
78

Updated (June 2019) Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report)

MATTHEW FLATT, University of Utah, USA
CANER DERICI, Indiana University, USA
R. KENT DYBVIG, Cisco Systems, Inc., USA
ANDREWW. KEEP, Cisco Systems, Inc., USA
GUSTAVO E. MASSACCESI, Universidad de Buenos Aires, Argentina
SARAH SPALL, Indiana University, USA
SAM TOBIN-HOCHSTADT, Indiana University, USA
JON ZEPPIERI, independent researcher, USA

All benchmark measurements were performed on an Intel Core i7-2600 3.4GHz processor running
64-bit Linux. Except as specifically noted, we used Chez Scheme 9.5.3 commit 6c4e0a5fd7 at
github:cicso/ChezScheme, modified as commit 10fc4a2406 at github:racket/ChezScheme, and
Racket 7.3.0.9 as commit 8c1dbae88b at github:racket/racket.

1 TRADITIONAL SCHEME BENCHMARKS
These results are about the same as in the original supplementary material.
The traditional Scheme benchmarks in figure 1 are based on a suite of small programs that

have been widely used to compare Scheme implementations. The benchmark sources are in the
"common" directory of the racket-benchmarks package in the Racket GitHub repository.
The results are in two groups, where the group starting with scheme-c uses mutable pairs, so

they are run in Racket as #lang r5rs programs; for Racket CS we expect overhead due to the use
of a record datatype for mutable pairs, instead of Chez Scheme’s built-in pairs.

The groups are sorted by the ratio of times for Chez Scheme and the current Racket implementa-
tion. Note that the break-even point is near the end of the first group. The collatz and collatz-q
benchmarks turn out to mostly measure the performance of the built-in division operator for
rational numbers, while fft and nucleic benefit from flonum unboxing.

2 SHOOTOUT BENCHMARKS
These results show improvement in a few benchmarks compared to the original supplementary material.

The benchmarks in figure 2 are based on a series of programs that have appeared over the years
as part of the Computer Language Benchmarks Game to compare implementations of different
languages.1 The benchmark sources are in the "shootout" directory of the racket-benchmarks
package in the Racket GitHub repository. We have only Racket implementations of these programs.

The groups are sorted by the ratio of times for Racket CS and the current Racket implementation.
Results closer to the end of the table tend to relymore on Racket’s hash tables, I/O, regular-expression
matcher, thread scheduler, and flonum unboxing.

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Authors’ addresses: Matthew Flatt, University of Utah, USA, mflatt@cs.utah.edu; Caner Derici, Indiana University, USA,
cderici@indiana.edu; R. Kent Dybvig, Cisco Systems, Inc. USA, dyb@cisco.com; Andrew W. Keep, Cisco Systems, Inc.
USA, akeep@cisco.com; Gustavo E. Massaccesi, Universidad de Buenos Aires, Argentina, gustavo@oma.org.ar; Sarah
Spall, Indiana University, USA, sjspall@iu.edu; Sam Tobin-Hochstadt, Indiana University, USA, samth@cs.indiana.edu; Jon
Zeppieri, independent researcher, USA, zeppieri@gmail.com.

