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Abstract

We describe a variation of the iterative closest point
(ICP) algorithm for aligning two point sets under a set of
transformations. Our algorithm is superior to previous al-
gorithms because (1) in determining the optimal alignment,
it identifies and discards likely outliers in a statistically ro-
bust manner, and (2) it is guaranteed to converge to a lo-
cally optimal solution. To this end, we formalize a new
distance measure, fractional root mean squared distance
(FRMSD), which incorporates the fraction of inliers into the
distance function. Our framework can easily incorporate
most techniques and heuristics from modern registration al-
gorithms. We experimentally validate our algorithm against
previous techniques on 2 and 3 dimensional data exposed to
a variety of outlier types.

1 Introduction

Aligning an input data set to a model data set is funda-
mental to many important problems such as scanned model
reconstruction [12], structural biochemistry [19], and med-
ical imaging [8]. The input data and the model data are typ-
ically given as a set of points. A point set may arise from
laser scans of a 3D or 2D model, coordinates of atoms in
a protein, positions of a lesions from a medical patient, or
some other sparse representation of data. However, the rel-
ative positions of these point sets is not known, making the
task of registering them nontrivial.

A popular approach to solving this problem is known
as the iterative closest point (ICP) algorithm [1, 3] which
alternates between finding the optimal correspondence be-
tween points, and finding the optimal transformation of one
point set onto the other. As both steps reduce the dis-
tance between the point sets, this process converges, but
only to a local minimum. The effectiveness, simplicity,
and generality of this algorithm has led to many varia-
tions [16, 15, 4, 5, 6, 19]. For instance, the set of legal
transformations can be just translations, all rigid motions,
or all affine transformations. Other versions replace the

optimal correspondence between points by aligning each
data point to the closest point on an implicit surface of the
model data [3]. Or the traditional squared distance can be
replaced with a more efficient and stable approximation to
the squared distance function [11]. A slightly outdated, but
excellent survey [16] evaluates many techniques.

Others have attempted to solve the global registration
problem [13, 7], where for any initial alignment they at-
tempt to find the optimal alignment between two point sets.
This is often done in two steps. First find a rough global
alignment by corresponding certain distinguishable feature
points. Second refine the alignment with ICP.

However, all of these algorithms are vulnerable to point
sets with outliers. Outliers may result from deformation of
a deformable model, measurement error, spurious data that
was ignored or missed in the model, partial matches because
the point sets represent overlapping but not identical pieces
of the same object, or interesting changes in the underlying
object between time steps or among comparable objects. In
short, outliers are unavoidable. Because ICP will find cor-
respondences for all points, and then find the optimal trans-
formation for the entire point set, the outliers will skew the
alignment. Many heuristics have been suggested [5, 4] in-
cluding only aligning points within a set threshold [20, 17],
but most of these techniques are not guaranteed to converge,
and thus can possibly go into an infinite loop, or require an
expensive check to prevent this. If the fractionf of points
which are outliers is known, then Trimmed ICP (TrICP) [4]
can be used to find the optimal alignment of the most rel-
evant fractionf of points. However, this fraction is rarely
known a priori. If an alignment is given then RANSAC type
methods [2] can be used to determine a good threshold for
determining these outliers. There are also many ad hoc solu-
tions to this problem. However, if the outliers are excluded
from the data set in a particular alignment, then the align-
ment is no longer optimal, since those outliers which were
removed influenced how the points were initially aligned.

Our contributions. Our solution to these problems is to
incorporate the fraction of points which are outliers into the
problem statement and into the function being optimized.



To this end, this paper makes the following contributions:

• We formalize a new distance measure between point
sets which accounts for outliers:FRMSD (Section 2).

• We provide an algorithm, Fractional ICP, to optimize
FRMSD (Section 3) which we prove to converge to a
local optimum in the correspondence, transformation,
and fraction of outliers (Section 3.2).

• We give mathematical intuition for whyFRMSD aligns
data points which are more likely to be inliers than out-
liers (Section 4 and Section 5).

• Finally, we empirically demonstrate that Fractional
ICP identifies the correct alignment while simultane-
ously determining the outliers (Section 6).

