface of the
model. Contact occurs when the probe first intersects the virtual model with
a positive penetration depth. Similarly, if after contact the penetration depth
becomes negative then contact is lost. The penetration depth is calculated by
projecting the probe onto the surface normal. In our system, surface normals point
out of a model. The projection must therefore be negated to result in a positive
penetration depth when the probe is within the model.

Once contact has been established, any lateral movement along the model’s
surface indicates tracing. As the probe moves, a local closest point on the surface
of the model is found to shadow the probe’s movement. The accuracy of the
computation for this closest point and its associated normal is essential since the
restoring force calculation depends directly upon these results.

We relate movement of the probe to movement along the surface using direct
parametric tracing (DPT) (Figure 3.6). This method works directly on the paramet-
ric surface and is fast enough to track a local closest point at haptic rates, making
it suitable for direct haptic rendering [66]. For clarity, we derive the method on
a NURBS curve and then show how the method is applied to NURBS surfaces.
Appendix A defines NURBS curves and surfaces and derives some of their useful

properties.

3.3.1 DPT on Curves

The DPT method is seeded with an evaluation point v(u*), calculated using
refinement [10, 52] where u* is the coordinate for the point of contact (Figure 3.6a).
At each time step as the probe moves (Figure 3.6b), the DPT method uses the

previous point on the curve y(u*), the tangent vector at v(u*), 7/(u*), and the

25

V() Y Yw) Yl

Figure 3.6. Direct Parametric Tracing. Initial state (a). Probe moves (b).
Projection of probe onto tangent (c). New evaluation point and tangent plane
via parametric projection (d).

current probe location, E, to determine a new approximate closest point on the
curve.
The velocity curve, 7'(u), relates changes in position along the curve in Eu-

clidean space to changes in position in parametric space (Equation 3.1).

dy Ay
"(u) = —~ —. :
v (u) = 0~ Ay (3.1)

Given an Euclidean movement along «y(u), the corresponding movement in the

parametric space of the curve is calculated as,

(3.2)

26

In order to use Equation 3.2 as a closest point tracking method, movement
of the probe needs to be related to movement of the closest point on the curve.
The exact A, corresponding to movement of the closest point along the curve,
clearly involves finding the desired new closest point. Instead of finding an exact
Ay, a linear approximation to the curve, the tangent v/(u), is used to compute an
approximate Avy. The movement of the probe can now be related to movement
of the closest point along the curve by projecting the offset vector, 1 , formed by
subtracting y(u*) from FE, onto the curve tangent vector (Figure 3.6¢). Thus,

A, A () .
U ERMACL (3:3)

The equation for the velocity of a NURBS curve is derived in detail in Ap-

pendix B. The general form of the equation is given by,

n n wiw;(Pi=Py)+wjw,—1(Pj—Pi—1) .
i=1]:0 Uit e—1—Uj BLk(u)Blyk_l(u)

(X7 w;Bjk(w)) ;

V() = (k—1) (3.4)

The contact point, vy(u*), is found by evaluating the curve with refinement by
inserting £ — 1 knots into the knot vector with the value u*. This results in a new
knot vector {i;}, new weights {u;}, a new control polygon {P,}, and new basis
functions {B; ;} defined on the new knot vector. Further, y(u*) = P, where i* + 1
is the location of the first knot in {a;} with the value u*. The properties of the
refined curve result in a greatly simplified form for Equation 3.4. Only two basis
functions remain active, Blk(u*) and Bi*ﬂyk_l(u*), with both having a value of

one. The resulting simplified equation is,

* k - 1 UA}Z* A ~
' (u) = = (k—1) i Py — P, (3.5)
Ui — WUixry1 Wy

Since we wish to track points that are actually on the curve, Equation 3.2 is
used to convert back into parametric space. The key to efficient computation of
Aw is Equation 3.5. The control polygon through ~v(u*) lies in the tangent to the
curve, and the parametric velocity is calculated using only the control polygon,

knot vector, and curve order.

27

Using this simple relation and the linear equation for A~y (Equation 3.3), Equa-

tion 3.2 can be expanded into

~
||N

|Au| ~

2] |<¢, wu*>>|. 56

17/ () [l ()2

The sign of Au is determined by the sign of the projection in Equation 3.3.
This is directly related to the dot product in the numerator of Equation 3.6. Since
the numerator is the only term in Equation 3.6 that is signed, the absolute value
signs can be removed. The constant term representing the parametric speed can

be factored out leaving the result,

~

Au =~ (¢, (Prs — Pr)) <ai*+k — ﬁi*“) < ir) : (3.7)

The new curve location, y(u* + Au), is a good approximation to the closest
point to E. The new closest point is evaluated through multiple knot insertions at
u* + Awu , which maintains the conditions needed to use Equation 3.7 at the next
time step (Figure 3.6d).

Essentially, we make a first order approximation of the closest point movement
in Euclidean space with the tangent projection. The closest point movement is
converted into parametric movement through a first order approximation to the
parametric velocity at the previous closest point. The new closest point is then
converted back into Euclidean space through curve refinement and evaluation.
For small step sizes and penetration depths, which is the case for haptic rate

computations, this provides an excellent approximation.

3.3.2 DPT on Surfaces

The spatial movement of the probe is related to movement along a surface by
projecting onto the surface tangent plane at the previous tracked point. There are
an infinite number of tangent vectors at any surface evaluation point. To form

the tangent plane we require only two, but need the two selected to be linearly

28

independent in order to form a basis for the tangent plane. A good choice for these

tangent vectors is the partial derivatives with respect to v and v,

_os
- Ou

S

Tu yLtv —
ov

, (3.8)

(u*v*)

(u*,0%)
since they can be computed efficiently. This efficiency derives from using surface
refinement to calculate the evaluation point S(u*,v*). This refinement results in
new knot vectors {@} and {0}, new weights {u;;} and a new control polygon {P; ;}
where P ;. = S(u*,v*). Furthermore, the 7* column and j* row in the control
mesh form control polygons for iso-curves that pass through the evaluation point
]52] This allows the two tangent vectors to be calculated efficiently from the

refined surface as if they were curve tangents,

. k—1 ’lZ}-*+1’v* r~ -
T, = —&=1) SR (P je — P j),

ui*+ku —ui*+1 wi*,j*

(3.9)

A ~

_ k) g
T = T (P jest — P g).

Uj*fky “Uj* 41 Wik 5%

Since the tangent vectors need not be perpendicular to each other, it is incorrect
to find the probe’s coordinates within the tangent plane by projecting the offset
vector onto the tangents using orthogonal vector projection. Instead, we relate the

offset vector to a frame formed by the tangents and their cross product,
v =al, +bT, +c(T, xT,), (3.10)

where a is the amount of movement along the surface in the direction of T),, thus
equal to Awu. Similarly, b = Awv. The value of ¢ represents the penetration depth
of the probe in relation to the closest point from the previous time step and is
therefore not needed. To solve for a and b we form a system of two equations in
two unknowns by taking the dot product of Equation 3.10 with each tangent in
turn. The resulting system is then,

RIS R R EA

<

:%;] [ﬁz] (3.11)

<

29

where the final term in each case has been eliminated since the resulting dot product
will always equal zero. This system is solved efficiently using Cramer’s Rule since

the tangent vectors chosen are linearly independent,

Ay O TT,) = (6, BT,)

(Tw, T)(T,, T,) — <Tu,T><Tu,T> 519
o O T(TL 1)~ (0. T (T, . T,) (342
U= T TN T, Ty —(Ta T Ta 1)

Notice that the 2 x 2 matrix in Equation 3.11 is actually the first fundamental
form for surfaces. This quantity is invariant under coordinate transformation and
derives from calculations that determine distances between points that lie on a

surface.

3.3.3 Surface Evaluation

The DPT method is very efficient at finding the step size for the tracked
point given a new probe position. This efficiency derives from the use of the
control mesh and knot vectors of a surface evaluated at the tracked point from the
previous time step. The majority of the time spent in the DPT method is spent
performing this surface evaluation. It is possible to evaluate the surface by using
the weighted combination of the control points computed through evaluation of the
basis functions. This evaluation technique is not appropriate for DPT, however,
since it also requires surface tangents.

A second approach to evaluating a surface is to use refinement [10, 52]. The
process of surface refinement is to insert new knots into either knot vector. Multiple
knots can be inserted in a single pass, but into only one of the knot vectors at a
time. Depending on which knot vector is chosen, either a new row or column of
control points is created for each knot inserted. When a new row is created the value
of each new control point is calculated as the weighted sum of neighboring control
points from the original mesh that lie in the same column. These surrounding
control points also take on a new value based on a weighted sum of neighboring
control points. The number of control points that contribute to the weighted sum

is bounded by the order of the surface in that direction minus the number of knots

30

inserted with the same value. In the limit, as knots are inserted in both knot vectors
this process produces a control mesh that tightly approximates the surfaces.

Given a surface that is of order k, in one direction and k, in the other, inserting
k, — 1 knots with the value u* into the {a} knot vector and k, — 1 knots with the
value v* into the {0} knot vector results in one of the new control points being
an evaluation point S(u*,v*). The control point in the new control mesh is]52-*,]-*,
where the value of ¢* and j5* are one less than the index of the first knot of value
u* and v* in their respective new knot vectors. As a side effect of this process,
tangent vectors can be efficiently calculated using the new control mesh and the
knot vectors (Equation 3.9).

The process of refinement is accomplished via the use of an alpha matrix [10].
This matrix holds blending coefficients that, when applied to the original control
mesh, produce the new refined control mesh. In the case of DPT, however, we do
not require a complete new control mesh. DPT requires only the surface evaluation
point and the two neighboring mesh points that determine the direction for the
two tangents. The value of each entry in the alpha matrix is not dependent on any
other, so we produce only those columns necessary for the needed points. Due to
the property of local control in a NURBS surface, a point in the new control mesh
will be the weighted sum of at most order number of points from the original mesh.

In the first pass, when refining the {@} knot vector, we have the complete original
control mesh as input. The output from this pass is a control mesh that is k, rows
by two columns. The two columns correspond to ¢* and ¢* + 1 while the k, rows are
needed as input to the second pass for refining the columns. The second pass results
in a two by two control mesh that holds the three requisite points plus one unused
point. This is the minimum computation that can be performed to accumulate the
necessary information through refinement. Further savings can be found through
caching the alpha matrix for reuse in each pass. This computation is considered
local since the order of the surface alone determines the necessary size for both the

alpha matrix and the intermediate control mesh. The size of the surface’s control

31

mesh does not matter. The overall complexity, in both memory and time, for this

approach is therefore determined solely by the order of the surface.

3.3.4 Trim Tracing

Another form of tracing is that of tracing along the intersection between sur-
faces. This intersection is defined by the trimming information. The intersection
between two surfaces is a single trim edge made up of perhaps multiple trim seg-
ments (Figure 3.7a). It is also possible for an intersection that appears continuous
on the model to actually be a collection of edges in series (Figure 3.7b).

It is possible to build a separate data structure that represents all of the surface
intersections as a collection of segments. However, doing so would significantly
increase model preprocessing time when in fact such a structure is not necessary.
Since adjacency information is available for all trim segments, moving along the
intersection, from edge to edge, is not computationally intense (Section 3.5.5).

Trim tracing relates closely to DPT. The trim tracing algorithm must slide along
the intersection in Euclidean space to a point locally close to the probes position.
The algorithm projects the probe onto the current trim segment. If the projection

is beyond either endpoint of the segment then we continue to project onto segments

(a)

Figure 3.7. Intersection of two surfaces formed by a single edge (a). Intersection
along multiple surfaces requires multiple edges even though visually the intersection
is the same (b).

32

along the loop in that direction until a local minimum is found. The final segment
is the one that the projection results in a value bounded as [0, 1) for that segment.
This removes any ambiguity at segment endpoints.

If the final projection was internal to a segment, meaning not at its endpoint,
then that projection is the final result. However, if the projection was at the
segments endpoint then it is possible that the slide should continue along the
intersection, but on an edge from an adjacent surface. For example, consider
the intersection in Figure 3.8a. Given the probes movement from X to Y the
slide along the trim will cease at the intersection of all four surfaces. Figure 3.8b
illustrates the trim segments at this multiple surface intersection point. The initial
slide results in trim segment B being the final result. Note that this is the case due
to the constraint on the projection value being [0, 1) for the segment, which rules
out segment A. Since this result is at an endpoint the adjacent segment is found
and trim tracing continues. In this case, the adjacent segment may appear to be
segment C'; however, this would not satisfy the bound constraint. The adjacent
segment is actually segment D.

The algorithm terminates under two conditions. First, as mentioned previously,

the algorithm halts if the projection lies internal to a trim segment. This should be

so I l 82
e R B
)
Si S;

(b)

Figure 3.8. Geometric view of trim trace(a). Multi-surface intersection point
represented by their trim segments (b).

33

obvious as the result would not be different if the adjacent segment was used since
it is identical to the final segment. The second case is that of the final result being
at a segment endpoint. If a trace ends at a trim endpoint, the adjacent segment is
found. If the trace for this, and each subsequent adjacent segment found, results
in a halt at an endpoint, without any sliding to neighboring segments, the original
segment will be found again, completing the cycle. This signals that the local
closest point on the trim is at a multiple surface intersection point and that the

algorithm should halt.

3.3.5 Boundary Normal

During haptic tracing along a surface, the normal used for both force reflection
and contact detection is the actual surface normal of the tracked point. This normal
is found by normalizing the cross product of the two tangent vectors used to form
the tangent plane. However, if the tracing determines that the closest point lies on
the boundary of two or more adjacent surfaces, such as during trim tracing, then
a special vector must be constructed for use as the boundary normal. This vector,
Np would then be used for both contact detection and force calculation.

Consider Figure 3.9a. If point E lies within the shaded area then the closest
point (either Cf, or C¢) will be on the edge between S; and S,. The entire shaded
area is outside the model. If the normal for S;, NV, is chosen for N and E is
within the lower shaded area, a positive penetration depth would result and indicate
contact with the model. Since F lies outside the model, this result is deemed a false
contact. Similarly, if F is within the shaded area at the top and Ny, the normal
for S, is chosen for Np an incorrect penetration depth would be computed and
again a false contact would result. Figure 3.9b illustrates the converse where the
entire shaded area lies within the model. In this case, if F lies within either the
top or bottom shaded area a negative penetration depth would be computed if the
incorrect normal is chosen. The result is an incorrect release from the model.

