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Abstract optimal correspondence between points by aligning each

data point to the closest point on an implicit surface of the
We describe a variation of the iterative closest point model data [3]. Or the traditional squared distance can be

(ICP) algorithm for aligning two point sets under a set of replaced with a more efficient and stable approximation to
transformations. Our algorithm is superior to previous al- the squared distance function [11]. A slightly outdated, but
gorithms because (1) in determining the optimal alignment, excellent survey [16] evaluates many techniques.
it identifies and discards likely outliers in a statistically ro- Others have attempted to solve the global registration
bust manner, and (2) it is guaranteed to converge to a lo- problem [13, 7], where for any initial alignment they at-
cally optimal solution. To this end, we formalize a new tempt to find the optimal alignment between two point sets.
distance measure, fractional root mean squared distanceThis is often done in two steps. First find a rough global
(FRMSD), which incorporates the fraction of inliers into the  alignment by corresponding certain distinguishable feature
distance function. Our framework can easily incorporate points. Second refine the alignment with ICP.
most techniques and heuristics from modern registration al- ~ However, all of these algorithms are vulnerable to point
gorithms. We experimentally validate our algorithm against sets with outliers. Outliers may result from deformation of
previous techniques on 2 and 3 dimensional data exposed ta deformable model, measurement error, spurious data that
a variety of outlier types. was ignored or missed in the model, partial matches because

the point sets represent overlapping but not identical pieces

of the same object, or interesting changes in the underlying
1 Introduction object between time steps or among comparable objects. In
short, outliers are unavoidable. Because ICP will find cor-
respondences for all points, and then find the optimal trans-

Aligning an |r!put data set to a model data set is funda- [ormation for the entire point set, the outliers will skew the
mental to many important problems such as scanned model ;. L .
alignment. Many heuristics have been suggested [5, 4] in-

reconstruction [12], structural biochemistry [19], and med- cluding only aligning points within a set threshold [20, 17],

:g:hlmail\g,]g:]gg];:; g:‘pu;ii?sta :ndc;[i:(ta ;T:t)(:ﬁ;da;ﬁsaefefrtoyrﬂ' but most of these techniques are not guaranteed to converge,
Iase)r/ gcans of a 3D or gD méJdeIp coordinateg of atoms inand thus can possibly go into an infinite loop, or require an
' expensive check to prevent this. If the fractiprof points

a protein, positions of a IeS|on§ from a medical patient, or which are outliers is known, then Trimmed ICP (TrICP) [4]
some other sparse representation of data. However, the rel-

. . ) . . can be used to find the optimal alignment of the most rel-
ative positions of these point sets is not known, making the X . . L
T o evant fractionf of points. However, this fraction is rarely
task of registering them nontrivial.

A lar roach t ving this oroblem is known known a priori. If an alignment is given then RANSAC type
popular approach to solving fhis problem s Knok methods [2] can be used to determine a good threshold for
as the iterative close_st point (ICP). algorithm [1, 3] which determining these outliers. There are also many ad hoc solu-
alternateg between_ fm_dmg the o_pt|mal correspondence beiions to this problem. However, if the outliers are excluded
twgen points, and finding the optimal iransformation of ON€ tom the data set in a particular alignment, then the align-
For:nt sbettvt\)/nton ttr;]e Othiirt' At\s Egith srteps redug\? :he dlZ'ment is no longer optimal, since those outliers which were
ance between the point sets, his process converges, L|’temoved influenced how the points were initially aligned.
only to a local minimum. The effectiveness, simplicity,

and generality of this algorithm has led to many varia-

tions [16, 15, 4, 5, 6, 19]. For instance, the set of legal Our contributions. Our solution to these problems is to
transformations can be just translations, all rigid motions, incorporate the fraction of points which are outliers into the
or all affine transformations. Other versions replace the problem statement and into the function being optimized.



To this end, this paper makes the following contributions:

e We formalize a new distance measure between point
sets which accounts for outliersrRMSD (Section 2).

We provide an algorithm, Fractional ICP, to optimize
FRMSD (Section 3) which we prove to converge to a
local optimum in the correspondence, transformation,
and fraction of outliers (Section 3.2).

We give mathematical intuition for whyrMSD aligns
data points which are more likely to be inliers than out-
liers (Section 4 and Section 5).

Finally, we empirically demonstrate that Fractional
ICP identifies the correct alignment while simultane-
ously determining the outliers (Section 6).

