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Abstract

Our goal in this paper is to leverage traditional strengths from the
geometric design and scientific visualization communities to pro-
duce a tool valuable to both. We present a method for representing
and specifying attribute data across a trivariate NURBS volume.
Some relevant attribute quantities include material composition and
density, optical indices of refraction and dispersion, and data from
medical imaging. The method is independent of the granularity of
the physical geometry, allowing for a decoupling of the resolution
of the carried data from that of the volume. Volume attributes can
be modeled or fit to data.

A method is presented for efficient evaluation of trivariate
NURBS. We incorporate methods for data analysis and visualiza-
tion including isosurface extraction, planar slicing, volume ray trac-
ing, and optical path tracing, all of which are grounded in refine-
ment theory for splines. The applications for these techniques are
diverse, including such fields as optics, fluid dynamics, and medical
visualization.

Keywords: visualization, trivariate volume, isosurfacing, level
sets.

1 Introduction

Volumes have long been important in the fields of scientific and
medical visualization. MRI and CAT scanning devices produce a
3-dimensional photograph of the internal state of a subject. In the
field of fluid dynamics pressure and velocity are spatially varying
quantities whose values are critical to analysis. Likewise, turbidity
and pollutant density play a large role in the simulation of atmo-
spheric optics. The ability to deal with volumetric data is clearly a
requirement.

True volumetric primitives are encountered less frequently in the
field of computer-aided geometric design. Traditionally, boundary
representations have been utilized extensively. This certainly makes
sense for modeling solids having uniform interior. However, recent
advances have led to manufacturing technologies supporting het-
erogeneous materials. For example, there are now machines with
the capability to combine different source materials by percentage.

In the area of optical design, lenses with continuously varying in-
dex of refraction are coming available — so called GRIN (Gradient
Index) lenses. With these advances has come the need to model the
interiors as well as the boundaries of objects. Finally, among the
engineering community, there is often the desire to perform analy-
ses on the products of design. These tests, such as temperature and
stress simulation, generally involve propagation of attributes across
an object’s interior.

Traditionally, volumetric primitives have been grid based. This
has served well among the scientific community, where the data
is often regularly spaced along grid lines. This preference may
change as adaptive 3D scanning technology becomes more com-
mon. Among the geometric design community, NURBS have been
the de factoprimitive of choice. In this article we advocate that a
trivariate NURBS model may well serve the needs of both commu-
nities.

There are many advantages to the model we propose. First, it
decouples geometric representation from attribute representation.
This means that complicated geometries with simple attributes, and
vice versa, may be represented at the resolution that best suits them.
The result may be a large savings in storage and execution time.
Furthermore, noise is an important variable in any visualization in-
volving measured data. NURBS generally provide a robust repre-
sentation for a signal containing moderate noise. Splines are a terse
representation. By this, we mean that compared with polygons, or
higher dimensional analogues such as voxels, splines generally rep-
resent a smooth function with fewer points.

For scientific and medical applications, either shape approximat-
ing or interpolating splines may be used with the attribute data, de-
pending on whether a qualitative or more quantitative approach is
required. From the CAGD perspective, an extended NURBS rep-
resentation means that all of the existing algorithms can be applied
in the new problem domain. We can consider modeling both the
geometry and the attributes carried by the volume. Methods for
visualization for design analysis can be borrowed from the visual-
ization community.

We begin with a review of the existing literature and introduce
our representation in Section 2. Section 3 deals with techniques
for fitting data and modeling shape. Section 4 introduces an effi-
cient method for evaluating trivariates, which is critical for large
data sets. In Section 5, we adapt visualization techniques to our ag-
gregate spline representation. We conclude and give future work in
Section 6.

2 Background

Trivariate NURBS representations have been considered by a num-
ber of researchers. Early, Farouki and Hinds [2] gave a unified ap-
proach to curves, surfaces, and volumes. Lasser [5] explored the
Bernstein-B́ezier volume representation, and extended techniques
for evaluation and interpolation to them. In her thesis, Paik [11]
explored trivariates for modeling, and in particular, modeling oper-
ators, deformations, and animations. Kaufman [4] has combined



modeled objects and measured data within a volume visualiza-
tion system, along with an algorithm for scan converting tricubic
Béziers. Chang, et al. [1] provided a method for rendering volumes
using line of sight integration and compositing, and an attribute vol-
ume representation similar to the one described here. A sculpting
method introduced by Raviv and Elber [13] allows the user to sculpt
a three dimensional object by modifying the scalar coefficients of
a trivariate NURBS equation. Lee and Park [12] introduce an at-
tribute model whose coefficients are generated from fluid flow data.
Finally, Joy and Duchaineau [3] generate a complete representa-
tion for the boundary of a trivariate by unioning the faces with an
implicit equation based on the Jacobian.