Consider first the case of the probe being in contact with the model and the

tracked point lying on a surface intersection. In this case, a good solution for

34

Figure 3.9. The choice of normal at a surface boundary requires special care.
In both (a) and (b) neither surface normal correctly classifies both shaded areas.
However, Np correctly classifies all areas.

Np is the normalized vector formed by subtracting E from C. This vector
points out of the model and can therefore be used in contact detection and force
reflection. Further, it produces a smooth C! transition from one surface to the next
(Figure 3.10a). Similarly, when the probe is not in contact with the model and the
tracked point lies on a surface intersection, the negation of the above formulation
can be used for Ng. Again, this vector will point out of the model and produce
a C' transition across surface boundaries (Figure 3.10b). However, this raises the
problem that the direction of the boundary normal requires previous knowledge of
the probe’s contact status.

The construction of the boundary normal is the same regardless of contact status
up to the point of the possible final negation. For this reason, we form Npg under
the assumption of no contact since this formulation is simply the normalized offset
vector 1. This vector is then negated if it points into the model.

At this point we make a couple of observations about the collection of surface
normals, IV;, calculated from the adjacent surfaces, S;. If there are only two adjacent
surfaces then the two normals define the edge. If there are more than two normals
then every pair of normals defines a virtual edge in the model. Given that there are

n surface normals, there are () virtual edges. The angle between any two normals

35

\‘\.—.. l \§..Q.

(a) (b)

Figure 3.10. The boundary normal, whether the probe is inside (a) or outside (b)
the model points out of the model and produces a smooth transition.

must be less than 7 since any larger angle would define a negative volume between
the associated adjacent surfaces. Further, since all N; are less than 7 apart from
all other /V;, all N; must lie within a single hemisphere of the unit sphere.

Since all N; exist in a single hemisphere, there exists a single vector that best
represents the collection. This vector, N4, is the axis of the tightest cone bounding
all V;. This cone also bounds all space points that map to the C lying along a
surface intersection since the extremal N; also represent edges of the open-ended
polytope bounding this space. Therefore, if the dot product of Ng and N, is
negative then the boundary normal must be negated to point out of the model.

The problem of calculating a boundary normal is therefore reduced to finding
Ny4. However, it can be shown that if /N; are taken as points on the unit sphere
then N4 must pass through the closest point from the origin to the 3D convex hull
of that point set. A proof of this is presented in Appendix C. Further, the convex
hull of N; is exactly defined by the points NN; since any collection of points on a
sphere define their convex hull. We use Gilbert’s algorithm [18] to find this closest

point, and therefore N4, in linear time.

36

3.3.6 Eliminating False Contacts

Proper selection of a boundary normal eliminates one form of false contact;
however, a second form can arise if the tracking algorithm produces sufficiently
incorrect results in an area of high curvature (Figure 3.11a). While the error from
the tracking algorithm is generally small, its use of the tangent plane as an approx-
imation to the surface is less correct in areas of high curvature. This can result in
larger errors, especially as the distance to the surface increases (Section 3.3.8).

To eliminate this form of false contact, after determining what side of the
tangent plane the probe lies, we check the accuracy of the tracked point. We
form a new offset vector ¢)* by subtracting the current tracked point, vy(u*), from
the probe location, E, and then normalizing. If the tracked point is exact then the
surface normal and ¢* will be coincident. Therefore, a good measure of accuracy
is the angle between these two vectors. Since the tracking algorithm produces an
approximate closest point there will typically be some angle between these vectors.
However, as shown in Section 3.3.8 the error is usually very small.

As a result, our solution is to construct a contact cone that ¢* must lie within
for contact to be detected (Figure 3.11b). Essentially, we are placing a tighter
constraint on contact detection by selecting an angle of confidence that reflects the
worst case we are willing to accept. The choice for this angle is dependent on the
error of the tracking algorithm when a model is active. Since a model is deemed
active at a specific distance the selection of the angle for the contact cone can be
easily chosen. In practice, we have found that 25 degrees works well at eliminating
false contacts while not discarding true contacts.

It is important to note that since the application of forces to the user during
contact keeps the probe very near the surface, a false release is generally not a
problem. For this reason, we do not use this accuracy based approach for release

detection.

37

Figure 3.11. High curvature and distance can result in false contact (a) unless a
tighter bound on contact is used (b).

3.3.7 Internal Edges

It is necessary to use the boundary normal generation algorithm discussed above
whenever there is an edge in the model. Edges can occur internal to a single surface
as well as where multiple surfaces are adjacent to one another. If a surface knot
vector of order k has k—1 knots of equal value the surface will be only C° continuous
along the iso-curve at that value. It is possible for the surface to still be smooth
across this iso-curve despite the drop in continuity, such as during knot insertion
for surface evaluation. However, it is possible for the surface to form a sharp edge
at any point along the iso-curve. Any sharp edge on a surface that is not formed
by a trimming loop is called an internal edge.

At such a parametric location the tracing algorithm can not insert knots for
refinement in order to produce a new control mesh. The original control mesh
could still be used to form the surface tangents, but it is possible that the tangents
on each side of the internal edge will be different. The tracing algorithm assumes
that the tangent plane forms a good approximation to the surface, but at such an
edge this is obviously not the case.

To alleviate the need for special purpose code to detect and properly handle

these internal edges, we eliminate them. As a model is input into the system it is

38

checked for internal edges. Each surface that has an internal edge is subdivided
into two surfaces with their shared edge being the previously internal edge. Thus,
the internal edge is replaced by a trimming edge along the boundary of the two new
surfaces. The resulting model will have more surfaces than the original; however,
since the tracing algorithm is model based, the increase in surface count does not
adversely effect the performance of the trace algorithm. In fact, it has the converse

effect of maintaining the algorithm’s performance.

3.3.8 Contact and Tracing Results

Using the Phantom, we traced a number of virtual models with direct parametric
tracing and recorded the results. One measure of the quality of a haptic rendering
is the amount of penetration depth into the model. A lower penetration depth
indicates better surface normal and penetration depth calculation. However, having
a small average penetration depth is not sufficient to demonstrate a smooth tracing
experience. Penetration depth must also be shown to be consistently near the mean.

Table 3.1 shows that DPT easily meets the 500Hz goal for all models tested.
The accuracy is approximately the same for all models. The mean is given to show
the average penetration depth, but perhaps the better measure is the median. The
median shows a lower value than the mean, which demonstrates that the depth
produced by the trace is typically lower than the average. The maximum depth is

near the mean which shows good contact response by DPT. The final two columns

Table 3.1. DPT tracing results

Update Trace Depth Percent Below
Model Rate Samples Mean Median Max Mean 3mm
Cube 8426 1940 3.57 2.85 5.61 64.95 52.78
Goblet 1182 2310 3.30 2.01 6.27 81.00 78.53
Teapot 2142 2522 4.30 3.37 6.85 76.45 36.48
Brake 2451 2000 3.33 2.28 5.30 76.03 66.50
Gear 1671 2000 4.06 2.99 8.18 77.80 50.30

DPT update rate in Hz, mean, median, and maximum penetration depth in mm,
and percent samples below the mean and 3mm.

39

show the percentage of the trace that resulted in values below the mean and below
a good 3mm trace depth.

To further illustrate the consistency of the trace algorithm, histograms are given
in Figure 3.12 for the goblet, teapot, brake, and gear models. These histograms
show a tight distribution of penetration depths with peaks at less than 4mm. The
combination of Table 3.1 and Figure 3.12 illustrate a consistent and smooth tracing
experience.

Surface evaluation is a major component of the computation cost for DPT. Our
method of surface evaluation computes only those elements of the alpha matrix
necessary and stores them in cached memory. In comparison to full refinement
and noncaching evaluation, this is significantly faster (Figure 3.13). Further, this
evaluation technique is dependent only on the order of the surface and not the
dimension whereas full refinement is dependent on both factors. For this reason
the two evaluation groups, the top and middle, in the figure are near linear while

the refinement approach degrades at increased control mesh dimensions.

Goblet Teapot Brake Gear
00 ———————— VO ——g———— 00— 0O ————————
800+ 1800 ¢ 1800+ 1800+
700 ¢ 1700 1700t 1700t
600 | 1600 ¢ 1600t 1600t
8 500t {500 1500} 1500}
(;)% 400} 1400} 1400} 1400}

3007 1300 1300 1300
200t 12001 1200t 1200

100y 1100 ¢ 1100 1100

0 0 0 0
123456789 123456789 123456789 123456789
Penetration depth (mm)

Figure 3.12. Histograms for penetration depth in mm of goblet, teapot, brake,
and gear models.

40

Evaluations per second
w
T
1

Surface diminsion

Figure 3.13. Speed of surface evaluation for three techniques. Top three lines are
cached evaluation, next three are noncached evaluation, and the final three are full
refinement. In each case the three lines represent order 3, 4, and 5 from top to
bottom.

Note that the trace results given also include tracing along surface boundaries,
which means both trim tracing and boundary normal calculation were required.
Since both of these values are completely deterministic, no accuracy results need to
be given. However, both computations contribute to the computational time and
therefore must meet the same rigorous requirements. Our tests have shown that at
500Hz we can trace over 5000 trim segments. Similarly swift, given an intersection
of 20 surfaces our algorithm can properly compute the boundary normal at over
67000Hz. Neither of these cases is likely to occur, showing the approach easily
satisfies the constraints.

In order to separate out error introduced by limitations in the Phantom and in
the wall model, we also ran a number of simulated tracings on a bumpy surface.
The results of direct parametric tracing were compared to those for global closest
point on surface. The tracing path was generated by creating a nonisoparametric

offset curve from the surface and evaluating the curve at fixed parametric steps.

41

Figure 3.14 shows the difference in penetration depth and surface normal found
using the direct parametric tracing method with that found using the optimal
solution. These two metrics are shown since they directly represent the resulting
force that will be reflected upon the user.

Note that the method was tested under a wide range of conditions. The largest
offset curve depth corresponds to a tracking distance of 10cm and a Euclidean
movement of 2mm between each sample. Even under these extreme (and unlikely to
be encountered) conditions, the algorithm performed reasonably well. This graceful
degradation shows the algorithm has time-critical qualities [16], a useful property
in real-time systems. In more typical cases, with small penetration and small step
sizes, the penetration error was below our numerical precision and the difference in
surface normals was in the hundredths of a degree (Table 3.2).

The Euclidean distance error for the surface point (Table 3.2) shows that under
the conditions we measured, parametric tracing was capable of resolving the closest

point on the surface to within 0.01032mm. In combination with the error in the

Mean Normal Error

X 10‘5 Mean Penetration Error

2 — 0.5 —
Step Size Step Size
— 0.5mm — 0.5mm
1.0mm 0.4} 1.0mm
15 — - 1.5mm — - 1.5mm
— 2.0mm — — 2.0mm .
— 8 03 v
c 2 0.3} :
£ o /'/
- 1 1) . P
9 ./ — »/ e
L 27 S 0.2 s
7, L R
/7 .
0.5} o -
4 0.1t PUasn
27 _Z-
o s
0 : o : 0= : : : :
0 20 40 60 80 100 20 40 60 80 100

Offset depth (mm)

(b)

Offset depth (mm)

(a)

Figure 3.14. Mean penetration depth error (a) and mean normal error (b) vs.
trace curve offset depth. Each line represents a different step size along the trace
curve.

42

Table 3.2. DPT error results

Error Depth (mm)

Metric 1.0 2.0 4.0 7.0 10.0
Penetration 0.00000 0.00000 0.00000 0.00000 0.00000
Normal 0.00115 0.00286 0.00573 0.00974 0.01375

Surface Point 0.01032 0.01102 0.02721 0.04607 0.06130

Error values (in mm and degrees) as compared to an optimal solution when tracing
at a step size of 1.5mm at five depths beneath the surface.

normal being below 0.1 degrees, the force vector as computed would be highly
accurate giving a true representation of the underlying geometry. Further, the low
error in the normal illustrates the validity of our cone approach to eliminating false

contacts.

3.4 Tracking

Any movement around a model deemed near or active is referred to as tracking.
Since tracking requires a global closest point be used in order to indicate the next
possible contact point, the tracing algorithm cannot be used exclusively. The
tracing algorithm correlates probe movement to movement of a local closest point
bound to the surface of the model. The goal being to restrict the probe’s movement
to a path along the models surface. During tracking, however, there should be no
restrictions on the probe’s movement or the closest point which shadows it.

When a model is near, but not active, the global closest point tracked does
not need to be updated at haptic rates since the model is not a candidate for
imminent contact. In this case, the global point tracked is used to determine when
the model should become active. Once active, however, the global closest point
must be updated at haptic rates to ensure correct contact detection.

The method used to calculate the global closest point is based on a LUB-Tree
approach [27]. In this approach a hierarchy is constructed that facilitates efficient
upper and lower bound computations for the contained geometry. Using these

bounds in conjunction with a breadth first search, nodes that cannot possibly hold

43

the answer are pruned away quickly without the need to recurse to the leaf nodes.
This approach is modified to handle trimmed NURBS surfaces and to use a final

numerical solver instead of a more time consuming subdivision technique.

3.4.1 LUB-Tree Construction

There are many possible choices for the LUB-Tree bounding volumes. Since
speed is a main concern, we choose the bounding volume with the lowest time cost:
the sphere. The main disadvantage to using spheres as a bounding primitive is
that in general they do not fit the underlying geometry tightly. However, its speed
in checking distance allows for more levels in the hierarchy without loss of overall
computation time when compared to tighter bounding volumes.

We build the hierarchy so that a leaf sphere bounds a surface patch represented
by the parametric domain within each paired span of the knot vectors. One choice
for the location and radius of the sphere is to build the sphere so that it tightly
contains the convex hull for the surface patch under consideration. This convex
hull is formed from the surfaces control points (Figure 3.15a). These convex hulls
however do not necessarily fit the surface tightly and also overlap one another
considerably as the order of the surface increases.