2 Fractional RMS Distance

Consider two point setsD,M ∈ Rd. The goal of this pa-
per is to align an input data setD to a model data setM un-
der some class of transformations,T . We assume that these
point sets are quite similar and there exists a strong cor-
respondence between most points in the data. There may,
however, be outliers, points in either set which are not close
to any point in the other set. Letµ : D → M match each
point ofD to the closest point ofM .

Definition 2.1. [RMSD ] The root mean squared distance
(or RMSD) is defined:

RMSD(D,M,µ) =
√

1
|D|

∑
p∈D

||p− µ(p)||2

Problem 2.1. [minimizing RMSD ] Compute the transfor-
mationT ∈ T to minimize:

min
T ∈ T

√
1
|D|

∑
p∈D

||T (p)− µ(p)||2.

Problem 2.1 is algorithmically difficult because asT
varies, so does the optimal matchingµ. Also, RMSD is
quite susceptible to outliers because the squared distance
gives a large weight to outliers. To counteract this, a spe-
cific fractionf ∈ [0, 1] of points fromD can be used in the
alignment and in the distance measure between the point
sets. Thesef |D| points can be chosen to solve Problem
2.1 by selecting the points which have the smallest resid-
ual distancer = ||p − µ(p)||. Let Df = {p ∈ D |
|Df | = bf |D|c andRMSD(Df ,M) is minimized}. But
what fraction of points should be used? We can always
makeRMSD(Df ,M) = 0 by settingf = 1/|D| and align-
ing any single point exactly to another point. SoRMSD by
itself is no longer a viable measure. For this reason, we
propose the following distance measure.

Definition 2.2. [FRMSD ] The fractional root mean
squared distance (orFRMSD) is defined as follows:

FRMSD(D,M, f, µ) =
1
fλ

√√√√ 1
|Df |

∑
p∈Df

||p− µ(p)||2

We will empirically and mathematically justify a value
of λ in Section 6.4 and Section 5. For brevity we sometimes
dropµ and just writeRMSD(D,M) or FRMSD(D,M, f).

Problem 2.2. [minimize FRMSD ] Compute the transfor-
mationT ∈ T and fractionf ∈ [0, 1] to minimize:

min
T ∈ T

f ∈ [0, 1]

1
fλ

√√√√ 1
|Df |

∑
p∈Df

||T (p)− µ(p)||2.

Intuitively, the 1
fλ term serves to balance theRMSD term.

3 Fractional ICP

Fractional ICP or FICP, detailed in Algorithm 3, finds a
local minimum forFRMSD.

Algorithm 3.1 FICP(D,M)
1: Computeµ0 = arg min

µ0:D→M
RMSD(D,M,µ0).

2: Computef0 ∈ [0, 1] minningFRMSD(D,M, f0, µ0).
3: i← 0.
4: repeat
5: ComputeDfi

minimizing RMSD(Dfi
,M, µi) such

thatDfi
⊆ D and|Dfi

| = bfi|D|c.
6: ComputeT ∈ T minimizing RMSD(Dfi ,M, µi).

D ← T (D).
7: i← i + 1.
8: Computeµi : D →M minningRMSD(D,M,µi).
9: Computefi ∈ [0, 1] minningFRMSD(D,M, fi, µi).

10: until (ui = ui−1 andfi = fi−1)

In practice, the comparison on line 10 of Algorithm 3
can be replaced be checking whether theFRMSD(D,M, f)
value decreases by less than some threshold.

3.1 Implementation

An implementation of ICP has two basic operations:
computing the matching (which can be done efficiently with
a kd-tree, ad2-tree [11], or with point-to-surface align-
ment [3, 16]) and computing the transformation (which
can also be solved efficiently with a variety of approaches
[10, 9, 19]). Extending such an implementation to FICP
requires two more simple operations.
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Computing the subsetDf . The setDf = {p ∈ D |
|Df | = bf |D|c, RMSD(Df ,M) is minimized} is defined
by the bf |D|c points with the smallest residual distances
r = ||p − µ(p)||. This observation implies the follow-
ing algorithm. Compute and sort all residual distances and
let Df be thef |D| points with the smallest residual dis-
tances. The runtime is bounded by the sorting which takes
O(|D| log |D|) time.