2.1 Trivariate Volumes

A non-uniform rational B-spline (NURBS) volume is a mapping
Pw : R3 → P

3 that can be formulated as

Pw(u1, u2, u3) =

N1∑
i1=0

N2∑
i2=0

N3∑
i3=0

Pw
i1,i2,i3Bi1,k1(u1)Bi2,k2(u2)Bi3,k3(u3)

where the superscriptw denotes that our formulation produces a
point in rational four space. The omission of the superscript, as
in P, will denote the function which results from dividingPw by
its rational coordinate, a mappingR3 → R

3. The {Pw
a,b,c} are

the control pointswa,b,c(xa,b,c, ya,b,c, za,b,c, 1) of the(N1 + 1)×
(N2 + 1) × (N3 + 1) mesh, having basis functionsBij ,kj of or-

derskj with knot vectorsτ j = {uj
ij
}Nj+kj

ij=0 for j = 1, 2, 3. For
notational convenience, we may occasionally assign names to the
variables such asu, v, w, where(u, v, w) = (u1, u2, u3).

Such a volume Pw is defined over the domain∏3

j=1
[uj

kj−1,u
j
Nj+1), where we use

∏
to denote the Carte-

sian product. Each non-empty subinterval
∏3

j=1
[uj

ij ,uj
ij+1)

corresponds to a volume fragment.
The partial derivatives ofPw are likewise NURBS. Their con-

trol points are simply scaled differences of adjacent points in the
original control mesh. For example, the control points for∂Pw

∂u1
are

given by

(Du1P
w)i1,i2,i3 =

k1 − 1

u1
i1+k1

− u1
i1+1

(Pw
i1+1,i2,i3 − Pw

i1,i2,i3).

The corresponding derivative volume is then given by

∂Pw

∂u1
(u1, u2, u3) =

N1−1∑
i1=0

N2∑
i2=0

N3∑
i3=0

[(Du1P
w)i1,i2,i3

Bi1+1,k1−1(u1)Bi2,k2(u2)Bi3,k3(u3)] (1)

2.2 Aggregate Data Types

We now provide a representation which incorporates an arbitrary
number of volume attributes. Each volume consists of a geomet-
ric descriptionPw and a set of attribute descriptions{Aw

p }. Each
attribute is represented as an independent trivariate volume

Aw
p (u1, u2, u3) =

Np1∑
i1=0

Np2∑
i2=0

Np3∑
i3=0

Aw
p i1,i2,i3

Bi1,kp1
(u1)Bi2,kp2

(u2)Bi3,kp3
(u3)

Figure 1: Design example using aggregate objects.

All aspects of the representation, e.g. order, dimensions of the
control mesh, and knot vectors, are independent of the geometric
trivariate representation. The only requirement is that all the vol-
umes share the same parametric domain. In our implementation,
we normalize all the domains to the unit cubeI3.

Two advantages of this representation merit mention. First, by
decoupling the representation of the geometry from the attributes,
and likewise, the attributes from one another, each function may
be specified only to its required resolution. As volume data can
be large, the so-called “curse of dimensionality,” this may result
in substantial savings. Furthermore, evaluation times will benefit
for functions which are represented at differing orders (degrees).
The second advantage of this scheme is that a trivariate NURBS
package can be easily extended to include this representation. It
does not increase the dimensionality of the points nor does it slow
down existing routines.

3 Modeling and Data Fitting

Because the attributes themselves are represented as NURBS vol-
umes, they can be modeled using any of the traditional operators.
For example, we can model an attribute curve, extrude it into a sur-
face, and rotate the surface about an axis to obtain a volume. While
this might be useful, it can lead to some non-intuitive results, as the
values of the attributes are contained in the coordinate values of the
resulting objects. It is not immediately clear what meaning those
operations have on the attribute functions.