The overlap can be eliminated and the convex hull tightened simultaneously by
converting the surface into a collection of Bezier patches through refinement. A
single patch is built for each of the span regions. Each patch has its own convex
hull for the underlying surface that is much tighter than the convex hull from the
original surface (Figure 3.15b). Computations on the underlying geometry are more
expensive than those performed on the bounding volume. Further, the bounding
volume chosen allows for additional levels in the hierarchy without significant cost
increase. Therefore, we insert an additional knot into the middle of each knot
vector span prior to the Bezier conversion. This creates four times as many leaf
nodes while only adding at most two levels to the binary tree hierarchy.

Before a sphere is built, we first check to see if the patch in question has valid

surface domain. If the patch is completely trimmed away by a trimming loop then

44

(a) (b)

Figure 3.15. Using convex hulls from the original surface produces loose overlap-
ping spheres (a). Converting to Bezier patches first produces tighter nonoverlapping
convex hulls which results in tighter spheres (b).

no sphere is formed. If there is valid domain then a leaf node is constructed with a
sphere fit to tightly bound the convex hull of the patch. Also stored in the patch is a
single parametric point centered within the patch as well as a single valid Euclidean
point on the surface patch that can be used for upper bound computations.

The remainder of the LUB-Tree is built by successively pairing the nodes. Each
pair is bound by the tightest fitting sphere to contain the component spheres. The
diameter of the new parent sphere is equal to the sum of the radii of the child
spheres plus the distance between their mid-points. Its center point is located
along a segment connecting the center points of the child spheres. Its parametric
location from the center of the first sphere is the parent radius minus the radius
of the first sphere divided by the distance between the child spheres. One special
cases exists and that is the case where one of the two sphere’s is contained within
the other. In this case the new parent sphere will simply be a copy of the larger
child sphere. A collection of the Euclidean surface points stored in the child nodes
is gathered within the new node. The number of points in the collection is kept
below six and randomly chosen to represent the underlying geometry. This process

continues until the tree is fully constructed resulting in a single root node.

45

3.4.2 LUB-Tree Traversal

Finding the global closest point involves a breadth first search of the LUB-Tree.
The main advantage of this approach is its use of bounds on the possible distance
to the closest point. If a lower bound to a node is greater than the current upper
bound the geometry within that node cannot contain the closest point and the node
can be pruned away.

The search algorithm begins by finding the global closest point to the trim
segments of the model. This result is stored as a possible solution and the distance
to this point is used to set the initial value of the upper bound on the solution.
Meaning, the global closest point can obviously be no further away than the closest
point on the trim segments. However, the global closest point might be closer so
the initial lower bound is set to zero. These bounds make all geometry part of the
solution space.

Following the initial trimming segment check, the algorithm searches across each
level of the binary tree. The distance to each sphere is used to find a new lower
bound on the solution. Any node that has a lower bound greater than the current
global upper bound is pruned away, along with its subtree. A new upper bound is
computed using the node found with the least lower bound. The minimum distance
from the probe to each of the points stored within the chosen node is the upper
bound for the node. If this upper bound is smaller than the current global upper
bound it becomes the new global upper bound. At this point the search drops to
the next level in the tree and repeats the lower bound pruning process.

When a leaf node is reached its lower bound is first checked to see if the node
can be pruned away. If it cannot be pruned, then an exact closest point must be
found. The parametric point saved within the node is used as a seed point for a
Newton search. The search is performed on the original surface with the search
point not being constrained to be within the trims or within the defined bounds
of the patch the node represents. Once the algorithm has converged, the point is
checked against the trim loops to verify it is a valid surface point. Upon passing this

test the point is compared against the current stored closest point. Even though

46

the point found may not lie within the patch, it is still used as it may be the correct
answer. There is no reason to discard it only to search for it again later. Further,
if it is not the final answer it still may provide a tighter upper bound that can
eliminate other nodes from consideration. A point that does not pass the trim test
is discarded.

This traversal algorithm continues until all nodes have been pruned. If no answer
was found during the traversal then the point found on the trimming loops is the
globally correct answer. Any answer found during traversal that is closer than the

trim point will replace it as the global answer.

3.4.3 Hybrid Approach

It is currently not feasible to use this, or any other, global closest point routine
for trimmed NURBS surfaces exclusively since the routines cannot run at haptic
rates. Therefore we use a hybrid approach where the tracing algorithm for tracking
a local closest point is used between global closest point updates. If upon the
completion of the global closest point calculation the answer is found to be better
than the current point found using the trace algorithm, it is used to reseed the trace
algorithm (Figure 3.16a). Otherwise the local point is used until the next available
global closest point can be found (Figure 3.16b). This comparison is necessary since
the global closest point algorithm uses a probe position that is a few iterations old
by the time the computation has completed. The trace algorithm updates its closest
point every cycle so may have a more accurate result for the current probe position.

This periodic reseeding allows the tracing algorithm to form a good approxima-
tion to the global closest point between updates. We have found this to be very
effective since the probe typically does not move very far between updates. Even
though contact detection may be delayed for several cycles, the cycle rate is so high

that the delay is, in practice, imperceptible to the user.

47

E E
[[
CL CG CG CL
S 9 e

(a) (b)

Figure 3.16. Global closest point replaces trace point when more accurate (a). It
is discarded when the trace point is better (b).

3.4.4 Tracking Results

Table 3.3 summarizes the important data concerning the use of a LUB-Tree
representation as presented in the previous sections. The first column shows the
time to setup the tree for the five test models. In all cases the setup took well under
a second, not affecting user interaction.

The next two columns give results for searching the tree. When determining if a
model should be considered near the actual closest point need not be computed. It
is only important to know the relationship of the model to the distance separating

near from distant. For this reason the rates in the Near column are better than

Table 3.3. Tracking results

Model Setup Near Active GCP LCP Mean Used
Cube 0.0109 2802.40 1959.66 18058 54069 2.99 81.88
Goblet 0.1404 593.43 286.19 8082 27116 3.36 84.82
Teapot 0.1653 209.88 130.23 6972 255566 3.67 89.13
Brake 0.2970 351.87 166.38 7924 26506 3.35 77.03
Gear 0.3984 70.12 64.29 2664 12011 4.51 84.72

Time to setup LUB-tree in seconds, rate to determine near in Hz, rate to compute
GCP when active, number of GCP and LCP computed, mean number of LCP
between GCP updates, and percentage of GCP used to update tracking point.

48

those in the Active column. An active model requires the final GCP be computed
in order to update the tracked point using our hybrid algorithm.

The final four columns illustrate the use of the GCP as computed from the
LUB-Tree within the hybrid tracking algorithm. The GCP and LCP columns give
the number of values computed during a session where the probe circled the model.
The Mean column shows the average number of LCP values that were needed
between GCP updates. Finally, the Used column indicates the percentage of GCP
values used to update the LCP to obtain our tracking point. This final column can
be misleading as its results depend on how often the tracked point crosses either
trimmed away regions or local concavities. It can also be affected by the distance
the probe is from the surface as the direct parametric tracing becomes less accurate
at greater distances. In this case the probe was circling just within the active
distance of 10cm at a step size of near 2mm. Table 3.3 shows direct parametric
tracing to be fairly accurate for this combination, but an update by the GCP value
may still be warranted.

It is important to note that the speed of the tracking algorithm, in particular
the GCP update, directly determines the feature size that can be traced. Consider
the grooved slots in the brake model (Figure 3.17a). If the user can move the probe
1mm between GCP updates, then the smallest width that any feature can have is
2mm. This results from the possibility that the GCP is computed while the probe
is directly in the center of the groove and results in a point on the opposite wall
from the direction the probe is moving (Figure 3.17b). The next GCP needs to
be computed within the time it takes the probe to traverse the remaining 1mm to

contact the model.

3.5 Transitioning
Most CAD models consist of multiple surfaces. It is necessary for the tracing
algorithm to allow smooth transitions (a) across, (b) onto, or (c) off of surface

boundaries if the probe traces out such a path (Figure 3.18). This computation di-

49

E
CO® @b
&= Tmm -OIQ-1mm—0
(b)

(a)

Figure 3.17. The smallest feature size for a model (a) is determined by the distance
a probe can move between GCP updates (b).

rectly affects the resulting closest point, normal, and penetration depth. Therefore,
it must be efficient enough to operate at haptic rates.

The trimming loops of the current surface are of primary concern since all tran-
sitioning occurs at trimmed surface boundaries. In the first form of transitioning,
across a trim boundary (Figure 3.18a), the algorithm must detect an intersection
of the probe’s path with a segment of the surface’s trimming loops. Following this
determination, the adjacent surface and an equivalent point on that surface must
then be determined in order for the trace to continue.

The second and third forms can be thought of as a partitioning of the first
form across multiple trace cycles. The second form, onto a trim boundary, requires
the same trim intersection calculation, but if it is determined that the trace point
cannot cleanly transition onto the adjacent surface, the transition is instead made
to trim tracing (Figure 3.18b). The third form, off of a trim boundary, occurs when
it is determined that the trace should leave the trim (Figure 3.18c). This ability
to detect a release from the trim is the same functionality required by the first
form when it must be determined where on the adjacent surface the trace should

continue.

50

®
: o @
@ == g [E E

(a) (b) ()

Figure 3.18. Transitioning across (a), onto (b), and off of a trim boundary (c).

3.5.1 Grid Overlay

A complex trimmed model can have thousands of trim segments on a single
surface. Using a brute force intersection algorithm to check every trim segment on
the current surface is not feasible, given the time constraints of a haptic algorithm.
Our solution to this problem overlays each surface with a grid where each cell
contains any trim segments that lie within or intersect it (Figure 3.19). Ideally, each
cell would contain one segment and each segment would be contained in exactly
one cell, resulting in the number of cells equaling the number of segments. Such a
grid would result in heavy preprocessing overhead, and would preclude the use of
a uniform grid. This is neither practical nor is it necessary.

The size of the grid is set such that it tightly bounds the outer most trimming
loop for the surface. Since any domain outside the outer most trimming loop is
not valid, the grid need not contain it. We then construct a square grid such that
each dimension is twice the square root of the number of total trim segments for
the surface. This results in 4n total cells and has proven an effective heuristic for
maintaining low segment counts within each cell without introducing unnecessary

complexity to the grid structure.

51

HEEEEEEEEEEN
IIE:EEE.III

IBIEIIVIIII
1M1 111
HENEEEEEEEEN

Figure 3.19. A grid overlay on a trimmed surface.

3.5.2 Grid Walking

Once the grid has been constructed, it is necessary to have an efficient method
to move from cell to cell within the grid as the probe traces along the surface. We
describe this movement through the grid as grid walking. The first step to solving
this problem is locating where within the grid a point lies. Given a parametric

point (u,v) the coordinates of the cell are given by

ci = | (U — Umin)/Udim] ; ¢J = [(V — Umin)/Vdim], (3.13)

where Umin and vy, are the minimum u and v values of the grid and ugim and vgim
are the dimensions of each u column and v row. If either ¢i or ¢j is equal to size,
the number of rows (or columns since the two are equal), then it is decremented
by one. This is necessary in order for the last column and last row to contain the
outer most edge of the cell.

While the movement of the haptic device by the user is continuous, the move-
ment of the probe is discrete since it is a time sampled version of the actual device

(Figure 3.20a). Discrete motion along the surface corresponds to a directed line

52

segment in parametric space (Figure 3.20b). This segment, or movement vector,
has as its start point the current contact point’s parametric coordinates, (u*, v*).
The end point is the next closest point computed using DPT, (u* 4+ Au, v* + Awv).
The resulting vector has a value (Au, Av).

Given the location in the grid of the start point for the movement vector
(first calculated when the probe is deemed near and subsequently known from
the previous iteration), we wish to walk along the vector, stepping through each
cell it intersects until the end point of the vector is reached. Define ¢ to be the
parameter along the movement vector, and next_t to be the value of ¢ at the entry

of the next cell the vector intersects. We can then define and initialize next_t, and

next_t, as,
(Umin + (¢t + 1) - ugim — u*)/Au Au >0
next_t, = (Umin + €1+ Udgim — ©*)/Au Au<0
00 Au =0
(3.14)
(Umin + (¢j + 1) - Vgim — v*)/Av Av >0
next_t, = (Umin + €J * Vgim — v*)/Av Av <0 ,

00 Av =0

where each is the next ¢ value for an intersection with a u or v grid line respectively

(Figure 3.21a). The four variables, next_t,, next_t,, ci, and cj, are all that is needed

M .~. 0@

(a) (b)

Figure 3.20. Time sampled movement of probe (a) and directed line segment in
parametric space (b).

53

to walk the grid. The algorithm chooses the smaller of next_t, and next_t,. If next_t,
is chosen then the walk steps into one of the adjacent column cells. Which cell to
step into is determined by the sign of Au. When positive ci is incremented by one
and next_t, is incremented by ugim/Au. When negative both of the increments are
negated. The same discussion holds when next_t, is the smaller of the two next_t
values.

The algorithm continues until the smaller of next_t, and next_t, is greater than
one (Figure 3.21b). With both greater than one the next step would be beyond the
end of the movement vector, therefore the algorithm halts. The cell in which the
algorithm halts is the cell the end point is located within, satisfying the assumption

for the next iteration when the current end point will become the next start point.

3.5.3 Trim Intersection

As stated above, the movement vector relates motion along the surface to motion
in the parametric domain of the surface. Since surface boundaries are represented
in parametric space using trimming loops, it is along the movement vector that
intersections with the surface boundary must be detected. Further, since the

trimming segments represent the common boundary of the current surface and

next_t,

! u neXt— tu

(a) (b)

Figure 3.21. The next cell is chosen using the smaller of next_t, and next_t,(a).
The algorithm halts when both values exceed one (b).

54

its adjacent surface, finding the first intersection along the movement vector (i.e.,
the one closest to the starting point) is all that is required. Any intersections past
this initial one would represent an intersection with an edge that cannot be reached
without traversing across invalid surface domain.

An efficient solution is to check only those segments lying within the cells the
movement vector intersects. Further, these cells can be checked in the order the
movement vector traverses through them. As the grid walking algorithm steps into
a cell the movement vector is checked for intersections with all segments contained
in that cell using an efficient parametric segment-segment intersection algorithm
[3]. The intersection algorithm returns a value ¢ when an intersection is found. If
this ¢ value is less than the next_t to be used in the grid walking algorithm, then
the intersection is within the current cell. The smallest valid ¢ found is the point of
intersection. When no valid intersections are found the walk algorithm steps into
the next cell and the algorithm repeats until either an intersection is found or the

end point is reached.