Computing the fraction. There are only|D| fractions
which we need to consider. Consider the sorted order
of the point setD by each point’s residual distancer =
||p − µ(p)||. Each prefix of this ordering represents a dis-
tinct fraction. If we maintain the value

∑
p∈Df

||p−µ(p)||2

for eachDf we can computeFRMSD(D,M, f) in constant
time for a given fractionf . We can also updateDf to a
point set of size|Df | + 1 in constant time by adding the
next point in the sorted order toDf . If the ith prefix yields
the smallest value ofFRMSD, thenf is set toi/|D|. So this
computation takesO(|D|) time.

3.2 Convergence of Algorithm

FICP converges to a local minimum ofFRMSD(D,M, f)
in a sense that if all but one of transformations, match-
ings, or fractions is fixed, then the value of the remain-
ing variable cannot be changed to decrease the value of
FRMSD(D,M, f).

Theorem 3.1. For any two points setsD,M ∈
Rd, Algorithm 3 converges to a local minimum of
FRMSD(T (D),M, f, µ) over(f, T, µ) ∈ [0, 1]×T ×{D →
M}.

Proof Sketch: Algorithm 3 only changes the value of
(f, T, µ) when computing the optimal transformationT
(line 7), computing the optimal matchingµ (line 8), or
computing the optimal fractionf (line 9). None of these
steps can increase the value ofFRMSD(D,M, fi, µi), be-
cause staying at the current value would retain the value of
FRMSD(D,M, f, µ), but each can potentially decrease it.
(Full proof appears in longer version [14].)

4 Data Generation Model

In order to formalize the expected mathematical prop-
erties of theFRMSD measure and the FICP algorithm, we
now state some fairly general assumptions about the input
data. All data on which FICP is used need not have these
exact properties, but we hope that these properties are gen-
eral enough that whatever differences exist in the alternative
data will not significantly affect the following analysis and
the resulting conclusions.

We assume that data points are generated from model
points by the following abstract procedure:

1. Generate a setMI of model points that will have cor-
responding data points

2. For every model pointm ∈ MI , let p = T−1(m + n)
be the corresponding data point, whereT is a transfor-
mation in the setT andn is isotropic Gaussian noise
with standard deviationσ. The set of data pointsp cor-
responding toMI is denoted asDI .

3. Generate a random setDO of data outliers.

4. Generate a random setMO of model outliers out of a
spatial Poisson process.

We letD = DI ∪DO andM = MI ∪MO. Let pI be the
fraction of data inliers relative to all data points. The Pois-
son process for model outliers is a minimally informative
prior. We let the density of this process beω points per unit
volume.

The probability density of the squared magnitudez =
‖n‖2 of the correspondence noise is a chi square density in
d dimensions:

gχ2(d)(z) =
zd/2−1

2d/2σdΓ(d/2)
e−

z
2σ2

where

Γ(x) =
∫ ∞

0

tx−1 e−t dt

is the gamma function. The expected number of model out-
liers in a region of space with volumeV is equal toωV .

Suppose now that the correct geometric transformation
T ∈ T is applied to data pointp to obtain the transformed
data point

q = T (p) = m + n.

If q andm correspond, their distance statistics are chi
square. Ifq andm do not correspond, the situation is more
complex: Either point (or both) could be an outlier, or they
could be non-corresponding inliers. We do not know the
distance statistics for model inliers. In the remainder of this
section, we assume that the probability that a data inlier
is nearest to a non-corresponding model inlier is negligi-
ble. Under this assumption, the probability density of the
distancer from q to the nearest outlier, given that model
outliers are from a spatial Poisson process with densityω
points per unit volume, can be shown to be

w(r) = ω S(d) rd−1 e−ω S(d) rd/d for r ≥ 0

where

S(d) =
2πd/2

Γ(d/2)
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is the surface of the unit sphere ind dimensions.
So far we have not specified the units of measure. Since

σ is a distance andω is a distance raised to power−d (den-
sity per unit volume), the parameterσω1/d is dimension-
less. As long asσ andω are properly scaled to each other,
the analysis that follows is independent ofσ.

5 The Value ofλ

In this Section we justify a particular choice for the
value ofλ used in the definition of the fractional root mean
squared distance (FRMSD).