For the purpose of modeling, we have developed a hierarchy of
aggregate data types. Aggregate curves contain a geometry curve
and an arbitrary number of attribute curves. Similarly, there are ag-
gregate surfaces. At any stage of design, an attribute object may
be combined with a geometric object to form an aggregate object.
Additional attributes may be added to the aggregate data type at any
later stage of design, as well. Once an attribute has been added to
an aggregate data type, it becomes carried data. It can still be edited
explicitly, but the default target of modification becomes the geom-
etry. If the aggregate data type is mapped one level up the hierar-
chy, for example, by extruding the geometry curve into a surface,
the carried attribute data is also generalized to a higher parametric
dimension. By default a ruled object is created from the attribute
objects contained in the original aggregate data types. If the geo-
metric modeling operator only took one aggregate parameter, such
as ruling or rotation about an axis, each attribute object is ruled with
itself. That is, in the absence of additional data, we assume that the
attribute varies only along the original parametric dimensions. If
the mapping is applied to several aggregate objects, the ruling is
applied across the corresponding attribute objects.

Let us consider a brief modeling example. Consider the two
curves in Figure 1. The line on the left corresponds to geometry,
and the curve on the right represents a particular attribute. Here,
they-coordinate contains the relevant attribute data, and it can be
seen that the attribute varies witht in a non-linear way. We form



an aggregate curve from these two curves, and then sweep the ge-
ometry about an axis to obtain a disk. Finally, the disk is extruded
to form a volume. From the previous discussion, it can be stated
that the attribute data varies only radially from the rotation axis in
the resulting volume. If we wish to edit the attribute curve, we can
do so, and because of the dependency graph used by our modeling
environment, all changes will propagate through the structure. Fur-
thermore, we can explicitly request to modify the attribute objects at
any level of the hierarchy. Thus if we want to allow variation along
other parametric axes, we can do that now, in light of the completed
geometric shape. The visualization techniques discussed in Section
5 can provide further information to guide these edits.

The visualization community often produces data by measure-
ment or simulation. In such an instance, data fitting becomes a pri-
mary concern. If the qualitative shape is the most important thing,
then the data points may simply be used as control points in the
trivariate representation. In many cases it is desired that the func-
tional approximation interpolate the data. It is this problem that we
turn to address.

If the data points arecj1,j2,j3 the problem is to find the control
pointsPi1,i2,i3 such that∑

i1,i2,i3

Pi1,i2,i3Bi1(ũ
1
j1)Bi2(ũ

2
j2)Bi3(ũ

3
j3) = cj1,j2,j3

whereũ1
j1 , ũ2

j2 , ũ3
j3 are particular parameter values that correspond

to the region of maximum influence forPj1,j2,j3 , callednodal val-
uesor Greville abscissas. The nodal values inu1 for knot vector
τ1 = {u1

j} are given by

ũ1
i1 =

1

k1 − 1

k1−1∑
j=1

u1
i1+j

There are analogous formulations forũ2
i2 andũ3

i3 .
In similar fashion to [12], we make the following definitions. Let

Pi2,i3(ũ
1
j1) ≡

N1∑
i1=0

Pi1,i2,i3Bi1,k1(ũ
1
j1) (2)

Pi3(ũ
1
j1 , ũ2

j2) ≡
N2∑

i2=0

Pi2,i3(ũ
1
j1)Bi2,k2(ũ

2
j2) (3)

Thus, we have

N3∑
i3=0

Pi3(ũ
1
j1 , ũ2

j2)Bi3,k3(ũ
3
j3) = cj1,j2,j3

For each fixedj1, j2 pair, we can solveN3+1 equations forN3+1
unknowns to get{Pi3(ũ

1
j1 , ũ2

j2)}. Likewise, for each fixedi3, j1
pair, we can solve (3) for{Pi2,i3(ũ

1
j1)}. Finally, for eachi2, i3,

we can solve (2) for{Pi1,i2,i3}, thereby solving the interpolation
problem.

Modeling and data fitting can certainly be combined. For exam-
ple, suppose the object in Figure 1 represents a lens, with radially
varying index of refraction. The attribute curve could have been
generated by the data fitting technique discussed above. By import-
ing the curve into our modeling program, it can now be used as a
primitive for lens design.

4 Evaluation

Efficient evaluation schemes are critical to the success of any data
representation — ever more so as the size of the dataset increases.

In this section, we present a rapid evaluation scheme based in re-
finement.