Fractional RMS Distance

Consider two point set®, M < R<. The goal of this pa-
per is to align an input data sétto a model data sét/ un-
der some class of transformatioff’s, We assume that these
point sets are quite similar and there exists a strong cor-

respondence between most points in the data. There may,

however, be outliers, points in either set which are not close
to any point in the other set. Let: D — M match each

Definition 2.2. [FRMSD ] The fractional root mean
squared distance (ofrRMSD) is defined as follows:

> e = u)l?
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We will empirically and mathematically justify a value
of A in Section 6.4 and Section 5. For brevity we sometimes
drop i and just writeRMSD(D, M) or FRMSD(D, M, f).

Problem 2.2. [minimize FRMSD ] Compute the transfor-
mationT € 7 and fractionf € [0, 1] to minimize:

1 1
i — | = E T(p) — 2,
Tmem’]‘ 2 |Df|p€DfH (p) — u@)l
felo1]

Intuitively, the fi

Py

term serves to balance the1sp term.

3 Fractional ICP

Fractional ICP or FICP, detailed in Algorithm 3, finds a
local minimum forFRMSD.

point of D to the closest point of/.

Algorithm 3.1 FICP(D, M)

Definition 2.1. [RMSD ] The root mean squared distance
(or RMSD) is defined:

> llp = p(p)l?

1
RMSD(D, M, p1) = DI
D] =,

Problem 2.1. [minimizing RMSD ] Compute the transfor-
mationT" € 7 to minimize:

\/11) S IT0) - u)E

peD
Problem 2.1 is algorithmically difficult because &s

min

TeT

1: Computeuy = arg min  RMSD(D, M, ).
po:D—M

2: Computefy € [0, 1] minningFRMSD(D, M, fo, 1o)-

3: 1« 0.

4: repeat

5. ComputeDy, minimizing RMSD(Dy,, M, 11;) such
thathri cD and|Dfi| = I_fl‘DH

6: ComputeT € 7 minimizing RMSD(Dy,, M, ;).
D —T(D).

70 1—1+ 1.

8 Computeu; : D — M minningRMSD(D, M, ;).

9:  Computef; € [0, 1] minningFRMSD(D, M, f;, 11;).

10: until (’U,7 = Uj—1 andfi = f’i—l)

varies, so does the optimal matchipg Also, RMSD is

quite susceptible to outliers because the squared distance In practice, the comparison on line 10 of Algorithm 3
gives a large weight to outliers. To counteract this, a spe-can be replaced be checking whethertre1sp(D, M, f)
cific fraction f € [0, 1] of points fromD can be used in the  value decreases by less than some threshold.

alignment and in the distance measure between the point
sets. Thes¢g|D| points can be chosen to solve Problem 3.1
2.1 by selecting the points which have the smallest resid-

ual distancer = ||p — u(p)||. LetDy = {p € D | An implementation of ICP has two basic operations:
|D¢| = |f|D|] andrRMSD(Dy, M) is minimized. But computing the matching (which can be done efficiently with
what fraction of points should be used? We can always a kd-tree, ad?-tree [11], or with point-to-surface align-

Implementation

makerMSD(D;, M) = 0 by settingf = 1/|D| and align-

ing any single point exactly to another point. 8aSD by
itself is no longer a viable measure. For this reason, we
propose the following distance measure.

ment [3, 16]) and computing the transformation (which
can also be solved efficiently with a variety of approaches
[10, 9, 19]). Extending such an implementation to FICP
requires two more simple operations.



Computing the subsetD;. The setDy = {p € D | We assume that data points are generated from model
|Ds| = |f|D|],RMSD(Ds, M) is minimized is defined  points by the following abstract procedure:

by the | f|D|| points with the smallest residual distances
r = |lp — u(p)||]- This observation implies the follow- : )
ing algorithm. Compute and sort all residual distances and responding data points
let Dy be the f|D| points with the smallest residual dis-
tances. The runtime is bounded by the sorting which takes
O(|D|log|D|) time.