As shown in Section 3.1, the FICP algorithm selects a
fractionf of data-model matches in increasing order of their
residual distancesr = ‖p− µ(p)‖. Because of this, choos-
ing a fractionf is equivalent to choosing a maximum al-
lowed valuer∗ for the residual distancer. Since we would
like the FICP algorithm to favor inliers over outliers, it
makes sense to requirer∗ to be defined in such a way that
data points that arer∗ away from a model point are equally
likely to be inliers as they are to be outliers. Let us call
such a value ofr∗ the critical distance. We then ask the
following question: Is there a value ofλ in the definition
of theFRMSD for which the value off chosen by the FICP
algorithm corresponds to the critical distance?

To answer this question, we first expressr∗ as a func-
tion of the model parameters (Section 5.1), and determine
the function that relates an arbitrary distancer to the cor-
responding fractionf (Section 5.2). We then write an esti-
mate of theFRMSDunder an ergodicity assumption (Section
5.3). This estimate is itself a function off , and therefore of
r. The FICP algorithm maximizes theFRMSD with respect
to f , that is, finds a zero for the derivative of theFRMSD

with respect tof . Setting the value off where this zero is
achieved tof(r∗) yields an equation forλ, whose solution
set justifies our choice for this parameter (Section 5.4).

Our analysis holds for outlier densitiesω that are be-
low a certain valueωmax, which is inversely proportional
to the standard deviationσ of the noise that affects the data
points. If outliers exceed this density, then matching data
and model points based on minimum distance is too unreli-
able to yield good results.

5.1 The Critical Distance

The volume of a sphere of radiusr in d dimensions is

Vs(r) =
S(d)

d
rd

whereS(d) was defined in Section 4. The volume of the
shell between radiir andr + δr is

δVs =
S(d)

d

[
(r + δr)d − rd

]
≈ S(d) rd−1 δr .

This approximation is asymptotically exact asδr → 0.
The probability mass in the same shell for an isotropic

Gaussian distribution with zero mean and standard devia-
tion σ is

δGs = 2r gχ2(d)(r2) δr =
S(d)

(2π)d/2 σ

( r

σ

)d−1

e−
1
2 ( r

σ )2

δr

asδr → 0 (the term2r derives from the Jacobian of the
transformationz = r2, since theχ2 density is defined for
the square of a distance) .

Assume that the center of the shell above is at the trans-
formed data pointq defined in Section 4. As explained in
Section 4, ifq andm correspond, their distance statistics
are chi squared, and the likelihood of a particular radiusr
is δGs/δr. Otherwise, the distance statistics are approxi-
mately described by a spatial Poisson process with density
ω. Then, the critical distance is determined by the equation

ω δVs = δGs

that is,

e−
1
2 ( r

σ )2

= ω σd (2π)d/2 . (5.1)

The left-hand side of equation (5.1) is strictly positive
and monotonically decreasing inr and the right-hand side
is constant, so the equation admits a solution if and only if

0 < ω ≤ ωmax =
1

(
√

2π σ)d
.

If the outliers exceed this maximum densityωmax, the crit-
ical distance shrinks to zero: any model point around any
given data pointq is more likely to be an outlier than it is
to be the model point corresponding toq. Of course, when
there are no model outliers (ω = 0) the concept of critical
distance loses its significance.

Equation (5.1) can be solved forr to yield the desired
value ofr∗ as a function of the model parameters:

r∗

σ
=

√
−2 loge((

√
2π σ)dω) =

√
2 loge

ωmax

ω
.

5.2 Relationship between f and r

With probability pI , the data pointq has a correspond-
ing model point (inlier). In this event, ifrI is the distance
from this model point andrO is the distance from the near-
est model outlier point, the complement of the cumulative
probability function of the distancer to the nearest model
point (either inlier or outlier) is

1− F (r) = 1− P[min(rI , rO) < r] = P[min(rI , rO) ≥ r]
= P[rI ≥ r ∩ rO ≥ r] = P[rI ≥ r] P[rO ≥ r]
= (1− P[rI ≤ r]) (1− P[rO ≤ r]) = (1− FI(r)) (1− FO(r))
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whereFI(r) andFO(r) are respectively the probability that
the matching model point and the nearest model outlier are
at mostr units away fromq. From Section 4, these proba-
bilities are as follows:

FI(r) =
∫ r2

0

gχ2(d)(ζ) dζ and FO(r) =
∫ r

0

w(ρ) dρ .

Then, if q has a corresponding model point, the density of
its distance from the nearest model point is

φc(r) =
dF (r)

dr
= − d

dr
(1− F (r))

= 2r gχ2(d)(r2) (1− FO(r)) + (1− FI(r))w(r) .