3.5.4 Trim Release

There are two cases when it is necessary to determine if a tracked point should
release from a trim intersection. First, when a trim intersection is detected, the
transitioning algorithm must determine if the tracked point should release from the
trim immediately to allow the trace to continue on an adjacent surface. Second,
if the trace algorithm is tracing along a surface boundary (trim tracing) then the
transitioning algorithm must determine when to release and onto which of the
adjacent surfaces the transition should take place.

It is possible that a point on a trimming loop can be adjacent to multiple
surfaces, such is the case at the corner of a cube where three surfaces intersect at a
point. It should be noted that this can only occur at the endpoint of a trim segment
and not interior to a trim segment. This comes straight from the definition of a
trimming segment. A trimming edge is a collection of segments that represents a

shared boundary of two surfaces. Only at the point where trimming edges connect

%5}

can multiple surfaces become adjacent. This connection point is the endpoint of
two trimming segments from two neighboring edges.

If the tracked point is to release onto a surface it will do so onto only one of the
adjacent surfaces. For this reason, the trim release algorithm checks each surface
adjacent to the tracked point in turn. When the adjacent surface is found the
parametric value for the tracked point on that surface is determined directly from
the trimming segment information. Using this value, the surface is evaluated to
permit DPT to be used on this new surface. While the Euclidean value of the
tracked point will not change (actually the value may change slightly since the
trimming information does not exactly express the intersection of the surfaces) the
normal and tangent vectors may differ depending on the continuity of the surface
boundary. Using this information and the probe location, DPT can determine a
candidate location for the next tracked point. If this candidate point has parametric
coordinates that are valid, then the trace is released from the trim. If the point
does not release then the algorithm continues with the next adjacent surface. In
the case that the tracked point does not release onto any of the adjacent surfaces,

trim tracing is indicated.

3.5.5 Adjacency

In order to smoothly transition from one surface to another it is necessary to
calculate an accurate transition point on the neighboring surface. Our system
maintains an edge adjacency table (EAT) for each surface. A row in the table
represents an edge and consists of four items: the index of the end of that edge,
pointer to the adjacent surface, pointer to the adjacent trim loop, and the index
of the start of the adjacent edge. These four items, along with the percent along
the trim segment where the intersection occurred, is sufficient for determining the
exact point on the adjacent surface.

As an example consider Figure 3.22. In this case assume that surface two
is current and the intersection occurred on trimming loop one, edge three, and

segment six. The EAT entry for edge three indicates that its last segment has an

56

— [o]
|

l
071 : _
| 2 |
7 2
9
Surface 2 EAT

Figure 3.22. Edge adjacency table example illustrating that edge three of surface
two is adjacent to edge one of surface four.

index of seven, surface four is adjacent, trimming loop zero contains the proper
edge, and that the edge starts at segment index two. Since adjacent trimming
edges run in opposite directions, we can determine that the intersected segment is
at index 7— 6+ 2 within surface four’s number zero trimming loop. The exact point
on the new segment which corresponds to the intersection point is found at 1 — p
along the new segment, where p is the percent along the original segment that the
intersection occurred. The one special case here is when p = 0. In this case the
newly found segment index is incremented by one so that its intersection point will

also reside at the start point (maintaining our [0, 1) constraint).

3.5.6 Time Critical Operation

As discussed earlier, there is a budget that must be adhered to within the
haptic process. Each cycle must complete in under 1/500sec in order to maintain
our targeted 500 Hz haptic rate. Given this budget, we can analyze each component
of the direct haptic rendering algorithm and determine how much time it takes
to complete. For example, when tracing a surface, DPT must perform a surface
evaluation and check for trim intersections. If a trim is intersected then a number
of surface evaluations are done in order to determine if the trace can release from

the trim.

57

By collecting data on the amount of time for each operation, we can assign a
maximum number of evaluations allowed. Our trace routine specifies a cap to be
placed on the number of evaluations. If at any point the number of evaluation
exceeds our max, the routine can abort out. This is not the usual case, and
experimentally has not produced ill effects in the tracing experience. As machine
performance improves, this cap can be raised.

Another factor in maintaining a budget is accuracy. A computer is only so
precise when calculating trim intersections and surface evaluations. For this reason,
we break the basic trace algorithm into two parts. If a trace intersects a trim we
determine if it can release onto the neighboring surface. If it cannot release we
stop for that cycle (i.e., we do not proceed with trim tracing until the next cycle).
Continuing would allow the possibility of the trace sliding down the trim a short
distance, releasing, then actually intersecting the same trim again. This should not
occur, but it does since the trims are piecewise linear and therefore not an exact
seam between surfaces. This one cycle delay has proven to inhibit this problem and

has not been noticed by users.

3.5.7 Error Management

Since nearly all computations are either floating point or performed at very high
rates, or both, it is important to maintain control over any errors in our results. In
many areas this amounts to judicious use of epsilons. For example, when generating
the grid to bound all of the trimming loops a small epsilon is applied so that the
boundary trim segments fall within a cell instead of along its boundary. Nearly
every stage of the haptic rendering process has some form of error management.

In the pre-processing stage we take a few steps to improve our results when
dealing with trims. Foremost of these is reparameterizing the knot vectors. Both
knot vectors are shifted so that they are centered about zero since that is where
floating point numbers are most accurate. Furthermore, the knot vectors are scaled
so that the node distance is no less than five times the control point distance. This

relates the parametric movement more closely to the Euclidean. This is especially

58

important when a model has been scaled up in size. Recall that a scaled up model is
actually handled by scaling down the probe movement. Therefore, a rather normal
movement by the user could equate to a very small movement on the original model.
This would in turn have produced an extremely small movement in parametric
space. By altering the knot vectors, the model can be scaled upwards of 100 times
its original size before movement vector lengths equate to those that would be
present on the original model with a knot vector ranging from zero to one.
During tracing we take steps to not only reduce error, but also improve sta-
bility. Even if the user holds the probe perfectly still, the device may have small
positional errors. This would end up being interpreted by the trace algorithm as
user movement, producing slightly different contact points and restoring forces.
Therefore, the trace algorithm accepts a noise threshold for each probe. If the
reported movement is less than this distance, then no new point is calculated. In
addition to the noise threshold, the users true movement is forced to exceed a
small epsilon before a new trace point will be found. This cuts down on possible
chatter due to the slight error in DPT itself. Similarly, if there has been a sufficient
euclidean movement but DPT reports the next parametric point is within some

small epsilon of the previous, no new point is calculated.

3.5.8 Transitioning Results

Trimmed NURBS models vary greatly in the number of surfaces and trim
segments required to represent them. Table 3.4 lists a sampling of models against
which we tested the system. The Surfaces column indicates the total number of
surfaces for the model. Segments indicates the average number of trim segments
per surface. Grid statistics are represented in the final four columns. The Grid
column relays the average number of segments per grid overlay. The column
labeled Empty gives a percentage for the number of cells in a surfaces grid that
contain no trim segments. Empty cells translate into essentially zero work for the
transitioning algorithm. Maz gives the maximum number of segments in any one

cell. This number represents the worst case for the transitioning algorithm for the

59

Table 3.4. Statistics on models used in system testing

Model Surfaces Segments Grid Empty Max Mean

Cube 6 4.00 16.00 25.00 2 1.33
Goblet 3 236.00 342.00 89.57 13 3.33
Teapot 7 370.29 54771 8947 29 3.32
Brake 28 168.14 332.57 77.64 6 2.08

Gear 198 168.26 260.57 87.11 13 2.84

given model. Finally, the Mean column shows the average number of segments in
cells that actually contain segments. This number indicates the amount of work the
transitioning algorithm can be expected to perform when near a surface boundary.
Note that both the Max and the Mean columns contain very small numbers in
comparison to the Segments column. These numbers indicate the drastic reduction
in work the transitioning algorithm must perform when compared to an algorithm
that would check every segment. Setting up the grid overlay for each model took
under three seconds on average.

Our grid walking algorithm has constant time complexity in the number of
steps. Table 3.5 shows that during tracing sessions with tens of thousands of
cells being traversed the mean number was always very near one. The maximum
number of cells traversed for each is small, limiting the worse case performance.
The largest component of cost for transitioning, much as it is for tracing, is the
surface evaluation. As shown in Table 3.5 the number of evaluations per walk also
was very near one. More importantly, the maximum number was always recorded
at five or less. This demonstrates predictable performance for the transitioning
algorithm.

There are three other contributors to the computational cost for the transition-
ing algorithm: computing a trim intersection, determining the adjacent surface,
and gathering surface normals for use in the boundary normal computation for
trim tracing. Since our implementation of the grid overlay references directly into

the trimming loops, the EAT can be used to determine the adjacent surface in

60

Table 3.5. Grid walking results

Walks Evals
Model Cells Mean Max Total Mean Max
Cube 56623 1.00 2 58267 1.02 3
Goblet 55938 1.05 15 53137 1.00 3
Teapot 51151 1.04 13 57931 1.11 5)
Brake 45918 1.03 4 49992 1.08 4
Gear 36215 1.04 19 41603 1.12 4

Number of cells walked, mean walked per trace call, and max cells walked in any
one call. DPT update rate in Hz, mean and maximum penetration depth in mm,
and mean and maximum surface evaluations.

constant time. The gathering of surface normals is also essentially free since the
normal is a side effect of the surface evaluation. As each neighboring surface is
evaluated to test for a release the resulting normal is collected and cached. The
cost is therefore already included in the surface evaluation accounting. Finally, we
have computed that we can check the movement vector against over 3000 segments
at 500Hz. In the worst case, our results showed a walk of 19 cells and a maximum
of 29 segments in any cell. In this scenario our algorithm would need to check only

551 segments, illustrating it easily fits within our time constraints.

3.6 Extensions
Using the direct haptic rendering algorithm as a black box entity, several worth-
while extensions are possible. Three extensions have been implemented: model
manipulation, dimensioned probes, and multiprobe contact. While these are but
a few of the potential improvements and extensions, they demonstrate the power

and flexibility of the algorithm.

3.6.1 Models in Motion
Whether through manipulation, animation, or dynamic properties, mobile mod-
els are a fundamental property of virtual environments. The direct haptic rendering

algorithm presented is designed for probe movement with static models, but can

61

be extended so that both the probe and the model can be moving. Basically, three
approaches can solve this problem. First, the models can be physically transformed
as they are moved. There are several drawbacks to this approach. Incremental
object transformation has been shown to induce numerical errors over time. In
addition, the transform calculations are all done when the processing power of the
haptic processors is most needed — when the dynamics and tracing are both being
calculated.

The second and third approaches involve storing a transformation matrix, zform,
for each model. By using an xform, these methods avoid the problems found in
incremental updates. A new absolute xform can be computed at each time step.
The second approach is to use an xform to transform the current model and perform
DPT on it as usual. This approach has a similar drawback as the first method in
that the current model is transformed during tracing. In fact, transformations
must be calculated even when the probe is not in contact with a model so that the
tracking of near and active models can still be successful.

We have adopted a third approach (Figure 3.23) which involves using DPT on
the original (nontransformed) model with a probe that has been transformed into

model space [67].

o
o’ o’
xform

Inverse
xform

(a) (b)

Figure 3.23. Model movement (a) transformed into probe movement (b) through
the inverse model xform.

62

For each model being traced or tracked, the probe is transformed through the
inverse of the model’s xform. This process transforms the movement of the model
into a component of the probe’s movement. The resulting closest point and normal
are then transformed from model space into world space.

One obvious advantage to this approach is efficiency. If the combined number
of models being traced and tracked is n then there will be n x 3 vectors transformed
(probe, closest point and normal). Like the second method, these transformations
must be computed for each cycle through DPT. However, since n x 3 is far less than
the number of control points in all of the surfaces for the n models, this approach
is more efficient than either of the other two approaches. This embedding of the
tracing algorithm requires minimal overhead and does not affect the update rate of
the haptic process.

Given this extension, we were able to perform several dynamic simulations.
Among these are simple movement through force application, push buttons with
detent, and a dynamic pendulum [67]. Further extension allowed kinematic chains
where a collection of models connected by either spherical, universal, prismatic, or
revolution joints. These assemblies are solved through an efficient “self-assembly”

technique developed specifically for haptics and CAD [41].

3.6.2 Dimensioned Probe

One of the drawbacks to point probe methods is the dimensionless nature of
the probe. If two models are placed directly adjacent to one another, a probe
without finite size could still move between the two models without making contact.
To eliminate this possibility we compute a model that is projected outward by
the radius of the desired probe. A model of this type is often referred to as an
offset model [22]. Our system uses the offset model in the haptic rendering process
while using the original model for the visual display. Figure 3.24 illustrates the
construction and use of an offset model.

The original model in Figure 3.24a is offset by the radius of the probe in the

direction of the surface normal resulting in the model in Figure 3.24b. Isolated

63

(a) (b)

Figure 3.24. Actual model (a). Initial offset model (b). Final offset model with
possible trace positions (c).

regions are trimmed away, producing the offset model in Figure 3.24c. Contact
with the surface of this offset model represents contact with the original model
with a dimensioned probe (Figure 3.24c). Notice that any part of the offset model
that is trimmed away represents a portion of the original model that could not be
contacted with the dimensioned probe. Tracing with a point probe along an edge
created by trimming away a region corresponds to tracing multiple contact points
of the original model with a dimensioned probe (Figure 3.24c).

It is important to note that this process depends on trimming and adjacency
information. Further, while this approach uses an “auxiliary” representation it
is not a simplifying “intermediate” representation, since the offset model exactly
represents the parts of the original model that can be contacted by the dimensioned
probe. Producing the offset model adds significant preprocessing, but it does not
affect performance of the tracing algorithm as long as the model geometry does not

change during the trace.

3.6.3 Multiple Probe Rendering

Our current implementation of direct haptic rendering of trimmed models runs
at over 1000Hz. However, when using the Sarcos arm we notice no improvement
when running at any rate over 500 Hz. By running at this lower rate, there is extra

time within each cycle of the haptic process. Since the Sarcos device can reflect

64

forces to multiple end-effectors, we make two calls to the trace algorithm using the
location of the finger and thumb as the probe locations.