1. Generate a sét/; of model points that will have cor-

2. For every model point: € My, letp = T (m + n)
be the corresponding data point, whétés a transfor-
mation in the sef” andn is isotropic Gaussian noise
with standard deviation. The set of data poingscor-

Computing the fraction. There are only|D| fractions responding td\/; is denoted aP);.
which we need to consider. Consider the sorted order _
of the point setD by each point’s residual distanee = 3. Generate a random sB}, of data outliers.

llp — u(p)||. Each prefix of this ordering represents a dis-
tinct fraction. If we maintain the vaIuEpeDf [lp— p(p)||?

for eachD; we can computerRMSD(D, M, f) in constant
time for a given fractionf. We can also updat®; to a We letD = D; U Do andM = M; U Mp. Letp; be the
point set of sizg Ds| + 1 in constant time by adding the fraction of data inliers relative to all data points. The Pois-
next point in the sorted order 0. If the ith prefix yields  son process for model outliers is a minimally informative
the smallest value afRmsD, thenf is set toi/|D|. Sothis  prior. We let the density of this process begoints per unit

4. Generate a random s&f, of model outliers out of a
spatial Poisson process.

computation take®(|D|) time. volume.
The probability density of the squared magnitude-
3.2 Convergence of Algorithm |n||? of the correspondence noise is a chi square density in

d dimensions:

FICP converges to alocal minimummeRmsD(D, M, f)
in a sense that if all but one of transformations, match-
ings, or fractions is fixed, then the value of the remain-

ing variable cannot be changed to decrease the value O(Nhere

FRMSD(D, M, f). oo
/ t" e tdt
0

»d/2—1 i

9@(2) = gamgar(ag ¢

I'(z) =
Theorem 3.1. For any two points setsD, M €
R¢, Algorithm 3 converges to a local minimum of isthe gamma function. The expected number of model out-

FRMSD(T(D), M, f,p) over(f,T,u) € [0,1]xT x{D — liers in a region of space with volunié is equal tavV'.
M}. Suppose now that the correct geometric transformation
) T € T is applied to data point to obtain the transformed
Proof Sketch: Algorithm 3 only changes the value of 44 point
(f,T, ) when computing the optimal transformatidn _ _
. : ! . . qg=T(p) =m+n.
(line 7), computing the optimal matching (line 8), or
computing the optimal fractiorf (line 9). None of these If ¢ andm correspond, their distance statistics are chi
steps can increase the valuerstmsD(D, M, f;, u;), be- square. Ifg andm do not correspond, the situation is more

cause staying at the current value would retain the value ofcomplex: Either point (or both) could be an outlier, or they
FRMSD(D, M, f, ), but each can potentially decrease it. could be non-corresponding inliers. We do not know the
(Full proof appears in longer version [14].) O distance statistics for model inliers. In the remainder of this
section, we assume that the probability that a data inlier
is nearest to a non-corresponding model inlier is negligi-
ble. Under this assumption, the probability density of the
distancer from ¢ to the nearest outlier, given that model

In order to formalize the expected mathematical prop- o yiers are from a spatial Poisson process with density
erties of theFRMSD measure and the FICP algorithm, we points per unit volume, can be shown to be

now state some fairly general assumptions about the input

data. All data on which FICP is used need not have these w(r) = w S(d) pA=1g=wSri/d  for >
exact properties, but we hope that these properties are gen- -
eral enough that whatever differences exist in the alternative\yhere

data will not significantly affect the following analysis and omrd/2

the resulting conclusions. S(d) = W

4 Data Generation Model



is the surface of the unit spheredrdimensions.

This approximation is asymptotically exact@as— 0.

So far we have not specified the units of measure. Since The probability mass in the same shell for an isotropic

o is a distance and is a distance raised to powekl (den-
sity per unit volume), the parameter,!/? is dimension-

less. As long ag andw are properly scaled to each other,

the analysis that follows is independentoof

5 The Value of A

In this Section we justify a particular choice for the
value of )\ used in the definition of the fractional root mean

squared distanc&RMSD).

Gaussian distribution with zero mean and standard devia-
tiono is

()T )

— . 2 —
0G5 = 27 gy2(q)(r=) or = G125 \o

asdér — 0 (the term2r derives from the Jacobian of the
transformation: = 2, since they? density is defined for
the square of a distance) .

Assume that the center of the shell above is at the trans-
formed data poing defined in Section 4. As explained in

As shown in Section 3.1, the FICP algorithm selects a Section 4, ifq andm correspond, their distance statistics
fraction f of data-model matches in increasing order of their are chi squared, and the likelihood of a particular radius

residual distances = ||p — u(p)||. Because of this, choos-
ing a fractionf is equivalent to choosing a maximum al-
lowed valuer* for the residual distance Since we would

like the FICP algorithm to favor inliers over outliers, it
makes sense to requiré to be defined in such a way that
data points that areg* away from a model point are equally

likely to be inliers as they are to be outliers. Let us call

such a value of* the critical distance We then ask the
following question:Is there a value of\ in the definition
of theFrMsD for which the value of chosen by the FICP
algorithm corresponds to the critical distance?