With probabilitypO = 1− pI , the data pointq is instead
an outlier. Then, it has no corresponding model point, so
the probability that the nearest model point is at mostr units
away is simplyFO(r). In summary, the probability density
of the distance between a data pointq and its nearest model
pointµ(q) is

φ(r) = pI φc(r) + pO w(r)

and the average fraction of model points withinr units from
a data point is

f(r) =
∫ r

0

φ(ρ) dρ = pI

∫ r

0

φc(ρ) dρ + pO FO(r) .

The derivative off with respect tor is φ(r).

5.3 Ergodic Estimate of the FRMSD

An estimate of the fractional root mean squared distance
(FRMSD) can be obtained by assuming ergodically that the
sample moment included in the definition ofFRMSD is close
to the corresponding statistical moment:

1
f |D|

∑
p∈Df

‖p− µ(p)‖2 ≈ Ep∈Df
[‖p− µ(p)‖2] .

We can then write

FRMSD2(D,M, f) =
1

f2λ

1
f |D|

∑
p∈Df

‖p− µ(p)‖2

≈ 1
f2λ

Ep∈Df
[‖p− µ(p)‖2] =

1
f2λ

∫ r

0

ρ2 φ(ρ) dρ .

5.4 Stationary Point of the FRMSD Esti-
mate

At the minimum ofFRMSD(D,M, f), the derivative of
FRMSD2(D,M, f) with respect tof is zero. Differentiation
of the expression at the end of Section 5.3 yields

d

df
FRMSD2(D,M, f) =

−2λ

f2λ+1

∫ r

0

ρ2 φ(ρ) dρ +
r2

f2λ
φ(r)

dr

df
.

Since (
dr

df

)−1

=
df

dr
= φ(r) ,

the last addend simplifies tor2/f2λ, and

f2λ d

df
FRMSD2(D,M, f) = −2λ

f

∫ r

0

ρ2 φ(ρ) dρ + r2 .

Zeroing this derivative and settingr = r∗ andf = f(r∗)
yields the following equation forλ:

λ =
1
2

(r∗)2
∫ r∗

0
φ(ρ) dρ∫ r∗

0
ρ2 φ(ρ) dρ

.

Figure 1 plots the values ofλ in two and three dimen-
sions as a function of the relative model outlier density
ω/ωmax and for various values of the data inlier fraction
pI .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

ω/ωmax

λ

d = 2

d = 3

Figure 1. Theoretical value of λ in the def-
inition of the FRMSD in two (upper bundle)
and three (lower bundle) dimensions as a
function of the relative model outlier density
ω/ωmax. Curves in each bundle correspond to
pI = {0.5, 0.6, 0.7, 0.8, 0.9} from the bottom up.
Dependency on pI is weak.

Since the noise standard deviationσ acts merely as an
overall scale factor, these plots do not depend onσ. It is
apparent from the figure thatλ depends weakly on the frac-
tion pI of data inliers. The knees of the plots are at about
λ = 1.3 andλ = 0.95 for d = 2 andd = 3 dimensions,
respectively, corresponding toω/ωmax = 0.2. These knee
values are selected as general-purpose values for the defini-
tion of FRMSD in two and three dimensions.

6 Experiments

The main advantage of FICP over other variants of ICP is
that it automatically determines the outlier set via a fraction
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f and reaches a optimum in terms of the correspondence,
the transformation, and the fraction of outliers. In doing so,
it takes less time than algorithms which have no guarantees,
despite searching a larger parameter space.

We deal empirically with the issue of the parameterλ
used in the definition ofFRMSD. We observe thatFRMSD is
robust to the choice ofλ within a broad range. However the
radius of convergence and efficiency of FICP is improved
whenλ is set to a slightly higher values than those deter-
mined optimal for identifying outliers in Section 5. Intu-
itively, a smaller value ofλ is more likely to classify correct
correspondences as outliers when the alignment is not close,
and thus get stuck in local minimum. For higher values ofλ
these types of local minimum seem less prevalent. So for all
performance studies we setλ = 3, unless otherwise speci-
fied. For this value FICP has an expanded radius of conver-
gence and tends to find very similar alignments as whenλ is
set according to the analysis in Section 5. After converging,
we recommend settingλ = 1.3 for d = 2 or λ = .95 for
d = 3 to identify outliers more agressively. This final phase
should take very few additional iterations of the algorithm,
since, as we demonstrate, moderately modifying the value
of λ has small effects on theFRMSD andf values returned.

