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Abstract. It is frequently necessary to complete the design of a
surface from a specification of its boundary. This paper introduces a
technique for completing the surface when the boundary is described
by a non-self-intersecting, closed, planar, B-spline curve. The mapping
produces a tensor product B-spline surface whose outer boundary is
the input curve, and whose parameterization generalizes the polar
parameterization of the disc.

§1. Introduction

In this paper we propose a new operator for generating a planar sur-
face from a closed, non-self-intersecting piecewise polynomial boundary in
the plane. We consider this approach to be a novel step towards the larger
goal of surface completion from a free form curve boundary. This is a com-
mon problem arising in geometric modeling. Examples include “capping”
extrusions and filling holes where adjacent patches come together. Holes
also commonly occur in scanned datasets. There are many applications
where such models must be made “watertight”.

Given the importance of the problem, a number of methods have
been proposed for surface completion. Rather than attempt to warp a
rectangular uv domain to an irregularly shaped region, a common ap-
proach is to employ tensor product surfaces whose parameter domains are
further restricted by trimming curves. Generally, the boundary must be
densely sampled to accurately represent this subset and the parameteriza-
tion originally associated with the boundary curve is lost. Moreover, the
representation does not lend itself easily to further modeling operations.

Several methods have been introduced for hole-filling (e.g., [1]). Often
these techniques do not address the parameterization of the filled region.
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Fig. 1. Motivating examples for our work.

When the parameterization is addressed, it is often piecemeal, composed
of a series of adjacent parametric patches.

Finally, there are a number of classic works on completing a surface
from a series of bounding curves [2,4,6,8]. This work is most closely related
to the algorithm we will develop. However, in contrast to our approach,
these techniques generally assume the boundary can be naturally decom-
posed into n-faces, which can in turn be blended together. For example,
schemes have been developed to complete a surface from 3, 4, 5, and 6-
sided areas. There are many commonly occurring curve examples that do
not easily admit such a decomposition (see Figure 1). Another drawback
is that many techniques are tailored for a certain “sided-ness”. Finally,
the parameterization, when it is developed, is not always a straightforward
mapping from a rectangular domain.

Fig. 2. Moving curves and a problem with offsets.

The starting point for surface completion algorithms is a description
of the boundary. Therefore, an intuitive approach to completion is a
parameterization that starts on the boundary and works its way inward
(see Figure 2). This idea is evocative of offset curves. Take the sequence
of curves generated by successively moving each point on the curve a fixed
distance in the direction of its normal. The union of such a sequence can
be used to parameterize the interior of the boundary. However, this type of
completion has a problem in that all points do not generally come together
simultaneously. Thus, as seen in Figure 2, portions of the offsets will begin
to cross and must be clipped to avoid singularities in the parameterization.
This results in a complex parameterization. Another possible technique is
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to use variable offsets. The problem now becomes how to choose the offset
distances. This paper offers a solution — concentric parameterization.

A related technique that does not have the crossing problem is based
on level set methods [7]. However, these methods are grid-based and do
not produce parameterizations. Our technique uses parametric functions
and therefore has straightforward application in most commonly used ge-
ometric modeling systems.
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Fig. 3. The inspiration for the our parameterization.

Our parameterization is inspired by the standard (r, θ) parameteri-
zation of the disc. Such a surface parameterization respects the param-
eterization of the outer circle which is its boundary (see Figure 3). One
parameter can be seen as traversing the boundary, whereas the other se-
lects the successive scalings of the boundary which work their way to the
center. The main goal of this paper is to find a method of surface comple-
tion which simulates this (r, θ)-type relationship while assuring that the
successive offsets meet simultaneously (see Figure 3, rightmost).

The medial axis is the natural generalization of the circle’s centerpoint
to objects with more complex boundaries. The medial axis of a figure is
defined to be the locus of the centers of all maximal inscribed circles.
Such a circle will touch the boundary at at least 2 points. Since there is
a corresponding point on the medial axis for each boundary point, it is
natural to consider the trivial surface completion operator

(1 − t)γ(s) + tMA(γ(s))

where γ(s) is a point on the boundary curve, and MA(γ(s)) maps this
point to the medial axis. The left frame of Figure 4 shows this mapping
applied to a rectangle, and the middle panel shows the resulting surface
parameterization.