Similarly, the CyberTouch glove provides six vibrotactile stimulators. Each of
these can be tracked individually. Since this device is not haptic, it does not require
the same high update rates. We have found rates as low as 100 Hz to be very effective
for this device.

To implement this feature, the trace state information for each probe (current
surface point, tangents, and proximity) is stored as an attribute of each model.
With this minimal data overhead and negligible impact on the tracing algorithms
performance, multiple probe rendering is possible. This has been found to signifi-
cantly add to the overall tracing experience. Further, the combination of multiple
probes with movable models has been used to demonstrate object grasping and

manipulating [34].

3.7 Summary

This chapter presented direct haptic rendering of trimmed NURBS models.
We established two primary goals for the algorithm: efficient enough for inclusion
within a haptic controller and accurate enough to faithfully reproduce the CAD
design haptically. Each of the results sections above demonstrated success with a
particular component of our complete algorithm. This section summarizes those
results in order to show that both goals were met.

Section 3.3.8 showed that for all of our test models DPT performed at over
1000Hz. This included both surface tracing and boundary tracing. In no small
part, this speed derives from our cached alpha matrix surface evaluation technique.
Since we want to prove that our algorithm fits our budget in the worst case, and
not just on average, we add up the cost of tracing from one surface, across a trim
boundary, and onto a second surface. In this case we essentially have two trace
calls, one for each surface with the added cost of detecting the trim intersection

and determining the neighboring surface.

65

The transitioning results presented in Section 3.5.8 showed that the cost of grid
walking, segment intersection, and adjacency were negligible in comparison to the
actual surface tracing. Therefore, since the tracing algorithm was over twice as
fast as required, and the problem breaks down to tracing twice, we have met our
efficiency goal. Further, the power of the machines on which we tested our systems
has been surpassed more that two fold during the writing of this document.

The results given in section 3.3.8 illustrate the accuracy of DPT. Both the sur-
face normal and the local closest point had low computational errors. Additionally,
in simulation we found that the penetration depth computed produced an error
to small to measure. The combination of these three factors illustrate the high
degree of accuracy of DPT, and therefore the ability of the algorithm to faithfully
reproduce the underlying CAD model.

CHAPTER 4

APE: TARGET APPLICATION

As a target application for Direct Haptic Rendering we present APE, the Active
Prototyping Environment. The goal of APFE is to allow the haptic rendering results
presented in this document to be applied to real models from a real CAD system.
The CAD system chosen is Alpha_1, a research system developed at the University
of Utah. There are several subproblems to the design and development of this
target application, including the user environment, managing models, managing
multiple devices, user safety, distributing computation, and of course the actual

CAD integration.

4.1 User Environment

Most, if not all, CAD systems provide at least one form of graphical user
interface. Whether it be as simple as a wire-frame display or as complex as a 3D
display that permits translucency and arbitrary cutting planes the goal is the same;
help the user to better understand the model being designed. There is a fine line
between providing the most information possible to the designer and complicating
the interaction with information overload.

The virtual environment of APE is a stand-alone fish-tank display. There are
three reason for this choice. First, the GUI of the design system is unchanged and
therefore remains familiar to the designer. Second, APE need not be integrated
tightly within any one design system. This allows APE to be used stand-alone
or loosely integrated with any design system. Third, the APE system requires
significant computational resources. The design chosen permits APE to run on
a separate machine, most likely a more powerful multiprocessor system, than the

design system.

67

4.1.1 Interface

Most haptic devices require some amount of user attachment. For instance,
the Sarcos arm requires a user to be strapped into the arm and stand on a fixed
platform. It is simply not convenient to use a keyboard or mouse at such times.
For this reason mouse and keyboard use is kept to a minimum and most interaction
has an alternate form that can be performed using the haptic device in conjunction
with a 4 button device (Figure 4.1) we have built for the user to hold in his off
hand. Table 4.1 shows the set of actions and bindings of APE.

The substitution of the button box for “center view,” “default view,” and “quit”
are obvious. In the case of “translate” and “rotate” it is not. When using the
mouse the two actions are decoupled. This is not the case when using the device
substitute. When button 1 is pressed the user has effectively “grasped space.”
Subsequent movement of the device causes the entire view to translate and rotate
about the probe.

Some interaction is, despite the device attachment, still more convenient from

the keyboard. An example of this is loading a new model into the environment.

Figure 4.1. Four button device for off hand.

68

Table 4.1. User interface bindings and device substitutes

Action Key/Mouse Binding Device Substitute
Center View C Button 2

Default View D Button 3

Load Model L

New Session N

Quit Q Button 4

Rotate Button2 Button 1

Scale Button3

Translate Buttonl Button 1

This currently can be accomplished in two ways: opening a file or receiving a model

from a CAD package.

4.1.2 Graphical Viewer

The graphical display for the environment uses OpenGL. This open standard
provides for a wide variety of effects such as texture mapping, anti-aliasing and fog
for depth cuing. More importantly, APE was designed and tested on SGI work-
stations that have highly optimized hardware implementations of OpenGL. Later
porting to Linux and advanced graphics processors proved even further performance
gains. APFE also takes advantage of any options OpenGL provides that will further
accelerate its display such as one sided polygons, backface culling, display lists, and
materials properties for shading. All tested models were able to be displayed at
rates well over the 20 frames per second required.

Several types of objects can be displayed within the virtual environment. Most
important among these are the model being traced and the graphical representation
of the haptic device being used. In all cases, object-oriented design was used such
that an object has a method to draw itself. Each model is drawn using the OpenGL
NURBS tessellator. However, since this is not the greatest tessellator the display
system has been designed to allow alternate renderers to be used. The haptic

devices are rendered in a fashion that illustrates the degrees of freedom inherent to

69

the device. For example, a single point device like the Phantom is represented by a
single sphere while the Sarcos arm has a more complex representation (Figure 4.2).

There are three different spaces within which objects in APE can be displayed
(Figure 4.3). The first is view space and is the default. In view space objects
are transformed by the view matrix and then the perspective projection matrix.
The second space is object space and in this space objects are transformed by the
projection matrix alone. An example of an object that would be placed in this
space is the graphical representation of the haptic device. The display of the device
must remain outside of the view matrix so that movement of the physical device
is mirrored within the graphical display. The third space is a special view called
sticker space and is provided for placing graphics directly on the screen similar to
old style pixel displays. For example, the APE logo is placed in the lower right
hand corner of the window using this space. Another use for this space is to show
context sensitive help relative to the probes location. Only 2D objects make sense
in sticker space and therefore the projection matrix is simply orthogonal with a
viewport set to the size of the window in pixels.

The quality of the haptic experience is greatly increased with the addition of
a stereo display. By showing the model and the device in 3D stereo the haptic

rendition fuses with the visual and the object becomes more real to the user. This

(a) (b)

Figure 4.2. Graphical representations of Phantom (a) and Sarcos arm (b).

70

Figure 4.3. The graphical display space.

experience is heightened with the inclusion of head tracking. APE provides the

ability to display the environment in mono or stereo with or without head tracking.

4.2 Model Manager

Central to the APE environment are the models under investigation. Several
types of queries, from separate threads of computation, must be facilitated without
delaying the processing of these time critical threads. In APE there is a central
master repository of models within the user environment that is controlled by the
Model Manager. Models can be loaded either through the user interface (Sec-
tion 4.1.1) or through a connection with a CAD system (Section 4.4). It is the
responsibility of this master model manager to distribute the models to the various
device controllers, allow controlled access from different processing threads, and

determine when a model is near a device.

71

4.2.1 Distributed Managers

The distributed design of APE, and the computational needs of a haptic system,
often results in each device controller running on a separate machine than that of
the user environment. This model of computation requires that the model cache of
the master model manager be mirrored into a model manager residing within each
device controller. Mirroring the models in this way permits the device ready access
to the models without having to traverse a network connection.

It is important that these model caches be kept consistent or the visual display
and the haptic display will not correspond. As a model is loaded into the environ-
ment a copy is sent to each device controller. The position and orientation of each
model is determined by an xform from model space to world space. The master
manager and all devices initialize this xform to the same value. In actuality, it is
the xforms that must be synchronized at all times.

While the submanagers are very similar in design to the master manager, there
are a few differences. Chief among these is the requirement that the manager hold
a tracing state for each model. This state indicates if the model is near, active,
or current to any probe of the device. When active or current, the state will hold
all geometric data necessary for direct haptic rendering. This data is used by the
trace routine during each cycle of the haptic controller, allowing the algorithm to
be implemented without knowledge of the type of device or significant local data
caching.

Another important item stored by the submanagers is the inverse view matrix
for the graphical viewer. As discussed in Section 3.6.1 this matrix is required to
map the probe movement into model space, thus saving the computational cost
of transforming the models. For efficiency, the view matrix is also stored as it is
required to transform the resulting contact point and normal from model space into

world space.

72

4.2.2 Model Locker

Each model manager controls access to its model cache through the use of a
model [ocker. Basically, models are stored within a locker with each model being
accessed through its own key. When a process requires the use of a model it requests
a key for either read or read /write access. This key is unique per check-out, ensuring
a model cannot continue to be accessed after it has been checked-in.

Writing to a model requires exclusive access whereas multiple readers can share
the model at once. To prevent starvation of processes requiring write access, readers
are only allowed access to a model if there are no waiting writers. Therefore, when
a key is checked in waiting writers are awakened first, but only if there are no more
readers holding a key. If there are no waiting writers then all waiting readers are
awakened. While this approach could potentially result in processes requiring read
access to starve, in practice this is not a problem. The locker provides an iterator
that can be used by the read process to checkout the “next available model,” which
is most often what is desired.

Programmatically this control is granted through the use of a single data mutez
and two conditionals, one for the readers and one for the writers. The mutex is used
to control access to the lockers key control data. The conditionals allow processes
that are willing to be blocked until the model is available to wait without occupying
the data mutex. Essentially, the conditional is a waiting area for processes. All
readers share a conditional, regardless of what model they are waiting for. The
same is true of writers. This separation of wait areas allows us to signal only the
appropriate waiting pool when a model is checked-in, if any should be awakened at
all.

In addition to the data mutex, the locker contains a mutex for complete locker
control. This mutex is used when an operation will change the contents of the
locker, for example when a model is loaded or removed. Locking the entire locker is
equivalent to locking all members for writing with the difference being that a single

key can then be used to access all models. Unlocking is made more efficient in this

73

case as a single broadcast to wake-up the waiting readers and writers can be made

once all models have been checked-in.

4.2.3 Tracking Deamons

Each model manager spawns a tracking deamon. Since all models must be
constantly checked for their near proximity status, the master model manager
deamon is used for this task. This proximity thread loops over each probe for
each device and checks its proximity to all models. Determining if a model is near
enough to be of interest to a device does not require an exact closest point be found.
For this reason we provide a cutoff distance to the LUB-tree search equal to our
near distance. This allows the search for the global closest point to abort if either
the distance from the probe to the models lower bound is greater than the cutoff
or the upper bound is less than the cutoff. Only when the search aborts from the
upper bound being less than our near distance do we deem the model near and
send a message to the device. Similarly, if the model is not near, and previously
was, then a message would be sent to the device as well.

Once a device is signaled that a model is near, its submanager deamon will
begin tracking a global closest point. Unlike in the proximity thread, this tracking
requires that the LUB-tree search actually converges to a solution. The distance
from the probe to the tracked point is used to determine if the model should be
made active. Once active, the tracked point is used, in conjunction with a local
closest point, to determine a potential contact point. When a model is deemed
current, therefore being traced and requiring only a local closest point, the deamon
will skip the model for the probe in contact.

The master manager’s deamon works with all models in the scene, but doesn’t
require exact results. The submanager’s deamon does require exact results, but
it works on only a subset of the scenes models. In practice this division of labor
has been found to be very effective in distributing the computation costs as well as

producing better tracking results for direct haptic rendering.

74

4.3 Device Manager

While the most common usage of APE is with a single device, perhaps with
multiple end-effectors, APE can also handle multiple devices through its Device
Manager. At startup the APE system is given a config file (Appendix E) which
indicates the devices for the session along with any device specific information (e.g.,
the machine on which the controller should run, the network ports to use, etc.).
The device manager reads the config file and creates each device passing on the
rest of the information in the config file to the devices constructor. This allows the
device to parse the data and complete its initialization. This same config file is
later read by the device controller program when it is started to ensure that both
processes are initialized identically.

Each device has specific requirements and as such they contain the necessary
code to communicate with their controller. That said, all communications from the
user environment to the devices are funneled through the device manager. This
common interface makes possible communication to individual devices, broadcast-
ing to the whole collection, and broadcasting to all but a given device. This final
feature is helpful when one device is controlling the environment and the other
devices need to be placed into a different safety level.

Another responsibility of the device manager is arbitrating device control over
the view and models. If multiple devices request to manipulate the view or move a
model, the device manager will chose a winner and then notify the losers to cease.
This approach allows all devices immediate feedback and access without first having
to request permission from the device manager. If multiple devices begin to modify
a models position, one will win and have continuous real-time haptic feedback, while
the others would simple be placed into a safety level that would prevent further

manipulation.

4.3.1 Devices
APE provides an abstract device class with which the rest of the system can

interface. Derived from this abstract class are type specific classes for each type of

75

device. These subclasses communicate with their particular controller in whatever
fashion is optimal for that device while still providing a single interface to the rest of
the system. Due to this design choice APE supports three different haptic devices
that communicate with type specific controllers.

Communicating with the controller is the singular responsibility of the device
deamon. Spawned at the time of creation by the device manager, the deamon
continuously reads device configuration packets. The polling technique is specific
to the device and may involve querying a port or communicating across a network.
Regardless, the results are cached using a scheme called n+2 buffering [50], where
n is the number of readers. This scheme is guaranteed to always provide the most
recent data to the readers and never block readers or writers.

In APE there are two readers: the Ul and the master model managers proxy
thread. As described in Section 4.2.3, the proximity thread requires only the
location of the probe for its distance tracking. Conversely, the Ul needs the full
device configuration in order to display each device within the graphical viewer. For
each cycle of the visual display each device will redraw itself using its configuration

data. This method ensures that the visual display is in sync with that of the haptic.

4.3.2 Safety Levels

There are three different safety levels that a device can be placed into during a
haptic session. The first, level 0, is deemed safe which means forces can be applied
when the device is in contact with a model. The remaining modes indicate the
possibility of an unsafe condition and result in no forces being applied to the user.