78:2 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

ctak
CS 28 msec

CS′ 29 msec

R/CS 267 msec267 msec

R 3421 msec3421 msec

takr2
CS 733 msec733 msec

CS′ 747 msec747 msec

R/CS 740 msec740 msec

R 3065 msec3065 msec

takr
CS 881 msec881 msec

CS′ 880 msec880 msec

R/CS 752 msec752 msec

R 3144 msec3144 msec

lattice2
CS 1297 msec1297 msec

CS′ 1267 msec1267 msec

R/CS 1457 msec1457 msec

R 3565 msec3565 msec

scheme2
CS 524 msec524 msec

CS′ 519 msec519 msec

R/CS 570 msec570 msec

R 1270 msec1270 msec

deriv
CS 706 msec706 msec

CS′ 670 msec670 msec

R/CS 767 msec767 msec

R 1703 msec1703 msec

paraffins
CS 1430 msec1430 msec

CS′ 1480 msec1480 msec

R/CS 1547 msec1547 msec

R 3367 msec3367 msec

dderiv
CS 896 msec896 msec

CS′ 895 msec895 msec

R/CS 915 msec915 msec

R 2049 msec2049 msec

earley
CS 959 msec959 msec

CS′ 947 msec947 msec

R/CS 1211 msec1211 msec

R 2185 msec2185 msec

cpstak
CS 1357 msec1357 msec

CS′ 1332 msec1332 msec

R/CS 1321 msec1321 msec

R 3066 msec3066 msec

graphs
CS 1192 msec1192 msec

CS′ 1207 msec1207 msec

R/CS 1437 msec1437 msec

R 2685 msec2685 msec

nboyer
CS 720 msec720 msec

CS′ 718 msec718 msec

R/CS 864 msec864 msec

R 1605 msec1605 msec

div
CS 1660 msec1660 msec

CS′ 1646 msec1646 msec

R/CS 1672 msec1672 msec

R 3648 msec3648 msec

triangle
CS 2044 msec2044 msec

CS′ 2043 msec2043 msec

R/CS 1975 msec1975 msec

R 3501 msec3501 msec

sboyer
CS 1296 msec1296 msec

CS′ 1162 msec1162 msec

R/CS 1169 msec1169 msec

R 2165 msec2165 msec

nqueens
CS 1745 msec1745 msec

CS′ 1629 msec1629 msec

R/CS 1712 msec1712 msec

R 2911 msec2911 msec

nfa
CS 2576 msec2576 msec

CS′ 1922 msec1922 msec

R/CS 2294 msec2294 msec

R 4138 msec4138 msec

dynamic2
CS 365 msec365 msec

CS′ 369 msec369 msec

R/CS 364 msec364 msec

R 546 msec546 msec

nestedloop
CS 3849 msec3849 msec

CS′ 3852 msec3852 msec

R/CS 4097 msec4097 msec

R 5440 msec5440 msec

mazefun
CS 3727 msec3727 msec

CS′ 3790 msec3790 msec

R/CS 3593 msec3593 msec

R 5188 msec5188 msec

tak
CS 3115 msec3115 msec

CS′ 3179 msec3179 msec

R/CS 2687 msec2687 msec

R 4053 msec4053 msec

puzzle
CS 3207 msec3207 msec

CS′ 3224 msec3224 msec

R/CS 2906 msec2906 msec

R 3981 msec3981 msec

takl
CS 3452 msec3452 msec

CS′ 3428 msec3428 msec

R/CS 2357 msec2357 msec

R 4220 msec4220 msec

maze2
CS 3251 msec3251 msec

CS′ 3285 msec3285 msec

R/CS 2942 msec2942 msec

R 3297 msec3297 msec

nucleic2
CS 7444 msec7444 msec

CS′ 7431 msec7431 msec

R/CS 7398 msec7398 msec

R 7230 msec7230 msec

fft
CS 2288 msec2288 msec

CS′ 2284 msec2284 msec

R/CS 2283 msec2283 msec

R 2159 msec2159 msec

collatz-q
CS 2376 msec2376 msec

CS′ 2406 msec2406 msec

R/CS 2360 msec2360 msec

R 2159 msec2159 msec

collatz
CS 5980 msec5980 msec

CS′ 6017 msec6017 msec

R/CS 5956 msec5956 msec

R 2119 msec2119 msec

scheme-c
CS 94 msec94 msec

CS′ 95 msec95 msec

R/CS 226 msec226 msec

R 370 msec370 msec

lattice
CS 447 msec447 msec

CS′ 397 msec397 msec

R/CS 969 msec969 msec

R 1198 msec1198 msec

destruct
CS 692 msec692 msec

CS′ 687 msec687 msec

R/CS 1226 msec1226 msec

R 1752 msec1752 msec

scheme-i
CS 304 msec304 msec

CS′ 286 msec286 msec

R/CS 736 msec736 msec

R 745 msec745 msec

scheme
CS 557 msec557 msec

CS′ 548 msec548 msec

R/CS 1439 msec1439 msec

R 1243 msec1243 msec

sort1
CS 403 msec403 msec

CS′ 397 msec397 msec

R/CS 658 msec658 msec

R 677 msec677 msec

dynamic
CS 349 msec349 msec

CS′ 337 msec337 msec

R/CS 753 msec753 msec

R 522 msec522 msec

peval
CS 990 msec990 msec

CS′ 967 msec967 msec

R/CS 1797 msec1797 msec

R 1360 msec1360 msec

conform
CS 1050 msec1050 msec

CS′ 1077 msec1077 msec

R/CS 1978 msec1978 msec

R 1149 msec1149 msec

maze
CS 1208 msec1208 msec

CS′ 1239 msec1239 msec

R/CS 1221 msec1221 msec

R 1285 msec1285 msec

Fig. 1. Traditional Scheme benchmarks. Shorter is better. CS = unmodifed Chez Scheme, CS′ =
modified Chez Scheme, R/CS = Racket CS, R = current Racket implementation.