We evaluate a curvec(t) with orderk and knot vectorτ by using
refinement to stackk − 1 knots (wherek is the order of the curve)
at the desired parameter valuet∗. The refined curve is defined over
a new knot vectort = {ti} with basis functionsNi,k(t) and new
control pointsωiDi.

Let t∗ ∈ [tµ, tµ+1). Then,

c(t∗) = Dµ−k+1

c′(t∗) =
(k − 1)ωµ−k+2

(tµ+1 − t∗)ωµ−k+1
[Dµ−k+2 − Dµ−k+1] (4)

(see [8]).
Analogously, in order to evaluate a trivariate volumeP having

knot vectorsτu, τv, τw and ordersku, kv, kw we stackku − 1 ,
kv − 1, andkw − 1 knots valuedu∗, v∗ andw∗. If, with regard to
the new knot vectors,u∗ ∈ [uµu , uµu+1), v∗ ∈ [vµv , vµv+1) and
w∗ ∈ [wµw , wµw+1), then

P(u∗, v∗, w∗) = Dµu−ku+1,µv−kv+1,µw−kw+1 (5)

and

Pu(u∗, v∗, w∗) = (6)

(ku − 1)ωµu−ku+2,µv−kv+1,µw−kw+1

(uµu+1 − u∗)ωµu−ku+1,µv−kv+1,µw−kw+1

[Dµu−ku+2,µv−kv+1,µw−kw+1 −
Dµu−ku+1,µv−kv+1,µw−kw+1]

Pv(u∗, v∗, w∗) =

(kv − 1)ωµu−ku+1,µv−kv+2,µw−kw+1

(vµv+1 − v∗)ωµu−ku+1,µv−kv+1,µw−kw+1

[Dµu−ku+1,µv−kv+2,µw−kw+1 −
Dµu−ku+1,µv−kv+1,µw−kw+1]

Pw(u∗, v∗, w∗) =

(kw − 1)ωµu−ku+1,µv−kv+1,µw−kw+2

(wµw+1 − w∗)ωµu−ku+1,µv−kv+1,µw−kw+1

[Dµu−ku+1,µv−kv+1,µw−kw+2 −
Dµu−ku+1,µv−kv+1,µw−kw+1]

In order to perform these evaluations, we must first generate the
refinement matrices which map the old control points into the new
ones. For curves, the refinement problem can be written asD =
AuP, and for surfacesD = AuPAT

v . However, as the parametric
dimensionality increases, this type of notation no longer suffices.
We introduce a new notation which generalizes to any number of
parametric dimensions.

We define the operator⊗k such that

D = A⊗kC ≡ (D)c0,c1,...,ck−1,i,ck+1,...cM =∑
j

(A)i,j(C)c0,c1,...,ck−1,j,ck+1,...cM

For curves, then

D0 = Au⊗0C ≡ (D0)i =
∑

j

(Au)i,j(C)j = AuC



α’ µ’ ,0

α’ µ’ −1,1 α’ µ’ ,1

α’ µ’ −2,2 α’ µ’ −1,2 α’ µ’ ,2

... ... ......

α’ µ’ −ν,ν α’ µ’ −ν+1,ν α’ µ’ −1,ν α’ µ’ ,ν...

1−γµ’ ,0 γµ’ ,0

Figure 2: Graph showing how the factorγµ′,0 propagates through
the recurrence.

Likewise, for surfaces

D1,0 = Av⊗1(Au⊗0C)

= Av⊗1D0

= (D1,0)i,j ≡
∑

l

(Av)j,l(D
0)i,l

= D0AT
v

= AuCAT
v

which is what would be expected. The operator generalizes ton
dimensions. For trivariates, the evaluation refinement given at the
beginning of this section can then be denoted

Aw⊗2(Av⊗1(Au⊗0Pw))

Returning to the curve case (4), we are not interested in calcu-
lating the full alpha matrixA, but merely rowsµ − k + 2 and
µ − k + 1, as these are used to generate the pointsDω

µ−k+2 and
Dω

µ−k+1 which are required for point and derivative evaluation.
Supposet∗ ∈ [τµ′ , τµ′+1). We can generate the refinement for

row µ + k − 1 using a triangular scheme

α′
µ′,0

α′
µ′−1,1 α′

µ′,1
...

...
α′

µ′−ν,ν · · · α′
µ′,ν

whereν is the number of knots we are inserting and

α′
j,1 = δj,µ′

α′
j,p+1 = γj,pα′

j,p + (1 − γj+1,p)α
′
j+1,p

γj,p = (t∗ − τµ′−p+j−(k−1−ν))/d

Aµ−k+1,j = α′
j,ν for j = µ′ − ν, · · · , µ′ andAi,j = 0 otherwise.