6.1 Data Sets

We use the SQUID fish contour database [18] from the
University of Surrey, UK. This database has 1100 2D con-
tours of fish and each contour has 500 to 3000 points. The
size of this data set allows us to average results over a very
large set of experiments.

We also perform some experiments on a limited num-
ber of 3D models. In particular we use thebunny(35,947
points) and thehappy Buddha(144,647 points) data set
from the Stanford 3D Scanning Repository.

We synthetically introduce outliers into the data sets in 3
ways. We always begin by creating two copiesM andD,
to represent the model and the input data, of the particular
data set. A parameterpI fraction of the final setD are left
undisturbed as data inliers.

• Occlusion: We randomly choose a ballB and remove
all of the points fromM within B. This represents
cases where the model set is only partially observed
because of occlusions, where two overlapping views
of the same object do not exactly align, or where the
input dataD has grown since the model was formed.

• Deform: We randomly choose a ballB and shift ran-
domly the pointsD∩B. This represents the case where
D is deformed slightly between time steps.

• New data: We add a set of points toD. These points
are placed uniformly at random within a bounding box

of D. This represents outliers caused by some sort of
data retrieval noise or from spurious or new data.

Finally, we independently add Gaussian noise to each point
p ∈ D.

We perform many tests on synthetic data because we
know that a good match exists and it is thus easy to quantify
the performance on our algorithm.

Additionally, we perform tests on real scanned data. We
align pairs of scanned images of thedragonmodel (drag-
onStandRight) from the Stanford 3D Scanning Repository
from views24◦ or 48◦ apart. Because the different views
observe different portions of the model, there are many
points which have no good alignment in both the model and
data set. These are outliers.

6.2 Performance

For each data set and type of outliers described above,
we perform the following set of tests. Results are averaged
over all SQUID data sets or 10 random rotations for 3D
models. We first rotateD by θ degrees whereθ is from the
set{5◦, 10◦, 25◦, 50◦}. The axis of rotation is chosen ran-
domly for the 3D data. We then run ICP, TrICP searching
for f with the golden section search [4], and FICP, mini-
mizing over all rigid motions. We report the total number
of iterations of each, the run time, and the final values of
RMSD, FRMSD, andf . We vary the input so thatpI is ei-
ther{.75, .88, .95}. We expect that optimallyf should be
nearpI since in our dataω/ωmax is small. All experiments
were performed on a 3 GHz Pentium IV processor with 1
Gb SD-RAM.

Tables 1, 2, 3, and 4 show a sample of these results.
TrICP and FICP return similar values ofRMSD andFRMSD

on average while also determining reasonable values forf .
However, FICP is about6× to 11× faster than TrICP using
the golden section search.

Alg. pI time (s) # iter. RMSD FRMSD f
ICP .75 0.335 24.5 9.454 9.454 1.000

TrICP .75 1.356 117.9 0.217 0.541 0.744
FICP .75 0.178 13.6 0.178 0.424 0.749

Table 1. SQUID: Occlusionoutliers, rotated 5◦.

Alg. pI time (s) # iter. RMSD FRMSD f
ICP .75 0.461 26.7 5.820 5.820 1.000

TrICP .75 1.578 92.9 0.176 0.399 0.768
FICP .75 0.264 13.7 0.175 0.388 0.766

Table 2. SQUID: New Dataoutliers, rotated 5◦.

Observe in Figure 2 how in the alignment of the bunny
data set, the non-deformed points (red points on back side,
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Alg. pI time (s) # iter. RMSD FRMSD f
ICP .88 29.6 48.0 0.4530 0.4530 1.000

TrICP .88 147.1 224.3 0.0052 0.0077 0.880
FICP .88 13.7 15.9 0.0052 0.0077 0.880

Table 3. bunny: Deformoutliers, rotated 5◦

Alg. pI time (s) # iter. RMSD FRMSD f
ICP .88 109.2 28.2 0.2975 0.2975 1.000

TrICP .88 485.4 120.5 0.0012 0.0018 0.880
FICP .88 81.4 15.7 0.0012 0.0017 0.880

Table 4. Buddha: Deformoutliers, rotated 5◦

blue points are not visible because they lie exactly behind
the red points) are aligned almost exactly by the FICP algo-
rithm while the deformed points (shifted from visible blue
points in front) are ignored. Such an alignment allows one
to easily identify the portion of the data which has been de-
formed, and by how much it has been deformed. Without a
proper registration to the model, the unaligned points have
no point of comparison to gauge their deformation. The
alignment is skewed when ICP is used and it is not helpful
in determining which points are deformed.