Level 1 is indicated when a transient event has occurred. The device should
not produce forces until the probe enters a confirmed safe area in the environment.
Each probe has its own safety level so each can move into a safe area individually. A
safe area is defined as a location close enough to the model to accurately determine
that the probe is above, and not within, the model.

Finally, level 2 signals an ongoing event within the APE viewer that is outside

the control of a device. The device must not generate forces until the event is

76

completed. An example is active view manipulation. When a device is modifying
the view it does not want to have objects that are moving about the view cause
impact, and force generation, with the device. For this reason all devices are enter
level 2 when the view is modified. Another example is model manipulation. While
the device doing the manipulation certainly does want forces applied, the movement
may be unexpected to other devices within the environment and therefore they are
placed into level 2. Unlike level 1, the device cannot remove itself from this level.
Instead, it must rely on the environment to signal it to drop back to level 1 from
where it can follow the level 1 protocols to return to safety.

These three levels ensure that all force generation is under the control of the
user (assuming no mechanism animation). This eliminates jolting forces without

having to wait for control to be granted by the environment.

4.3.3 View Manipulation

Users can manipulate the view via the mouse or through any device. A device
initiates manipulation of the view by sending a button status (Section 4.1.1) from
the controller to the device deamon. Manipulation itself will take the form of the
user “grabbing” the view with the device with the objects in the view then being
moved about the device as if attached through an either. The device manager will
detect the request and determine if the request will be granted. The only cause for
refusal would be another device already manipulating the view.

When the request is granted the device manager will send a safety level 2
message to all devices, including the controlling device. This will prevent any
wildly moving models from colliding with a probe and therefore exerting undue
force upon the user. The position and orientation of the device and the current
view matrix are recorded as a baseline for computing the new view matrix.

Each subsequent call to update the view will result in a view matrix computed
relative to the original view and device orientation. This prevents errors from
creeping in through matrix operations. The matrix operation to compute the new

view matrix is defined as:

77
V= [TXX YT, (4.1)

where V is the new view matrix, V' is the view matrix when the view was grabbed,
T is the current position as a translation matrix, T is the position when grabbed,
X is the current orientation, and X is orientation when grabbed.

Only when the device releases control over the view matrix does the device
manager update the devices. First, the updated view matrix, its inverse, and scale
component are sent to the controllers. These values need to be present before
the device can be placed into safety level 1. The devices can then resume haptic

interaction once they find a safe configuration.

4.3.4 Moving Models

The device managers function during model manipulation is similar to that of
view manipulation. Primarily it is to arbitrate control over the manipulation. At
current, when any device requests to manipulate a model the other devices are
placed into safety level two. However, unlike view manipulation, the active device
is left to continue receiving force feedback.

When a device moves a model, whether it be through direct force or from an
assembly simulation, that models new xform is sent to the device deamon. The
device manager recognizes the change and makes note of the devices request. The
device does not wait for the managers approval, instead it begins the simulation with
the assumption it will be approved. If multiple requests are received the manager
will decide who should be granted control. Those devices that do not receive
permission will be placed into safety level 2 and consequently their simulation will
cease.

The device that is granted control will continue with its simulation. The models
xform will be streamed from the controller to the device deamon where it will be
read by the graphical viewer. The result is the visualization of the model will match
that of the model being haptically rendered.

Finally, when the device has completed its simulation the models final xform

will be transmitted to the device deamon. The device manager receives this event

78

and turns the xform around to all other devices. This returns all devices to a state
of synchronization to the state in the model manager. Once this has completed, a
safety level 1 message is sent to all of other devices so that they can resume their

haptic interaction.

4.4 CAD System Integration

One of the primary goals in the design of APE was to integrate it within a CAD
system, but do so loosely to allow maximum freedom in balancing computational
resources. Further, I decided to not support specific application formats within
APE but instead provide an exchange format that other applications could export,
or to which other formates could be converted. This format is called Utah NURBS
(UTN) and is described in Appendix D.

The APE system can load UTN files directly via a file dialog. To do so a user
hits the “L” hotkey and then browses for their UTN file. Alternatively, the model
can be sent from Alpha_1. Within Alpha_1 a user can work on a design using all of
the commands afforded to them by the design environment. At any point they can
send their model into the APE environment through the apeModelMsg command.

This command will verify the model is correct and compatible with APE. For
example, it checks that all surfaces have at least one trimming loop and that all
edges have an adjacency defined. Once the model passes these checks, it is dumped
to disk onto a server accessible by the running APE process. Upon successful
completion of the models export, the command will write a message file onto the
tmp drive of the machine running APE. This file signals APFE of a waiting model
and also includes where the file is located. Once a second the Message Manager
in APE searches for this file. When found the model is immediately loaded by the
Model Manager. Both the message file and the model are then cleaned from the
disk as they were intended to be transient data.

The UTN converter allows any shell (with the exception of those that don’t
have the full adjacencies defined) to be used in the APE system. This makes it an

integral part of the design environment, even though it is not part of the same code

79

base. All translation between formats is hidden allowing the design environment to
run on a different machine than the APE system, further increasing performance

of both applications.

4.5 Distributed Computation

In its most complete configuration, APE is a multiapplication, multiplatform,
multiprocessor, and multitreaded system with multiple network channels and ttys
open for communicating between the main application and the devices (Figure 4.4).
Minimally, in its simplest configuration, APE is multithreaded with local tty device
communication. In all cases careful consideration was given to try and balance the
needs of the various components against the available system resources.

Consider for example the system configuration given in Figure 4.5. In this
configuration a single Phantom device is being used in conjunction with the Alpha_I
modeling system. Alpha_I is run on a separate machine from the APFE user interface
and in fact could actually be executing under a different operating system. The only
requirement is that it have write access to the machine on which APEFE is executing.

This allows Alpha_I to send the model messages to APE loosely binding the two

systems.
S]
| “Model | — —
-------------- : 4 1| (/o 1
| Design | '\ {"APE " Manager || Local | Remote |
\Environment|| | |iVieweri reoiioiinsl | Device | Device
_____ |'--!?W?!-' Device El . Controller | ' Controller,
| : Manager |
SR,
—— Platform
— — Process
----- Thread

Figure 4.4. APE is multiplatform, multiprocessor, and multithread capable.

80

User Environment Haptic Controller
_____ C=—r
| APE Process | | Trace |
| oser | Process .
CAD syStem | ; Interface: I T -éEF; - IL\>— Device
bl RhbE ' | - ——
b ! ing: | %7 | Interface | |*i
Alpha_1 |—|| ,T ! | : ;’ack’"g: (N - || *| Phantom
| i{Device: T T, ;Deamon: [Sg& Process |-
| ‘Deamon’e—. f ! l ’
------- g | h
a- CAD Model (rcp) | "1 Td | | '-"b |
b - Config Packet B o e 1 irect !
c - EF Location | ' I;;:);i;‘l"lrl'ty ! I | ! Parametric i h - GCP_Updates
d - Safety Levels | ! g ! I I Taei ! | i - Config (sh mem)
e - Config Packet (UDP) + Deamon . | o _g_ _J j - Force (sh mem)
f - Models, etc (TCP) sekicekitl v —_— k - Raw Config
g-Model xforms (Tcp) |~ " I - Final Force

Figure 4.5. System configuration for Phantom device.

The Phantom requires real-time access to its controlling computer to maintain
device stability. As such, APFE runs the device controller on a separate machine than
the user environment (note that this is not a requirement but does produce better
results). The device controller for the Phantom is broken into two processes that
communicate via shared memory. One process actually interfaces with the device
and must maintain 500Hz. In practice, the Phantom consistently will maintain
near 1000Hz. This interface process queries the device for its probe location and
writes it into shared memory using triple-buffering. The second process contains
the model manager and the tracking thread. It is responsible for taking the probe
location and performing DPT. If the probe is in contact then the appropriate force
vector is computed and placed into shared memory, again using triple-buffering.
The result is a completely decoupled computation model. The trace process can,
if necessary, run slower than the interface process without causing missed cycles in
the controller. It can also, if possible, run faster than the interface and produce
better results in its tracking deamon.

Within APE the Phantom device communicates with the controller via multiple
network channels. Acting as a server, the Phantom device controller continuously

gathers, packages, and sends device configuration data across a UDP connection.

81

The device deamon, using the n+2 buffering algorithm, reads and caches this data,
making it immediately available to the system readers.

The configuration packet for the Phantom contains the position and contact
information for the end-effector; button status and finally, if a model is being moved,
the contacted models id, position and orientation. All told this amounts to 33
floating point numbers. As a comparison, the Sarcos Dextrous Arm configuration
packet contains 60 floating point numbers including the elbow, wrist, finger and
thumb joint locations and orientations. The end-effector positions are read by the
master model manager for use in its proximity detection thread. The user interface
uses all remaining data to graphically display the device.

Two other TCP network channels connect APE to the device controller. The
device uses one channel for sending all messages, such as models, safety levels, near
proximity notification, xforms, and view matrix changes, to the controller. The
second is used by the controller to send the xform changes of models being moved
through assembly manipulation but that are not in direct contact with the probe.
By using the UDP packet for the contacted model the display of this model remains
completely in sync with the haptic display, the remaining models can better handle
any lag that might result from having to use the slower TCP protocol.

This simple single device setup amounts to a rather distributed computation
model. There are two applications: CAD system and APE. Three machines are
used to logically distribute core components: CAD system, APE user environment,
and the haptic controller for the Phantom. Both the APE user environment and the
device controller are multithreaded. The user environment has three threads: GUI
main loop, master model manager proximity deamon, and the device configuration
deamon. Finally, the device controller is both multiprocess and multithreaded.
There are two processes: the tracing process and the arm interface process. The
tracing process has a thread for the trace loop and one for its model manager
deamon. In total, this particular APE setup uses three machines, two applications,

four processes, and seven threads of computation.

82

As a result of this distribution model, all core components can maximize their
computational potential. In practice we have found that the display frame rate is
not affected by device connections. The haptic display is not affected by either
the user environment or the design system. Given enough processors, the system
scales naturally because of it multithreaded design. All tested configurations ran
smoothly with no one component dominating the computational resources or oth-

erwise delaying the processing of any other component.

CHAPTER 5

CONCLUSIONS

We have presented a powerful algorithm that supports the direct haptic ren-
dering of models constructed from trimmed NURBS. Direct Parametric Tracing
computes a local closest point that shadows the movement of a haptic probe a rates
suitable for inclusion in a haptic controller. Haptic rendering is improved because
the DPT method supports exact computation of surface normals as well as higher
order continuity of surface representation. The parametric surfaces being rendered
have compact representations, allowing for haptic rendering of complex models
within the same memory as would be used by an approach utilizing a secondary
representation. In addition, some of the complications of using an intermediate
representation, such as force discontinuity artifacts, do not appear in direct haptic
rendering.

A grid overlay and efficient grid walking algorithm allow our approach to be
model based with only a single point being tracked per model. This model-
based grid approach permits highly trimmed models to be included without loss
of efficiency while also permitting more complex scenes to be haptically rendered.
Additionally, we have demonstrated the ability of the haptic algorithm to be ex-
tended in order to permit model manipulation, tracing by a dimensioned probe,
and multiprobe contact.

As a test-bed system, we developed an Active Prototyping Environment. APE
integrates our haptic algorithm with a fish-tank virtual environment and loosely
couples it to a CAD system. The result is a complete system that supports
multiple haptic, and nonhaptic, devices. The distributed system design allows

high update rates on both sides of the system, resulting in an interactive visual

84

display coupled with an accurate haptic rendition produced from the actual model.
This combination greatly improves the amount of information a designer can gather

about a design while he is immersed within the design environment.

APPENDIX A

NURBS CURVES AND SURFACES

A B-spline curve, vy(u), of order k is determined by a set of points, P = {P;}7_,
its knot vector, u = {u; }7", and its basis functions, B = {B; }",. The definition
of the curve is given by,

V() = éPiBi,k(U)- (A1)

The basis functions have a nice recursive form and are a generalization of the

Bernstein/Bezier blending functions. The definition for the basis functions is given

by,

(L S u<uig
Bi(u) = {0, otherwise (A2)
and for k£ > 1,
u—u; : Uirh—U_ D : .
B, j(u) = ¢ witk-1—ui Bl’k_l(u) + ui+k_ui+1Bz+17k_l(u)’ i < uz.—i_k (A.3)
’ , otherwise

where each successive basis function is a convex combination of two basis functions
of a lower order. The B;; define piecewise constant polynomials, B, piecewise
linear, B, 3 piecewise quadratic and so forth. This definition ensures a C*~2 curve
when the B;j, basis functions are used. Also, each piecewise segment of the curve
is within the convex hull of the control points defining it.

A powerful extension to standard B-Spline curve is the Non-Uniform Rational
B-Spline (NURBS) curve. As the name indicates, NURBS provide the ability to
exactly represent rational curves like circles. The definition of a NURBS curve is

given by,

. 2o PiwiBi,k(u)
- YhowiBig(u)
where w = {w; }?_, are the rational weights for each control point in P. A NURBS

v(u) (A.4)

curve has all of the same properties that a standard B-Spline exhibits. Indeed,

86

if the weights are all defined to be equal to one then Equation A.4 reduces to
Equation A.1. Conversely, all B-Spline curves can be written as NURBS curves by
assigning all of the weights the value of one.

There is more than one way to evaluate a NURBS curve. The weighted combi-
nation of control points can be computed through evaluation of the basis functions
as in Equation A.1, or curve refinement may be used [10, 52]. Inserting k — 1 knots
into u with the value u* will create a new representation of the NURBS curve with
a control point P that is the value of v(u*). This point is called an evaluation
point and results because only one basis function, sz, is nonzero at u*. The value
of 7* is one less than the index of the first knot of value «* in the new knot vector.
The curve refinement method is computationally efficient when only the necessary
values are computed.

The tensor product NURBS surface has a similar definition. The surface S(u, v)
with the collection P = {P, ;} and w = {w;;} as it’s control mesh is defined as
izo 2 =0 L1 Wi Bjk, (V) N, (u)

im0 2 =0 Wi Bjk, (V) Nig, (u)

S(u,v) = (A.5)

where k, is the order, u = {u;}¥3™ is the knot vector, and N = {N;, }, are
the basis functions for the rows of the control mesh. Similarly, k£, is the order,
v = {vj};?”;(;" is the knot vector, and B = { B, }}_, are the basis functions for the
columns of the control mesh.