If n knots exist in the original knot vectorτ with value t∗, then
ν = max{k − 1 − n, 1} — that is to say, we always insert at least
1 knot. The quantityν is used in the triangular scheme above to
allow one to skip those basis functions which are trivially 0 or 1
due to repeated knots. As a result of this triangular scheme, we
generate basis functions in place and avoid redundant computation
of α′ values for subsequent levels.

In the refinement scheme we propose, the point on the curve
Dω

µ−k+1 will be a convex blend of the pointsDω
µ−k andDω

µ−k+2.
The blend factor will beγµ′,0. The dependency graph shown in
Figure 2 will help to clarify. The factorγµ′,0 is introduced at the
first level of the recurrence. The leaf terms can be written as

α′
j,ν = (1 − γµ′,0)lj,ν + γµ′,0rj,ν

with j = µ′ − ν, · · · , µ′. {lj,ν} and{rj,ν} are those terms de-
pendent onα′

µ−1,1 andα′
µ,1 respectively. They are the elements of

Figure 3:Planar cut.

the alpha matrix rowsµ − k andµ − k + 2 with Aµ−k,j = lj,ν

andAµ−k+2,j = rj,ν for j = µ′ − ν, · · · , µ′. We can generate the
{lj,ν} by settingα′

µ′−1,1 = 1 andα′
µ′,1 = 0 and likewise, generate

{rj,ν} by settingα′
µ′−1,1 = 0 andα′

µ′,1 = 1. Thus,Aµ−k,j and
Aµ−k+2,j can be generated in the course of generatingAµ−k+1,j

at little additional expense.
To produce the desired points for (5) we only need to evaluate

Dω
µu−ku+1,µv−kv+1,µw−kw+1 =

(Au)µu+ku+1,[µ′
u−νu...µ′

u]⊗0

(Av)µv+kv+1,[µ′
v−νv...µ′

v ]⊗1

(Aw)µw+kw+1,[µ′
w−νw...µ′

w]⊗2

Pw
[µ′

u−νu...µ′
u][µ′

v−νv...µ′
v][µ′

w−νw...µ′
w]

To calculate (7), we substitute(Au)µu+ku+2,[µ′
u−νu...µ′

u]

for (Au)µu+ku+1,[µ′
u−νu...µ′

u] in the above expression
to obtain Dω

µu−ku+2,µv−kv+1,µv−kv+1, and similarly for
Dω

µu−ku+1,µv−kv+2,µv−kv+1 andDω
µu−ku+1,µv−kv+1,µv−kv+2.

This can be made quite efficient.

5 Visualization Techniques

5.1 Isosurfacing and Slicing

In this section we provide a unified approach to two common meth-
ods of data visualization. An isosurface with respect to a data at-
tributeAp is the set of points within the volume having a particular
value forAp. The display of isosurfaces within a volume gives
useful information about the variation ofAp. Another visualiza-
tion technique is to create a planar slice of the volume, and color
code it according to a given attribute (see Figure 3).

The isosurfacing problem can be formalized as finding the set of
points which obey the equation

Ap(u) =

∑
i1,i2,i3

wpi1,i2,i3
Api1,i2,i3

Bi1,i2,i3(u1, u2, u3)∑
i1,i2,i3

wpi1,i2,i3
Bi1,i2,i3(u1, u2, u3)

= A∗

=

∑
i1,i2,i3

wpi1,i2,i3
A∗Bi1,i2,i3(u1, u2, u3)∑

i1,i2,i3
wpi1,i2,i3

Bi1,i2,i3(u1, u2, u3)

Thus,

0 =

∑
i1,i2,i3

wpi1,i2,i3
(Api1,i2,i3

− A∗)Bi1,i2,i3(u)∑
i1,i2,i3

wpi1,i2,i3
Bi1,i2,i3(u)

=
∑

i1,i2,i3

wpi1,i2,i3
(Api1,i2,i3

− A∗)Bi1,i2,i3(u)



If all the weightswpi1,i2,i3
are positive, then for a root to be pos-

sible on an intervalI, the bounding box of the associated control
points must contain the origin. In the case of scalarA∗, this means
that the difference(Api1,i2,i3