wordfreq
R/CS 1262 msec1262 msec

R 2966 msec2966 msec

pidigits1
R/CS 207 msec207 msec

R 377 msec377 msec

spectralnorm-g
R/CS 6042 msec6042 msec

R 9045 msec9045 msec

meteor
R/CS 250 msec250 msec

R 368 msec368 msec

random
R/CS 1601 msec1601 msec

R 2331 msec2331 msec

recursive
R/CS 5418 msec5418 msec

R 7620 msec7620 msec

sieve
R/CS 2931 msec2931 msec

R 4119 msec4119 msec

regexpdna
R/CS 3081 msec3081 msec

R 4269 msec4269 msec

fannkuch
R/CS 1273 msec1273 msec

R 1747 msec1747 msec

nestedloop
R/CS 3893 msec3893 msec

R 5220 msec5220 msec

ary
R/CS 3475 msec3475 msec

R 4659 msec4659 msec

ackermann
R/CS 2570 msec2570 msec

R 3423 msec3423 msec

matrix
R/CS 2374 msec2374 msec

R 3067 msec3067 msec

partialsums
R/CS 1540 msec1540 msec

R 1881 msec1881 msec

hash
R/CS 2461 msec2461 msec

R 2999 msec2999 msec

fibo
R/CS 3329 msec3329 msec

R 3786 msec3786 msec

except
R/CS 3496 msec3496 msec

R 3958 msec3958 msec

wc
R/CS 2012 msec2012 msec

R 2250 msec2250 msec

heapsort
R/CS 3550 msec3550 msec

R 3932 msec3932 msec

nsievebits
R/CS 3509 msec3509 msec

R 3780 msec3780 msec

reversecomp
R/CS 2783 msec2783 msec

R 2905 msec2905 msec

binarytrees
R/CS 1011 msec1011 msec

R 1026 msec1026 msec

nbody-vec-g
R/CS 5135 msec5135 msec

R 5009 msec5009 msec

nsieve
R/CS 2667 msec2667 msec

R 2571 msec2571 msec

regexmatch
R/CS 3863 msec3863 msec

R 3652 msec3652 msec

moments
R/CS 3114 msec3114 msec

R 2904 msec2904 msec

nbody-generic
R/CS 5594 msec5594 msec

R 4745 msec4745 msec

nbody
R/CS 2455 msec2455 msec

R 2069 msec2069 msec

fasta
R/CS 3529 msec3529 msec

R 2784 msec2784 msec

fannkuch-redux
R/CS 1517 msec1517 msec

R 1138 msec1138 msec

mandelbrot-g
R/CS 11592 msec11592 msec

R 8578 msec8578 msec

reversefile
R/CS 3733 msec3733 msec

R 2699 msec2699 msec

sumcol
R/CS 4425 msec4425 msec

R 2983 msec2983 msec

lists
R/CS 4240 msec4240 msec

R 2856 msec2856 msec

chameneos
R/CS 4107 msec4107 msec

R 2757 msec2757 msec

nbody-vec
R/CS 2083 msec2083 msec

R 1379 msec1379 msec

hash2
R/CS 2918 msec2918 msec

R 1859 msec1859 msec

echo
R/CS 9248 msec9248 msec

R 5880 msec5880 msec

cheapconcur
R/CS 3205 msec3205 msec

R 2028 msec2028 msec

strcat
R/CS 3183 msec3183 msec

R 2003 msec2003 msec

k-nucleotide
R/CS 4586 msec4586 msec

R 2757 msec2757 msec

pidigits
R/CS 1867 msec1867 msec

R 1021 msec1021 msec

mandelbrot
R/CS 3594 msec3594 msec

R 1914 msec1914 msec

spectralnorm
R/CS 2436 msec2436 msec

R 1203 msec1203 msec

Fig. 2. Shootout benchmarks. Shorter is better. R/CS = Racket CS, R = current Racket implementa-
tion.

3 STARTUP TIMES
These results show very small improvements compared to the original supplementary material. The
improvement is due to keeping internal boot files for Racket CS in uncompressed form instead of
compressed form.

Startup for just the runtime system without any libraries:
startup timeracket -n

R/CS 75 msec75 msec

R 51 msec51 msec

Updated (June 2019) Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:3