Fig. 4. Weaknesses in a direct medial mapping.
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This parameterization is subject to a considerable distortion — in
particular, every isoline (s, t0) travels through the corners (Figure 4, mid-
dle). This certainly does not capture the intuitive notion of a disc-like
parameterization. Another problem is that MA is not always a function.
A concave vertex, for example, maps to an entire curve segment along the
medial axis (Figure 4, right).

§3. The Concentric Parameterization

Seam

Concave Vertex

Sheet

Branch Point

Junction

Fig. 5. Nomenclature review; regions formed by the medial axis.

Figure 5 contains a brief review of nomenclature. The medial axis
can be divided into roughly two types of curves. Sheets are portions of
the medial axis that do not touch the boundary. They are joined to the
boundary (and in particular to the convex points) by the seams. It was the
inclusion of these seams in the surface completion that led to the severe
distortions of Figure 4. Our new mapping projects solely to the sheet,
using the seams to guide the contraction.

§3.1 Polygonal boundary

Let us first consider the case of a polygonal boundary. The right panel of
Figure 5 illustrates that the medial axis divides the polygon into regions.
Each region is bounded by two seams, a portion of the boundary curve,
and a portion of the sheet (which can degenerate to a point). Each point
contained in a region is closer to its boundary and sheet segment than
it is to any of the other boundary or sheet segments. In particular, the
boundary segment is closer to the part of the sheet bounding its region
than it is to any other part of the sheet. (Similar observations have been
made by [3]). Thus it is natural to consider a mapping of each region
boundary onto its corresponding sheet segment. Our contraction is based
on a particular approximation to the sheet:

Definition 1. The concentric axis of a polygon is a piecewise linear ap-
proximation to the medial axis sheet whose vertices, termed concentric
vertices satisfy the following two properties:
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a) every vertex of the polygon corresponds to a concentric vertex and
b) every concentric vertex has a corresponding vertex on the boundary

polygon of each region it borders.

If condition b) is not satisfied, the surface completion may contain
holes [3]. The set of concentric vertices will include the junction and
branch points (Figure 5). The convex vertices naturally map to the junc-
tion points of the medial axis. To fully satisfy condition a), we must find
a mapping of the concave boundary vertices onto the medial axis. Con-
sidering the right pane of Figure 4, it is reasonable to select any point in
the range of MA corresponding the concave vertex as an addition to the
concentric axis. If there are preexisting concentric vertices in this range,
we may select the closest one to simplify the next step (see Figure 8(4-5)).

We now form a curve from the concentric axis; this curve will be
blended with the boundary curve to complete the surface.

Definition 2. The concentric control polygon or more simply concentric
polygon is a sequence of concentric vertices determined by traversing the
boundary polygon in the direction of increasing parametric value, and
inserting the concentric vertex corresponding to each boundary point en-
countered.

Definition 3. A concentric curve is a piecewise linear B-spline defined by
a concentric control polygon and a corresponding knot vector (termed the
concentric knot vector).

We want to preserve the original parameterization of the boundary
curve as an isoparametric direction in the surface completion. Since even
the case of a polygonal boundary admits a non-uniform parameterization,
we assume that there is a knot vector associated with the boundary. Each
vertex of the boundary therefore has an associated parameter, which is
used to assign parameters to the corresponding concentric vertices, and
form a knot vector for the concentric curve.

In order to satisfy condition b) of Definition 1, it is necessary to
ensure that each concentric vertex has a boundary vertex correspondence
for each region it borders. If a boundary correspondence is lacking, one
will be inserted as follows. Because we have imbued the concentric curve
with a parameterization we can approximate the parameter value of the
concentric vertex for this region, and add this value to the concentric knot
vector. We add the concentric vertex to the corresponding location in the
concentric polygon. When we bring the boundary curve and concentric
curve into the same spline space for the final blend, the refinement will
find the boundary correspondence automatically. The mapping based on
this blend is demonstrated for a rectangle in Figure 6. Other examples
are shown in the left panes of Figures 9, 10, 12, and 13.
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Fig. 6. Parameterization of the rectangle which results from our mapping.