− A∗) must change signs.
If we are given a planep = {x : (a, b, c, d) · (x, 1) = 0}, then

the points inPw which are sliced byp are given by

0 =

∑
i1,i2,i3

wi1,i2,i3(Pi1,i2,i3 · (a, b, c, d))Bi1,i2,i3(u)∑
i1,i2,i3

wi1,i2,i3Bi1,i2,i3(u)

=
∑

i1,i2,i3

(wi1,i2,i3Pi1,i2,i3) · (a, b, c, d)Bi1,i2,i3(u)

In both the case of isosurfacing and planar slicing, we are left
with the problem of finding the zeros of a trivariate spline having
the form

D(u1, u2, u3) =
∑

i1,i2,i3

Di1,i2,i3Bi1,i2,i3(u1, u2, u3).

To solve the problem, we first break theD into Bézier volumes and
place these into a search list. For each element in the list, we test
whether the control points are within an epsilon box of zero. If so,
this volume is added to the root list. If not, we test whether the
bounding box of the points contains the origin. If the answer is yes,
the volume is subdivided and the resulting volumes are appended
to the list. On the other hand, if the answer is no, the volume is
discarded. This procedure continues until no further volumes are in
the search list.

The result of the outlined procedure is a list of volumes which
contain the roots ofD. We now have to refinePw at the interval
values which describe the domains for the volumes in the root list.
The resulting geometric volumes may need to be further refined ac-
cording to a flatness criterion. A polygonal approximation can then
be displayed. In the case of planar slicing, the resulting polygons
may be colored according to the average isovalue in each volume.

5.2 Tracing Rays

It is a common technique to map scalar values to colors and visual-
ize volumetric data by passing rays through it. Mathematically, this
operation can be formulated as the calculation∫ tb

ta

α(o + td)C(o + td)dt,

whereα(x) andC(x) are the accumulated opacity and color values
corresponding the attributes at the pointx, andta, tb are the entry
and exit points of the rayo + td with the volumeP(u, v, w). It is
clear that under energy conservation,α(x) ≤ 1. In this section, we
provide the machinery for ray tracing volumetric splines.

A trivariate splineP(u, v, w) is a mapping from the rectangular
cell Iu × Iv × Iw to R3. The faces of the domain cell,∂Iu ×
Iv × Iw, Iu × ∂Iv × Iw, andIu × Iv × ∂Iw map to surfaces
in R3. These surfaces necessarily bound a closed volume, as they
share boundaries and are collectively equivalent topologically to a
cube. However, as shown in [3], the faces need not enclose the same
volume as does∂P(u, v, w).

Theorem 1 Given a rectangular cellB = [ua, ub] × [va, vb] ×
[wa, wb] and a trivariate B-spline functionP(u, v, w) defined over
B, the surface boundary of the solidP is contained within the union
of the faces of the solid overB and the points where the determinant
of the Jacobian ofP overB vanishes.

θ

C

Figure 4:A bounding cone.

This theorem was first brought to our attention in [3] and a proof
can be found in [10].

To trace a ray through the volumeP, we first wish to find the
closest point at which the rayo+ td contacts the boundary surface
∂P. If a ray is defined as the intersection of two planesp1,p2,
wherepl = {x : (al, bl, cl, dl) · (x, 1) = 0}, l = 1, 2, then a ray
intersecting∂P will satisfy at least one of the following relations:

Fk(s, t) · (al, bl, cl, dl) = 0, for l = 1, 2 (7)

or

P(u, v, w) · (al, bl, cl, dl) = 0, for l = 1, 2 (8)

JP(u, v, w) = 0

whereFk, k = 1..6 are the faces ofP andJP is the determi-
nant of the Jacobian matrix forP. This is simply a restatement of
Theorem 1.

As formulas (7) and (8) are implicit equations, we can apply
Newton’s method to find the roots, and therefore, the intersection
of the ray with∂P, provided we have a good initial guess. With
each face, we generate and store a bounding volume hierarchy using
subdivision according to a flatness criteria. This is a preprocessing
step. See [8] for a detailed discussion. Boxes which do not intersect
the ray are culled, and we apply a Newton’s method to (7) using the
starting value associated with each of the remaining boxes.

To handle implicit boundaries (8), we store with each volumeP
a bounding hierarchy obtained by subdividingP until each piece is
within a maximum volume tolerance. We cull those boxes whose
volumes cannot contain a zero Jacobian determinant according to
the following method due to [3].