A NURBS surface, with its compact parametric representation, efficient exact
evaluation techniques, convex hull property, and higher order continuity, is a pow-

erful tool for design and has made it the de facto standard in the design community.

APPENDIX B

NURBS CURVE VELOCITY AT
EVALUATION POINT

In this appendix a compact, computationally efficient equation for the velocity
of a curve at an evaluation point is derived. For clarity, and to allow the equations
to fit within the bounds of the page, the derivation will be done in parts. Recall
the definition of a NURBS curve,

izo PiwiBig(u) _ N(u)
SiowBi(u) — D(u)’

where N and D are functions representing the numerator and denominator respec-

7(u) =

(B.1)

tively.
The velocity of a NURBS curve (when it exists) is given by the quotient rule

as,) = N’(U)D(ul)) (—u)];f(u)D/(U) (B.2)
where
Nu) = ;Z;PiwiB;,k(u), (B.3)
GO SLAN) (B.4)
and by definition, _
Bj;(u) = (k- 1) lui’:l(_ui - f:k—_;(ﬂ . (B.5)

We now continue with Equation B.3 noting that Equation B.4 will follow a
similar path. Expanding Equation B.3 with the definition of B;, (u) yields,
Bip-(u) Bi—i—l,k—l(u)]

Uitk—1 — U4 Uitk — Ui+1

N'(u) = (k—l)éPiwi[(B.6)

88

" PwiBij—i(u) = Pyw;Bji -1 (u)

o1 Witk—1 — Uj j=0 Uitk — Ujt1

= (k-1 (B.7)

Notice that after distributing the summation the bounds of the two summations
have changed. This is because the basis function B, ,_1(u) evaluates to zero at i = 0
and basis function Bji; j_1(u) evaluates to zero at j = n. In both cases this is true
since the basis functions exist outside the domain of the original curve. The two
summations bounds can be made to once again agree by variable substitution.

Replacing j in the second summation with ¢ — 1 the equation becomes,

N’(u) _ (k‘ . 1) zn: PiwiBi,k—l(u) . zn: Pz‘—lwz‘—le‘,k—l(U) ’ (B.8)

im1 Witk—1 — Uj i=1 Uit k—1 — Yy

and then combining the two summations we get, for both N and D',

N'(u) = (k—1) Zn: (Piwi — Pioqwi1)

i=1 Ujpk—1 — Uj

D'w) = (k—1) zn: ﬂ&,k_l(u).

im1 Witk—1 — Uy

Bi,k—l(u)>

Returning to Equation B.2, we can now construct the two products of the

numerator,

N'(u)D() = (k—1>iP”“‘”_Pi‘l“’i‘le-,k_méijj,mu),

i=1 Witk—1— U

" Pw,w; — Pi_jw;_jw;
= (k- 1)2 J el 2B k(u)Big—1(u),

i=1j=0 Uitk—1 — Ui
" ow; — wi—
N@)D'(u) = (k—1)Y Pyw;B(u) Y. ———"Biy 1 (u),
=0 i1 Witk—1 — U
" 2 Paww; — Piw;_qw;
= (h-1)Y > LI B (u) By (),
i=1 ;=0 Uitk—1 — Yy

and finally write the final general form of the velocity curve,

n n wiwj(Pi—Pj)+wjw; 1 (Pj—P;_1)
i=1 24j=0 YPp— Bj(u)Bij-1(u)

(o wsBia(w)) 2

V() = (k—1) (B.9)

Consider now that (u) is the result of previous refinement whereby k& — 1 knots

of value u* have been introduced at location ¢* 4+ 1 within the curves knot vector.

89

Then P, is an evaluation point. In Equation B.9, only basis functions B;« ;(u*)
and Bj«1q,—1(u*) exist at u* and have a value of one. Noting this we reduce the
equation and get,

Wi* 41 Wi (Pi*—l—l — PZ*) — Wi Wi (PZ* — PZ*)

V(W) = (k—1) (Wi wi) (Wiesge — Uiri1)
_ (k—1) wpp (Pooy1 — Pr), (B.11)

Uik — U1 Wi

. (B.10)

for the velocity of the curve at time u*. An important point to notice in Equa-
tion B.11 is that the velocity at time u* can be determined by two control points
and a scaling factor. This relates the Euclidean tangent direction to the parametric
speed.

Therefore, refining the original curve with £ — 1 knots of value v* yields both

the evaluation point, P;«, and the tangent vector, +'(u*).

APPENDIX C

MINIMAL BOUNDING CONE AXIS
PROOF

This appendix gives a proof based on one originally by X. Gu and modified by
S. Gortler [19]. The version shown below has been further modified for readability,
consistency with this documents notation, and completeness. We set the stage with

lemmas that aid in the development of the final proof.

Lemma 1 Given finite point set N = {N,}, let HULL(N)=boundary of the convex
hull of N. If point O is not in HULL(N), then there is a single closest point P on
HULL(N) to point O.

Lemma 2 Given finite point set N = {N;}, any plane that intersects HULL(IN)
and is not coincident with any face of HULL(N) will divide HULL(N) such that at

least one N; is on each side of the plane.

Lemma 1 is true since all convex hulls are convex and compact by definition.
Lemma 2 derives from the construction of a convex hull from planes defining half
spaces and basically states that any plane that intersects the interior of a convex

hull will “clip away” at least one of the defining vertices of the convex hull.

Theorem 1 Given finite point set N = {N;} lying within a single hemisphere of
the unit sphere, then if P is the closest point from HULL(IN) to the sphere origin
O, then P 1is the center of C', the smallest circle on the sphere bounding the points.

91

Proof:

The plane orthogonal to O_P, through P, cuts the sphere in a circle, C', and P

is the center of that circle.

II.

Suppose there is another circle C*, centered at P*, that bounds the point set
more tightly than C'. The plane of C* must separate P from O. If this were not
the case then P and O would lie on the same side of the C* plane, resulting in the
C* plane intersecting HULL(IN). This would imply that C* would not bound all of
N; (Lemma 2). Let the intersection of OP with the plane of C* be the point D.

I11.
|OP]|| > ||OD)|| since the plane of C* intersected PO at D.

|OD|| > ||OP*| since P* is the closest point on the plane of C* to O.

|OP|| > |OP*|| by transitivity.

Therefore, The radius of C* must be greater than the radius of C, so C' is the

minimum radius bounding circle of N;.

Since the theorem is proven, we can now state the relevant Lemma needed for

the computation of the boundary normal in Section 3.3.5.

Lemma 3 Given point set N = {N;}, lying within a single hemisphere of the unit
sphere, and circle C with center P, the smallest circle on the sphere bounding the
points, then the tightest fitting bounding cone for the point set has C' as a cross
section and Ny = P — O as its axis (Figure C.1).

92

Figure C.1. The minimum bounding cone axis N, is formed from the closest
point, P, on the convex hull of {N;} minus the sphere origin O.

APPENDIX D

UTN FILE FORMAT

In order to facilitate the transfer of models between the CAD environment and
APE, T have developed a simple file format called Utah NURBS (UTN). The main
goal of this format was to provide a common ground for converting third party
CAD application data into a format that APE could process. Secondary to that
was the ability to hand encode models for testing purposes. It was not feasible
to use the Alpha_1 file format (binlO) as that would have required supporting all
native types within Alpha_1 (this is truly a proprietary format). The use of a
custom format better facilitates the use of APE in conjunction with other third
party CAD systems.

The format, a combination of TAG and STATE based stream 10, is described
using a unit cube as an example. Any line beginning with a “#” is deemed a
comment line and ignored. The first token expected within the file is the Model
token and that is indicated by a “M” in column one. Following the token is a
model ID, center of mass as a 3d point, and the mass of the model. Both the center
of mass and mass are used when dealing with the model in a dynamic simulation

(such as an assembly).
M 0 6 0.0000 0.0000 0.0000 1.0000

Each model is constructed from one or more surfaces. The start of a surface
is signaled when the “S” token is read in column one. Following this token is the
surface ID, number of knots in the U and V knot vectors, number of rows and

columns in the control mesh, and the order of the surface in U and V.

S 0 6 6 3 3 3 3

94

Directly following the surface information line are the U and V knot vectors on

separate lines.

-1.0000 -1.0000 -1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

The control mesh follows the knot vectors in row major order. Each element of

the mesh is a rational space point with the rational component premultiplied.

0.5000 0.5000 0.5000 1.0000
0.5000 0.0000 0.5000 1.0000
0.5000 -0.5000 0.5000 1.0000
0.5000 0.5000 0.0000 1.0000
0.5000 0.0000 0.0000 1.0000
0.5000 -0.5000 0.0000 1.0000
0.5000 0.5000 -0.5000 1.0000
0.5000 0.0000 -0.5000 1.0000
0.5000 -0.5000 -0.5000 1.0000

Any trimming loops associated with the surface will follow the control mesh and
precede the next surface token. The trimming token is a “T” in the first column.
If a trimming loop is “simple” (on the boundary of the patches parameterization)
then the token will have a “2” appended, otherwise a “1” is appended. This is just

for internal optimization and not strictly required.
T2

The trimming data itself is then laid out such that the process of reading, and
constructing, the internal structures is optimized. The total number of trim edges
for all loops comes first. This is followed on a new line by the number of edges in
a given loop and the number of points in that same loop.

4
4 5

In this case the surface has four total edges (which is expected since it is a
simple trim). The next line starts the loop and indicates four edges in that loop
represented by five points. Each edge of the loop is then specified by a line holding

the adjacent surface’s ID, the adjacent edge ID on that surface, and the number

95

of points representing the edge. Trailing this header information are the points
making up the segments for the edge. A shared point between edges is not doubled
(except for the final point of the loop) but is instead listed in the second segment

to contain it.

521
-1.0000 0.0000 0.5000 0.5000 0.5000
4 01
0.0000 0.0000 0.5000 -0.5000 0.5000
201
0.0000 1.0000 0.5000 -0.5000 -0.5000
102
-1.0000 1.0000 0.5000 0.5000 -0.5000
-1.0000 0.0000 0.5000 0.5000 0.5000
The file reader will continue until enough edges have been read as specified on
the first trimming data line. Therefore, if further loops need to be listed they can be
appended here by simply specifying the number edges in the loop and the number
of points in that new loop. Processing would then continue with the edges as above.
The remaining five surfaces would follow, each with its own ID and trimming
loops. Optionally, a color token, “C”, can be specified. If one follows the model
token then the color will be assigned to the model as a whole. If it follows any
given surface then that surface will have a color assigned that overrides that of

the model. This token simply supplies the red, green, and blue color values as

normalized components.

C 1.0 0.7412 0.3121

APPENDIX E

DEVICE CONFIG FILES

APE uses configuration files to define which devices will be used per session.
The config file also contains any device specific setup data. As an example, if two
active devices require TCP ports the config file would allocate them such that they
do not conflict.

The format for the config file defines any line beginning with a “#” as a com-
ment. All other lines must supply a valid device name as the first word. The device
manager uses this to determine which device class to construct. Any remaining
test on the line is passed onto the device class to be interpreted, therefore can be
different for each device. The specific requirements for each device configuration

line are as follows:

sarcos <mach> <tcps-port> <tcpr-port> <udpb-port>

phantom <mach> <tcps-port> <tcpr-port> <udpb-port>

bird <bird-ttyd> <button-ttyd>

glove <mach> (ttys) <glove> <bird> <button> (ports) <tcps> <tcpr> <udpb>

As an example, consider the follow config file that initializes a session to use
all of the currently supported devices. In practice, the config file would define one
or two devices to be used by a single user, but the system does allow for as many

devices as requested, as well as duplicate devices.

#

This device config file causes the device manager to setup

the sarcos arm, phantom arm, and the glove/bird combination.

#

sarcos vxwO-gw 5050 5060 5070

phantom surreal 5000 5001 5002

glove surreal /dev/ttyd2 /dev/ttyd3 /dev/ttyd058 5003 5004 5005

1]

2]

3]

[4]

REFERENCES

Adachi, Y., “Touch And Trace On The Free-Form Surface Of Virtual Ob-
ject,” in Proc. Virtual Reality Annual International Symposium, pp. 162-168,
Seattle, WA, September, 1993.

Adachi, Y., Kumano, T., and Ogino, K., “Intermediate representation for stiff

virtual objects,” in Proc. Virtual Reality Annual International Symposium,
pp- 203-210, Research Triangle Park, NC, March 11-15, 1995.

Antonio, F., “Faster Line Segment Intersection,” in Graphics Gems III, David
Kirk (ed.), Academic Press, p. 199-202, 1992.

Appino, P.A., Lewis, J.B., Koved, L., Ling, D.T., and Codella, C.F.; “An
Architecture for Virtual Worlds,” in PRESENCE: Teleoperators and Virtual
Environments, Vol. 1, No., 1, pp. 1-17, Winter, 1991.

Ascension Bird, 6-dof magnetic tracking device from Ascension Technology.

Brooks Jr., F.P., “Walkthrough - A Dynamic Graphics System for Simulating
Virtual Buildings,” in Proc. Workshop on Interactive 3D Graphics, pp. 9-21,
Chapel Hill, NC, 1986.

Bryson, S., and Levit, C., “The Virtual Wind Tunnel: An Environment for
the Exploration of Three Dimensional Unsteady Flows,” in Proc. Visualiza-
tion ‘91, San Diego, CA, October, 1991.

Bryson, S., and Johan, S., “An Extensible Interactive Visualization Frame-
work for the Virtual Windtunnel,” in Proc. Virtual Reality Annual Interna-
tional Symposium, pp. 106-113, Albuquerque, NM, March 1-5, 1997.

Card, S.K., Moran, T.P., and Newell, A., “The Psychology of Human-
Computer Interaction,” Lawrence Erlbaum Associates, Hillsdale, NJ, 1983.

Cohen, E., Lyche, T., and Riesenfeld, R., “Discrete B-Splines and subdivision
techniques in computer aided geometric design and computer graphics,”
Computer Graphics and Image Processing, Vol 14, Number 2, October, 1980.