§3.2 Generalization to higher order curves

Direct application of this technique to arbitrary curves is somewhat
difficult. One wishes to perform the sort of contraction introduced above
on a finite number of points, but one also generally wants to avoid discretiz-
ing the curve. The B-spline representation provides a tractable solution to
this problem. Because the B-splines are a) defined by a control polygon,
b) possess the convex hull property with respect to the control polygon
and c) are variation diminishing with respect to the control polygon, the
contraction of the boundary control polygon onto its concentric polygon
implies a mapping of the boundary curve to the concentric curve. Since
the boundary control polygon converges to the boundary curve under re-
finement, the medial axis of the control polygon will converge to that of
the boundary curve in the limit. Hence, the technique of the previous sec-
tion provides a good approximation to the continuous case with sufficient
refinement. The quality of the parameterization is largely dependent on
how well the boundary control polygon approximates the boundary curve.

1) Assign a parameterization to the boundary vertices using the nodal values
(Greville abscissas) of the spline space (Fig. 8(2)).

2) Calculate the medial axis of the control polygon (Fig. 8(3)).
3) For each concave vertex, insert a concentric vertex (Fig. 8(4-5)).
4) Form the concentric axis control polygon: for each boundary vertex, find

the closest concentric vertex along the seam, and add it to the concen-
tric axis. Add the associated parameter (nodal value from step 1) to the
concentric knot vector (Fig. 8(6-12)).

5) For each region, if there are internal concentric vertices, insert them at the
appropriate place in the concentric control polygon. Calculate the inter-
polated parameter value, and add it to the concentric knot vector (Fig.
8(13-14)).

6) Degree raise the concentric linear B-spline to match the degree of the
boundary.

7) Refine the boundary and concentric curves using the union of their knot
values.

8) Form the sweep surface (Fig. 8(15)).

Fig. 7. Basic concentric completion algorithm.

The concentric completion algorithm for curves is an extension of the
algorithm for polygons. The method of determining the parameterization
of the concentric curve is a straightforward generalization. We associate
with each boundary vertex the nodal value of its associated B-spline basis
function. This is the parameter where, to first approximation, its influence
is greatest. We summarize the concentric algorithm in Figure 7. Figure
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8 demonstrates the algorithm on a simple, uniform, cubic curve (Figure
8(1)).
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Fig. 8. The concentric completion algorithm, illustrated.
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Fig. 9. Our algorithm applied to a simple convex curve (degrees 1 and 3).

Figure 10 shows a simple case where using the concentric axis of
the boundary control polygon fails, because this approximate skeleton
crosses the boundary curve. This example violates our assumption that
the boundary control polygon is a good approximation to the shape of
the underlying curve. However, we can detect cases where the concentric
curve crosses the boundary curve rather easily. We simply test each con-
centric polygon edge for crossings. One way to do this is to cast a ray
along each edge. If there is an intersection with the boundary curve be-
tween the endpoints of the segment, then the concentric axis is not valid.
We note that for low order curves, this intersection can be accomplished
analytically. A similar method can be used to determine the quality of
the approximation by calculating distance to the boundary curve [5].

Fig. 10. An example where the basic algorithm fails (degrees 1 and 3).

If the concentric axis approximation is found inadequate, one option
is to refine the boundary control polygon, and restart the concentric algo-
rithm. However we want to avoid an unnecessary explosion in the number
of surface control points. An alternative is to move the concentric curve
until it is seated within the boundary curve. It is sometimes possible to do
this by calculating the medial axis of the refined control polygon and mov-
ing the concentric axis into alignment. When successful, this can eliminate
the need for additional control points. This technique was used in Figure
11 and the right frames of Figure 13. These figures also demonstrate the
tradeoff in the approximation quality and the number of control points.
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Fig. 11. Moving the coarse concentric axis to its refined position.

§4. Conclusions

We have presented a technique for completing a surface from a non-self-
intersecting, closed, planar B-spline curve. Figures 12 and 13 demon-
strate the algorithm on some more complicated curves. Our method
has produced reasonable parameterizations of a variety of complex figures
where existing completion techniques would fail or experience difficulty.
Presently we pursue a generalization of the technique to non-planar bound-
ary curves and methods for accommodating further modeling operations
involving the boundary and the completed surface. The present technique
is not ideal for boundaries with detail at many scales. Such boundaries
tend to have secondary and tertiary branches that have little to do with
the basic shape of the surface. We are developing methods to deal with
these issues.

Fig. 12. A more complicated example for degrees 1 and 3.

Fig. 13. A sharp polygon for degrees 1 and 3.
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