A cone is determined by a normalized axis vectorĈ and a spread
angleθ (Figure 4). In what follows, a “̂”, as in v̂, will denote the
normalized form of a vector. Given a set of vectors{vi}, we can
fit a bounding cone to them using the following algorithm due to
[14]. SetĈ0 = v0/||v0||, andθ0 = 0. For each subsequent vector
vi, the angleα betweenvi andĈi−1 is given byα = cos−1(v̂i ·
Ĉi−1). For α ≤ θi−1, Ĉi = Ĉi−1, θi = θi−1. Otherwise, we
compute an intermediate vectorvt

vt =

{
vi−1, if θi−1 = 0

cot θi−1 sin αĈi−1 − v̂i, otherwise.

We have that

Ĉi = v̂i+v̂t
||v̂i+̂vt|| , cos θi = Ĉi · v̂t

We extend the dot product and cross product operators to cones
in the following way. Given two conesC1, C2, C1 ·C2 is the range
of scalar product values for vectors bounded byC1 andC2. Anal-
ogously,C1 × C2 is the coneC3 which bounds the cross-products



Figure 5:Ray paths through medium with varying refractive index.

of vectors bounded byC1 andC2. A conservative estimate of the
cross product is accomplished by crossing the cone axes, and cal-
culating the spread angleθ3 via:

θ3 = sin−1

(√
sin2 θ1 + 2 sin θ1 sin θ2 cos β + sin2 θ2

sin β

)

whereβ is the smaller of the angles between the two cone axes [14].
We know that the partial derivatives of a NURBS volumePw

are again NURBS volumes (1). Consider the conesCu, Cv, Cw

which bound the homogenized (R3) control points(DuP)i1,i2,i3 ,
(DvP)i1,i2,i3 , (DwP)i1,i2,i3 , respectively, of the derivative vol-
umes. By virtue of the convex hull property, we have that

J (P) ≡ DuP · (DvP ×DwP) ⊆ L(Cu · (Cv × Cw)),

whereL is an interval of positive values [3]. This implies that
JP 6= 0 in the given volume if0 6∈ Cu · (Cv × Cw). We can
remove bounding boxes containing such volumes from considera-
tion. As before, we can also cull those boxes which the ray does not
intersect, and apply the Newton iteration to (8) using the start (e.g.,
average parameter) values stored in the remaining boxes.

The result will be a list of points where the rayp0 + v0t in-
tersects∂P. For each volume there should be a pair of points: an
entry and an exit point. Let the point closest to the ray origin have
coordinatesu1, p1, whereu1 = (u1, u2, u3)

T
1 . We evaluate the

attribute data at the pointu1, and obtain an opacityα1 and a color
C1. The accumulated colorCacc = α1 ∗C1 and the accumulated
opacityαacc = 1 − α1.

Now we begin to traverse the volume. Starting fromp1 and trav-
eling a small distance∆t along the vectorv1, we arrive at the point
p∗. Sincep∗ is close top1, we are justified in the approxima-
tion p∗ − p1 ≈ JP(u1)(u∗ − u1), whereJP(u) is the Jacobian
matrix, uk = (u1, u2, u3)

T
k and we know(u1, u2, u3)

T
1 from the

previous Newton iteration. This leads to the Newton iteration

[JP(uk)]−1(p∗ − P(uk)) + uk = uk+1 (9)

Note that the functionsP and JP lack the superscriptω. This
denotes a projection intoR3. P(uk) is found by dividing
Pω(uk) by its rational coordinate. In similar fashionJP(uk) =
[Pu(uk) Pv(uk) Pw(uk)] is found by computingPω

u(uk),
Pω

v(uk), andPω
w(uk) and homogenizing each.

From (9) we obtainu∗, which we can again use to calculate
the attribute data and corresponding color and opacity functions,
C2 andα2. We increment the accumulated colors and opacities
Cacc = Cacc + αacc ∗ α2 ∗ C2 andαacc = αacc ∗ (1 − α2).

This process is repeated until the ray exits the volume. The color
of the ray can be written asCacc =

∑∞
i=1

αiCi

∏i−1

j=1
(1 − αj).