Colgate, J.E., and Brown, J.M., “Factors Affecting the Z-Width of a Hap-
tic Display,” in Proc. IEEE 199/ International Conference on Robotics &€
Automation, pp. 3205-10, San Diego, CA, 1995.

CyberTouch, 18-sensor CyberGlove with vibrotactile feedback option from
Immersion Corporation.

[13]

[14]

[15]

[24]

98

Dachille IX, F., Qin, H., Kaufman, A., and El-Sana, J., “Haptic Sculpting
of Dynamic Surfaces,” in Proc. Symposium on Interactive 3D Graphics, pp
103-110, Atlanta, GA, April 26-29, 1999.

Dachille IX, F., Qin, H., and Kaufman, A., “A Novel Haptics-Based Interface
and Sculpting System for Physics-Based Modeling and Design,” in Computer
Aided Design, Vol. 33, No.5, pp. 403-420, April, 2001.

Duan, Y, Hua, J., and Qin, H., “HapticFlow: PDE-based Mesh Editing
with Haptics,” in Proc. International Conference on Computer Animation
and Social Agents, Geneva, Switzerland, July 7-9, 2004.

Durlach, N.I., and Mavor, A.S. Editors, Virtual Reality Scientific And Tech-
nological Challenges, Washington, D.C., National Academy Press, 1995.

Funkhouser, T.A., and Séquin, C.H., “Adaptive Display Algorithm for Inter-

active Frame Rates During Visualization of Complex Virtual Environments,”
in Proc. SIGGRAPH, ACM, pp. 247-254, Anaheim, CA, August, 1993.

Gilbert, E.G., Johnson, D.W., and Keerth, S.S., “A Fast Procedure for
Computing the Distance Between Complex Objects in Three-Dimensional
Space,” in Proc. IEEE Journal of Robotics and Automation, Vol. 4, No. 2,
April, 1988.

Gu, X., Snyder, J., and Gortler, S., “Central Axis for Silhouette Clipping,”
E-Mail Correspondence, September 20, 2000.

Hatvany, J., “Can Computers Compete with Used Envelop?,” in Proc. IFAC
9" Triennial World Congress, pp. 3373-3375, Budapest, Hungary, 1984.

Hua, J., Duan, Y., and Qin, H., “Design and Manipulation of Polygonal
Models in a Haptic, Stereoscopic Virtual Environment,” in Proc. Interna-
tional Conference on Shape Modeling and Applications, pp. 145-154, MIT,
Cambridge, MA, June 15-17, 2005.

Ho, C., Feature-Based Process Planning and Automatic Numerical Control
Part Programming, Ph.D. Thesis, University of Utah, Computer Science
Department, December, 1997.

Hollerbach, J.M., Cohen, E.C., Thompson, W.B., Freier, R., Johnson, D.,
Nahvi, A., Nelson, D., Thompson II, T.V., and Jacobsen, S.C., “Haptic
Interfacing for Virtual Prototyping of Mechanical CAD Designs,” in Proc.

Design for Manufacturing Symposium, ASME, Sacramento, CA, September,
1997.

Hollerbach, J.M., Cohen, E.C., Thompson, W.B., Freier, R., Johnson, D.,
Thompson II, T.V., “Virtual Prototyping for Human-Centric Design,” in
Proc. NSF Design and Manufacturing Research Conference, Vancouver, Jan-
uary, 2000.

[25]

[26]

[27]

28]

32]

[33]

[35]

99

Hong, L., Muraki, S., Kaufman, A., Bartz, D., and He, T., “Virtual Voyage:
Interactive Navigation in the Human Colon,” in Proc. SIGGRAPH, ACM,
pp. 27-34, Los Angeles, CA, August 3-8, 1997.

Jacobsen, S.C., Smith, F.M., Iversen, E.K., and Backman, D.K., “High per-
formance, high dexterity, force reflective teleoperator,” in Proc. 38th Confer-

ence Remote Systems Technology, pp. 180-185, Washington, DC, November,
1990.

Johnson, D.E. and Cohen, E.C., “A Framework For Efficient Minimum
Distance Computations,” in Proc. International Conference on Robotics and
Automation, IEEE, pp. 3678-3684, Leuven, Belgium, May, 1998.

Johnson, D.E. and Cohen, E.C.; “An Improved Method For Haptic Tracing Of
Sculptured Surfaces,” in Proc. Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, ASME, DSC-Vol. 64, pp. 243-248,
Anaheim, CA, November, 1998.

Johnson, D.E., Thompson II, T.V., Kaplan, M., Nelson, D., and Cohen,
E.C., “Painting Textures with a Haptic Interface,” in Virtual Reality ’99, pp.
282-285, Houston, Texas, March 13-17, 1999.

Johnson, D.E., and Willemsen, P., “Accelerated haptic rendering of polygonal
models through local descent,” in Proc. Symposium on Haptic Interfaces for
Virtual Environments and Teleoperator Systems, ASME, pp. 18-23, March
2004.

Johnson, D.E., Willemsen, P., and Cohen, E., “6-DOF Haptic Rendering
Using Spatialized Normal Cone Search,” in Transactions on Visualization
and Computer Graphics, 2005.

Kalawsky, R.S., The Science of Virtual Reality and Virtual Environments,
Addison-Wesley, Cambridge, 1993.

Kim, Y., Otaduy, M., Lin, M.C., and Manocha, D. “Six degree-of-freedom
haptic display using localized contact computations,” in Proc. Symposium on
Haptic Interfaces for Virtual Environments and Teleoperator Systems, ASME,
pp. 209-216, March 2002.

Maekawa, H., and Hollerbach, J.M., “Haptic Display for Object Grasping
and Manipulating in Virtual Environment,” in Proc. IEEE International

Conference Robotics & Automation, pp. 129-134, Leuven, Belgium, May
16-21, 1998.

Marhefka, D.W., and Orin, D.E., “Simulation Of Contact Using A Nonlinear
Damping Model,” in Proc. International Conference on Robotics and Anima-
tion, pp. 1662-1668, Minneapolis, MN, April 1996.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[47]

[48]

100

Mark, W.R., Randolph, S.C., Finch, M., Van Verth, J.M., and Taylor III,
R.M., “Adding Force Feedback to Graphics Systems: Issues and Solutions,”
in Proc. SIGGRAPH, ACM, pp. 447-452, New Orleans, LA, August. 4-9,
1996.

Massie, T.M. and Salisbury, J.K., “The PHANToM Haptic Interface: A
Device for Probing Virtual Objects,” in Proc. Symposium Haptic Interfaces
for Virtual Environment and Teleoperator Systems, DSC-Vol 1, pp. 295-301,
Chicago, 1L, November 6-11, 1994.

McNeely, W., Puterbaugh, K., and Troy, J., “Six degree-offreedom haptic
rendering using voxel sampling,” in Proc. SIGGRAPH, pp. 401-408, Los
Angeles, CA, August 8-13, 1999.

Mine, M., “Virtual Environment Interaction Techniques,” University of North
Carolina Computer Science Technical Report TR95-018, 1995.

Minsky, M., Ouh-Young, M., Steele, M., Brooks, F.P. Jr., Behensky, M.,
“Feeling and Seeing: Issues in Force Display,” in Proc. Symposium on Inter-
active 3D Graphics, pp. 235-243, Snowbird, Utah, 1990.

Nelson, D.D. and Cohen, E.C., “Interactive Mechanical Design Variation for
Haptics and CAD” in Proc. EUROGRAPHICS 1999, September, 1999.

Nelson, D.D., Johnson, D.E., and Cohen, E.C., “Haptic Rendering of Surface-
to-Surface Sculpted Model Interaction,” in Proc. Symposium on Haptic Inter-
faces for Virtual Environment and Teleoperator Systems, ASME, Nashville,
TN, November, 1999.

Otaduy, M.A., and Lin, M.C., “Sensation preserving simplifcation for haptic
rendering,” in Proc. SIGGRAPH, ACM, pp. 543-553, San Diego, CA, July
27-31, 2003.

Piegl, L. and Tiller, W., The NURBS Book, Springer, Berlin, 1995.

Patoglu, V. and Gillespie, B., “Extremal Distance Maintenance for Paramet-
ric Curves and Surfaces,” in Proc. International Conference on Robotics and
Automation, IEEE, pp. 2817-2823, 2002.

Patoglu, V. and Gillespie, B., “Haptic Rendering of Parametric Surfaces using
a Feedback Stabilized Distance Tracking Algorithm,” in Proc. International
Conference on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, IEEE, Vol. 3, pp. 391-399, 2004.

Patoglu, V. and Gillespie, B., “A Closest Point Algorithm for Parametric
Surfaces with Global Uniform Asymptotic Stability,” in Proc. World Haptics
Symposium, Pisa Italy, March 2005.

Pausch, R., Burnatte, T., Brockway, D., and Weiblen, M.E., “Navigation and
Locomotion in Virtual Worlds via Flight into Hand-held Miniatures,” in Proc.
SIGGRAPH, pp. 399-400, Los Angeles, CA, August 6-11, 1995.

[49]

[50]

[51]

[52]

[57]

[58]

101

Pierce, J.S., Forsberg, A., Conway, M.J., Hong, S., Zeleznik, R., and Mine,
M.R., “Image Plane Interaction Techniques in 3D Immersive Environments,”
in Proc. Symposium on Interactive 3D Graphics, pp. 39-43, Providence, RI,
April 27-30, 1997.

Peterson, G.L., “Concurrent Reading While Writing,” ACM Transactions on
Programming Languages and Systems, Vol. 5, No. 1, pp. 46-55, January, 1983.

Poupyrev, 1., Billinghurst, M., Weghorst, S., and Ichikawa, T., “The Go-Go
Interaction Technique: NonOlinear Mapping for Direct Manipulation in VR,”
in Proc. UIST, 1996.

Riesenfeld, R., Cohen, E., Fish, R., Thomas, S., Cobb, E., Barsky, B.,
Schweitzer, D., and Lane, J., “Using the Oslo algorithm as a basis for
CAD/CAM geometric modeling,” in Proc. National Computer Graphics As-
sociation, 1981.

Riesenfeld, R., “Design tools for shaping spline models,” in Mathematical
Methods in Computer Aided Geometric Design, (Edited by T. Lyche and L.
Schumaker), Academic Press, 1989

Riesenfeld, R., “Modeling with NURBS curves and surfaces,” in Fundamental
Developments of Computer Aided Geometric Design, L. Piegl (ed.), Academic
Press, 1993.

Robertson, G.G., Card, S.K., and Mackinly, J.D., “The Cognitive Coproces-
sor Architecture for Interactive User Interface,” in Proc. UIST, pp. 10-18,
November 13-15, 1989.

Ruspini, D.C., Koloarov, K., and Khatib, O., “The Haptic Display of
Complex Graphical Environments,” in Proc. SIGGRAPH, pp. 345-351, Los
Angeles, CA, August 3-8, 1997.

Sachs, E., Roberts, A., and Stoops, D., “3-DRAW: A Tool For Designing 3D
Shapes,“ in IEEE COmputer Graphics and Applications, Vol. 11, pp. 18-24,
November, 1991.

Salisbury, K. and Tarr, C., 1997, “Haptic Rendering of Surfaces Defined
by Implicit Functions,” in Proc. Symposium Haptic Interfaces for Virtual
Environment and Teleoperator Systems, DSC-Vol. 61, pp. 61-67, Dallas, TX,
November 15-21, 1997.

Shaw, C., Green, M., Liang, J., and Sun, Y., “Decoupled Simulation in
Virtual Reality with The MR Toolkit,“ in ACM Transactions on Information
Systems, Vol. 11, No. 3, July, 1993.

Sheridan, T.B., “Supervisory Control of Remote Manipulators, Vehicles,
and Dynamic Processes: Experiments in Command and Display Aiding,”
in Advances in Man-Machine Systems Research, Vol. 1, pp. 49-137, 1984.

[61]

[62]

[69]

[70]

102

Snyder, J., “An Interactive Tool For Placing Curved Surfaces Without Inter-
penetration,” in Proc. SIGGRAPH, pp. 209-218, Los Angeles, CA, August
6-11, 1995.

State, A., Livingston, M.A., Garett, W.F., Hirota, G., Whitton, M.C., Pisano
MD, E.D., and Fuch, H., “Technologies for Augmented Reality Systems:
Realizing Ultrasound-Guided Needle Biopsies,” in Proc. SIGGRAPH, pp.
439-446, New Orleans, LA, August 4-9, 1996.

Stewart, P., Buttolo, P., and Chen, Y., “CAD Data Representations for
Haptic Virtual Prototyping,” in Proc. ASME Design Engineering Technical
Conference, Sacramento, CA, September 14-17, 1997.

Stoakley, R., Conway, M.J., and Pausch. R., “Virtual Reality on a WIM: In-
teractive Worlds in Miniature,” in Proc. CHI 95, ACM, pp.265-272, Denver,
CO, 1995.

Sutherland, I.LE., “A Head-Mounted Three Dimensional Display,” in FJCC,
Thompson Books, Vol. 757, Washington DC, 1968.

Thompson II, T.V., Johnson, D.E., Cohen, E., “Direct Haptic Rendering Of
Sculptured Models,” in Proc. Symposium on Interactive 3D Graphics, pp.
167-176, Providence, RI, April 27-30, 1997.

Thompson II, T.V., Nelson, D.D., Cohen, E., and Hollerbach, J.M., “Ma-
neuverable NURBS Models within a Haptic Virtual Environment,” in Proc.
Symposium Haptic Interfaces for Virtual Environment and Teleoperator Sys-
tems, DSC-Vol. 61, pp. 37-44, ASME, Dallas, TX, November 15-21, 1997.

Thompson II, T.V. and Cohen, E.C.,; “Direct Haptic Rendering Of Com-
plex Trimmed NURBS Models,” in Proc. Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems, ASME, Nashville, TN,
November, 1999.

Yoshikawa, T., Yokokohji, Y., Matsumoto, T., Zheng, X., “Display of Feel
for the Manipulation of Dynamic Virtual Objects,” in Journal of Dynamic
Systems, Measurement, and Control, Vol. 117, December, 1995.

Zilles, C.B., and Salisbury, J.K., “A Constraint-based God-object Method For
Haptic Display,” in Proc. IEE/RSJ International Conference on Intelligent
Robots and Systems, Human Robot Interaction, and Cooperative Robots, Vol
3, pp. 146-151, 1995.