The Racket CS startup image has much more Scheme and Racket code that is dynamically loaded
and linked, instead of loaded as a read-only code segment like the compiled C code that dominates
the current Racket implementation. We can build the current Racket implementation in a mode
where its Racket-implemented macro expander is compiled to C code instead of bytecode, too,
shown below as “R/cify.” We can also compare to Racket v6, which had an expander that was
written directly in C:

startup timeracket -n
R/CS 75 msec75 msec

R 51 msec51 msec

R/cify 19 msec19 msec

Rv6 14 msec14 msec

Loading the racket/base library:
startup+load timeracket -l racket/base

R/CS 141 msec141 msec

R 93 msec93 msec

Racket CS’s machine code is bigger than current Racket’s bytecode representation. Furthermore, the
current Racket implementation is lazy about parsing some bytecode. We can disable lazy bytecode
loading with the -d flag, shown as “R/all”:

startup+load timeracket -l racket/base
R/CS 128 msec128 msec

R 99 msec99 msec

R/all 124 msec124 msec

Loading the larger racket library, which is what the racket executable loads by default for
interactive mode:

startup+load timeracket -l racket
R/CS 380 msec380 msec

R 266 msec266 msec

R/all 415 msec415 msec

The measurements in this section were gathered by using time in a shell a few times
and taking the median. The command was as shown, but using racket -d for the
“R/all” lines.

4 MEMORY USE
The results in this section are unchanged and still use the same Racket CS version as the original
supplementary material. We did not completely rerun the benchmarks, but smaller experiments suggest
that running with the latest version would produce essentially he same results.

The following plots show memory use, including both code and data, after loading racket/base
or racket, but subtracting memory use at the end of a run that loads no libraries (which reduces
noise from different ways of counting code in the initial heap). The “R/jit!” line uses -d to load
all bytecode eagerly, and it further forces that bytecode to be compiled to native code by the JIT
compiler.

memory use after loadracket -l racket/base

10 MB10 MB

R/CS

5 MB5 MB

R
8 MB8 MB

R/all
14 MB14 MB

R/jit!

78:4 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

memory use after loadracket -l racket

59 MB59 MB

R/CS

29 MB29 MB

R
49 MB49 MB

R/all
79 MB79 MB

R/jit!

These results show that bytecode is more compact thanmachine code, as expected. Lazy parsing of
bytecode also makes a substantial difference in memory use for the current Racket implementation.
Racket’s current machine code takes a similar amount of space as Chez Scheme machine code, but
the JIT overhead and other factors make it even larger. (Bytecode is not retained after conversion
to machine code by the JIT.)

On a different scale and measuring peak memory use instead of final memory use for DrRacket
start up and exit:

peak memory use for startup+exitdrracket

709 MB709 MB

R/CS

414 MB414 MB

R
520 MB520 MB

R/all
743 MB743 MB

R/jit!