5.3 Optical Path Tracing

An application that sometimes occurs in optics is the desire to trace
the path of a ray which is perturbed by a spatially varying refrac-
tive index. Some example applications are visualizing atmospheric

effects such as thermal clines near the ground, metropolitan pollu-
tion, atmospheric perspective, and cutting-edge optical lenses such
as GRIN (gradient index of refraction) lenses. The attribute data
for such a volume would include a model of the refractive index,
η(u, v, w), at each point of its interior.

The well-known Snell’s law formula at the interface between dis-
crete media isη0 sin θ0 = η1 sin θ1, whereθ0, θ1 are measured
between the normal and the ray. The formula also holds true in a
volume with a varying refractive index. The interface in the dis-
crete formula corresponds to the isosurface with constantη in the
volume. A ray with directionv is perturbed with respect to the nor-
maln of the isosurface which it contacts. Since this normal will by
necessity point in the direction of maximum change inη, n = ∇η.
It follows that the path of a ray will in general trace a curved path
through a medium with continuously varying refractive index.

The gradient∇η is given by(∂η/∂x, ∂η/∂y, ∂η/∂z). By the
chain rule, we have that(

∂η/∂u
∂η/∂v
∂η/∂w

)
=

(
∂x/∂u ∂y/∂u ∂z/∂u
∂x/∂v ∂y/∂v ∂z/∂v
∂x/∂w ∂y/∂w ∂z/∂w

)(
∂η/∂x
∂η/∂y
∂η/∂z

)

yielding that

∇η = (JPT )−1(∂η/∂u, ∂η/∂v, ∂η/∂w)T . (10)

The method described in section 5.2 may be modified as follows.
We calculate the intersection of the rayp0 + tv0 with the boundary
of the volume∂P, yielding pointsu1 andp1. We evaluateη and
n1 = ∇η atu1 to generate a new ray directionv1. n1 is reflected,
if necessary, so thatn1 · v0 < 0. It must be the case thatv1 is in
the plane containingv0 andn1. We can generate a vector tangent
to the isosurfacet1 = n1 × (v0 × n1). As a byproduct of this
computation, we obtainsin(θ0) = ||v0 × n1||. The angle between
−n1 andv1 is given byθ1 = arcsin(η0 sin(θ0)/η1), whereη0 is 1
for air. The outgoing ray direction is then given byv1 = sin θ1t1+
cos θ1n1. We walk a distance∆t as before, determining pointsu2,
p2, and the perturbation is calculated using theη1, η2 = η(u2),
andn2 = ∇η(u2). Note that in the process of calculating (9), we
have calculated the Jacobian needed for (10).

As a final note, the stepsize∆t can be made to depend on the
gradient∇η. The larger the gradient magnitude, the shorter the
distance we can cover without missing something.

5.4 Summary of Ray Tracing

For clarity, we summarize with an algorithm:
TraceRay ( Environment env, Ray r, Color C)

loop
for each Volume vol in envdo

IntersectBoundary(r,vol,hitlist)
end for
if hitlist = NULL then

return
end if
vol = hitlist.closest
uv = r.hit.uv
p = r.hit.p
n = r.hit.normal
while p∈ vol do

r.o = p
PerturbRayDirection(r,vol,uv)
ComputeColor(C,vol,uv)
p = r.o + ∆t * r.v
CalcParametricPoint(r.o,p,uv)

end while
r.o = p
PerturbRayDirection(r,vol,uv)

end loop



6 Conclusion and Future Work

This paper has introduced a framework for representing attribute
data orthogonally to geometric data within a trivariate NURBS vol-
ume. It extends existing modeling and data fitting techniques to this
new representation and presents an efficient algorithm for volume
evaluation. In addition, we have incorporated techniques for data
visualization such as planar slicing, isosurfacing, ray tracing, and
optical path tracing which may serve as invaluable aids to compos-
ite design or data analysis.

From the modeling standpoint, there is much yet to be done.
Tensor-product surfaces are a deformation of a rectangle, and there-
fore limited topologically. In the past, trimming curves have pro-
vided added flexibility to surface design. In the case of volumes,
the problem is decidedly harder, and a practical solution is not yet
known. The scheme we prescribe generalizes in a straight-forward
manner to subdivision surfaces. On the other hand, greater flexibil-
ity leads to a reduction in performance.

Splines lend themselves to multi-resolution methods. For exam-
ple, modeling can be expedited if changes are made from coarse to
fine. As another example, evaluations often only need to be made
within a given error tolerance, opening the door to potential savings.
We suspect further exploration of these traits will prove fruitful.
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