Figure 2. bunny: M in blue (top left) and D in
red (top right) with Deformnoise with pI = .75.
Registered using FICP (bottom left) and ICP
(bottom right).

6.3 Funnel of Convergence

We measure the radius of convergence of each algorithm
by calculating the percentage of cases from the SQUID data

set that converge to anFRMSD value within.01 andf value
within .01 of the alignment between the same sets with no
initial rotation. Table 5 shows the results when New Data
outliers withpI = .88 are added to the data setD. The re-
sults for the other types of noise are simlar. For 3D data sets
we choseσ proportionally smaller, so these convergence
rates are all slightly larger. Note that FICP withλ = 3
performs much better than whenλ = 1.3.

Alg. λ 5◦ 10◦ 25◦ 50◦

ICP - 0.999 0.997 0.994 0.962
TrICP 3 0.875 0.870 0.853 0.816
FICP 3 0.952 0.945 0.909 0.875
FICP 1.3 0.857 0.473 0.141 0.060

Table 5. Percentage of SQUID data sets con-
verging per initial rotation.

ICP has a larger radius of convergence than FICP, be-
cause it searches a much smaller parameter space. FICP
has a larger radius of convergence than TrICP even though
they search the same parameter space.

6.4 Validating λ

We empirically justify thatFRMSD is not sensitive to the
choice ofλ. We run FICP withλ set to{1, 1.3, 2, 3, 4, 5}.
We plot the averaged results on the SQUID data set when
Occlusion noise is added withpI = .75 andD is initially
rotated0◦ and5◦ in Table 6 and Table 7, respectively. Al-
teringλ does not dramatically affect the converged solution,
but can affect the radius of convergence. The output is sim-
ilar for different types of noise. On 3D data, FICP performs
slightly better than 2D data for smallerλ.

Alg. λ time (s) # iter. RMSD FRMSD f
FICP 1 0.142 10.38 0.158 0.225 0.701
FICP 1.3 0.069 3.81 0.170 0.248 0.749
FICP 2 0.059 3.06 0.170 0.303 0.750
FICP 3 0.061 3.17 0.170 0.404 0.750
FICP 4 0.062 3.21 0.171 0.538 0.751
FICP 5 0.063 3.30 0.172 0.717 0.751

Table 6. FICP, varying λ, with D rotated 0◦.

6.5 Aligning Scanned Model Data

We aligned thedragonscans24◦ and48◦ apart with ICP,
TrICP, and FICP. See longer version [14] for tables. For
most alignments both FICP and TrICP realize an alignment
with a much lowerFRMSDvalue than ICP, with FICP, occa-
sionally, noticeably outperforming TrICP. FICP is usually
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Alg. λ time (s) # iter. RMSD FRMSD f
FICP 1 0.733 37.23 0.298 1.503 0.274
FICP 1.3 0.488 36.44 0.219 0.563 0.660
FICP 2 0.244 17.00 0.176 0.329 0.740
FICP 3 0.198 13.59 0.178 0.424 0.749
FICP 4 0.194 13.28 0.184 0.570 0.751
FICP 5 0.200 13.66 0.299 0.875 0.756

Table 7. FICP, varying λ, with D rotated 5◦.

about as fast as ICP, and is consistently about5× to 10×
faster than TrICP.

Figure 3 shows the alignment of the scan at0◦ aligned
with the scan at48◦ using ICP and FICP. Notice how when
the scans are aligned with ICP, the points in the dragon’s tail
are slightly misaligned, whereas with FICP, the alignment is
much better.

Figure 3. Dragon scans at 0◦ and 48◦ with M
in blue and D in red, registered using FICP
(top left) and ICP (top right). Zoomed images
of the alignment around dragon’s tail with
FICP (bot. left) and ICP (bot. right) demon-
strate the skew in the alignment due to ICP.
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