This result reflects that DrRacket’s memory use is mostly the code that implements DrRacket, at
least if you just start DrRacket and immediately exit.

The measurements in this section were gathered by running racket starting with
the arguments -l racket/base, -l racket, or -l drracket. The command further
included -W "debug@GC" -e ’(collect-garbage)’ -e ’(collect-garbage)’ and
recording the logged memory use before that second collection. For the “R” lines, the
reported memory use includes the first number that is printed by logging in square
brackets, which is the memory occupied by code outside of the garbage collector’s
directly managed space. For “R/all,” the -d flag is used in addition, and for “R/jit!,” the
PLT_EAGER_JIT environment variable was set in addition to supplying -d. DrRacket’s
peak memory use was measured by waiting for the background expansion indicator to
turn green for an empty program, and the result for racket add the last recent memory
use reported for place 1.
We used Chez Scheme 9.5.3modified as commit 6d05b70e86 at github:racket/ChezScheme
and Racket 7.3.0.3 as commit ff95f1860a at github:racket/racket.

5 EXPAND AND COMPILE TIMES
Like section 4, the results in this section are unchanged and still use the same Racket CS version as the
original supplementary material.
These plots compare compile times from source for the racket/base module (and all of its

dependencies) and the racket module (and dependencies):

Updated (June 2019) Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:5

load-from-source timeracket -cl racket/base
R/CS 5191 msec5191 msec

R 2856 msec2856 msec

R/jit! 3340 msec3340 msec

racket -cl racket
R/CS 55615 msec55615 msec

R 32429 msec32429 msec

R/jit! 36188 msec36188 msec

Compilation requires first macro-expanding source. Racket CS and current Racket use the same
expander implementation. The following plots show how parts of the compile time can be attributed
to specific subtasks:

load-from-source timeracket -cl racket/base
R/CS 5191 msec5191 msec

R 2856 msec2856 msec

R/jit! 3340 msec3340 msec

racket -cl racket
R/CS 55615 msec55615 msec

R 32429 msec32429 msec

R/jit! 36188 msec36188 msec

 = expand
 = schemify
 = compile
 = register allocate
 = JIT

We can alternatively start with modules that are already expanded by the macro expander and
just compile them:

load-from-expanded timeracket -Ml racket/base
R/CS 2635 msec2635 msec

R 328 msec328 msec

R/jit! 497 msec497 msec

racket -Ml racket
R/CS 19702 msec19702 msec

R 1917 msec1917 msec

R/jit! 2493 msec2493 msec

We can make a relatively direct comparison of compile times between C and Racket, because the
Racket macro expander was formerly written in C, and now it is written in Racket with essentially
the same algorithms and architecture. The implementations are not so different in lines of code: 45
KLoC in C versus 28.5 KLoC in Racket. The following plot shows compile times for the expander’s
implementation:

compile timeexpander
CS 12400 msec12400 msec

R 1300 msec1300 msec

C 8700 msec8700 msec

To further check that we’re comparing similar compilation tasks, we can check the size of the
generated machine code. We can compile the Racket code to C code through a cify compiler. Below
is a summary of machine-code sizes for the various compiled forms of the expander:

machine code sizeexpander

2300 KB2300 KB

CS
4600 KB4600 KB

R/jit!
2900 KB2900 KB

R/jit!/no

1700 KB1700 KB

R/cify

900 KB900 KB

C

78:6 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

The current Racket implementation generates much more code from the same implementation, in
part because it inlines functions aggressively and relies on the fact that only called code is normally
translated to machine code; the “R/jit!/no” bar shows the code size when inlining is disabled.

The measurements in compile-time plots come from running the shown command (but
with racketcs instead of racket for the “R/CS” lines) with the PLT_EXPANDER_TIMES
and PLT_LINKLET_TIMES environment variables set. The overall time is as reported by
time for user plus system time, and the divisions are extracted from the logging that is
enabled by the environment variables.
For measuring compile times on the expander itself, the Chez Scheme measurement is
based on the build step that generates "expander.so", the current-Racketmeasurement
is based on the build step that generates "cstartup.inc", and the C measurement
is based on subtracting the time to rebuild Racket version 6.12 versus version 7.2.0.3
when the ".o" files in "build/racket/gc2" are deleted.
For measuring machine-code size, the expander’s code size for Chez Scheme was
computed by comparing the output of object-counts after loading all expander
prerequsites to the result after the expander; to reduce the code that is just form the li-
brarywrapper, the expanderwas compiled as a program instead of as a library. The code
size for Racket was determined by setting PLT_EAGER_JIT and PLT_LINKLET_TIMES
and running racket -d -n, which causes the expander implemtation to be JITted and
total bytes of code generated by the JIT to be reported. The “R/no-inline” variant was the
same, but compiling the expander to bytecode with compile-context-preservation-
enabled set to #f, which disables inlining. The “R/cify” code size was computed by
taking the difference on sizes of the Racket shared library for a normal build and
one with --enable-cify, after stripping the binaries with strip -S, then further
subtracting the size of the expander’s bytecode as it is embedded in the normal build’s
shared library. The “C” code size was similarly computed by subtracting the size of the
Racket shared library for version 7.2.0.3 from the size for the 6.12 release, stipped and
with the expander bytecode size subtracted.
Some sizes were derived from Racket 7.2.0.3 (as noted), where 7.3.0.3 would be about
the same size as 7.2.0.3. Otherwise, we used Chez Scheme 9.5.3 modified as commit
6d05b70e86 at github:racket/ChezScheme and Racket 7.3.0.3 as commit ff95f1860a
at github:racket/racket.

6 BUILD PROFILE
The results in this section are substantially improved compared to the original supplementary material.
We discovered a too-weak cache that was formerly responsible for half of the extra build time in Racket
CS.

Building the Racket distribution from source involves compiling Racket code, running documen-
tation to gather cross-reference information, rendering that documentation to HTML form, and the
re-rendering some documentation to reach a fixed point. Plots in this section show memory use
plotted against time for building the Racket distribution from source, all on the same scale.

For Racket CS:

Updated (June 2019) Supplementary Material for
Rebuilding Racket on Chez Scheme (Experience Report) 78:7

1.2 GB

m
e

m
o

ry
 u

s
e

re-render
doc
render

doc
runcompile

Peak: 1,219,937K Duration:1:26:34.72

time
1h55m

For the current Racket implementation:
Peak: 1,105,949K Duration:1:04:13.75

Documentation rendering with Racket CS is slightly slower, but most of the difference in build time
is during the compilation of modules.

To partly separate the cost of macro expansion and module loading from the cost of compilation
after expansion, the following plots show build activity when using current Racket and making
“compile” just mean “expand” (which makes the build take about twice as long as a regular Racket
build, since maodules will be repeatedly compiled as they are loaded to expand other modules).
Given the result of the expand-only build as an input, which also already has documentation
rendered, we can then compile each fully expanded module to machine code.

For Racket CS:
Peak: 564,246K Duration:0:16:19.31

For the current Racket implementation:

78:8 Flatt, Derici, Dybvig, Keep, Massaccesi, Spall, Tobin-Hochstadt, and Zeppieri

Peak: 240,835K Duration:0:04:21.14

The difference between these two plots suggests that longer compilation is responsible for at least
1/3 of the difference in build times between current Racket and Racket CS. Compilation time should
account for even more of the difference considering that macros within a module most be compiled
as he module is expanded, and none of that compilation appears in the last two plots (because all
modules have already been expanded), but compilation time probably does not account for all of
the difference.

These plots in this section were generated using the "plt-build-plot" package,
which drives a build from source and plots the results. The build with “compile” as
“expand” was created by using the -M flag, and then the finishing builds were measured
by another run on the result.

	1 Traditional Scheme Benchmarks
	2 Shootout Benchmarks
	3 Startup Times
	4 Memory Use
	5 Expand and Compile Times
	6 Build Profile