To answer this question, we first expressas a func-

is 0G4 /ér. Otherwise, the distance statistics are approxi-
mately described by a spatial Poisson process with density
w. Then, the critical distance is determined by the equation

w Vs = 0G,
that is, ,
e 2 (7)) = wod (2m)4/2 . (5.1)

The left-hand side of equation (5.1) is strictly positive
and monotonically decreasing inand the right-hand side
is constant, so the equation admits a solution if and only if

tion of the model parameters (Section 5.1), and determine 1

the function that relates an arbitrary distanct® the cor-
responding fractiorf (Section 5.2). We then write an esti-

O<w§wmax:

(V2m o)t

mate of theeRMSDunder an ergodicity assumption (Section If the outliers exceed this maximum density, ., the crit-

5.3). This estimate is itself a function @f and therefore of
r. The FICP algorithm maximizes tleeMsD with respect
to f, that is, finds a zero for the derivative of themsD
with respect tof. Setting the value of where this zero is
achieved tof (r*) yields an equation fok, whose solution
set justifies our choice for this parameter (Section 5.4).
Our analysis holds for outlier densities that are be-
low a certain valuev,,.., which is inversely proportional

to the standard deviation of the noise that affects the data
points. If outliers exceed this density, then matching data
and model points based on minimum distance is too unreli-

able to yield good results.
5.1 The Critical Distance

The volume of a sphere of radiusn d dimensions is

where S(d) was defined in Section 4. The volume of the

shell between radit andr + dr is

sv, = 5@

pi [(r+ or)d — 7'd] ~ S(d)ritor.

ical distance shrinks to zero: any model point around any
given data point; is more likely to be an outlier than it is
to be the model point corresponding¢oOf course, when
there are no model outliers)(= 0) the concept of critical
distance loses its significance.

Equation (5.1) can be solved forto yield the desired
value ofr* as a function of the model parameters:

r* Wn:
— =4/-21 V2ro)iw) = /2 log, —= .
- \/ og.((V2ro)w) 0ge —_

5.2 Relationship between f and r

With probability p;, the data point; has a correspond-
ing model point (inlier). In this event, if; is the distance
from this model point and,, is the distance from the near-
est model outlier point, the complement of the cumulative
probability function of the distance to the nearest model
point (either inlier or outlier) is

1—F(r)=1—=Plmin(r;,ro) < r| = Plmin(r;,ro) > 7]
= Plrr>r Nro>r|=Prr >r] Plro > ]

= (L=Plr; <7]) (L=Plro <r]) = (1= Fi(r)) (1 = Fo(r))



whereFr(r) andFp (r) are respectively the probability that  Since

the matching model point and the nearest model outlier are dr - _df ()
at mostr units away fromg. From Section 4, these proba- df Cdr ’
bilities are as follows: the last addend simplifies 13 /£2*, and
Fi(r) = /0 92(a)(€)dC and Fo(r) = /0 w(p)dp . 2 %FRMSD2(D,M7 f) = —? P2 o(p)dp + 2.
0
Then, if ¢ has a corresponding model point, the density of zeroing this derivative and setting= r* and f = f(r)
its distance from the nearest model point is yields the following equation fok:
dF d 2 [
de(r) = dff) =~ (1= F(r)) N L2y dlp)dp
2 [T 2 d
= 2 g (1 - For) + (1= Fr(r)u(r) Jo 2200 dp

Figure 1 plots the values of in two and three dimen-
sions as a function of the relative model outlier density
w/wmax and for various values of the data inlier fraction

pr-

With probabilitypo = 1 — py, the data poing is instead
an outlier. Then, it has no corresponding model point, so
the probability that the nearest model point is at mastits
away is simplyFo (r). In summary, the probability density
of the distance between a data pajraind its nearest model
point ui(q) is

¢(r) = p1 de(r) + po w(r)

and the average fraction of model points withianits from
a data point is

fr) = / " 5(0) dp = pr / " bulp) do+ po Folr) .

The derivative off with respect ta- is ¢(r).

5.3 Ergodic Estimate of the FRMSD o ar 0z 05 0+ 05 05 07 08 o5 1

An estimate of the fractional root mean squared distance
(FRMSD) can be obtained by assuming ergodically that the  Figure 1. Theoretical value of X in the def-

sample moment included in the definitionrafMsDis close inition of the FRMSD in two (upper bundle)
to the corresponding statistical moment: and three (lower bundle) dimensions as a
1 function of the relative model outlier density
D] Z Ip— 1(p)|I* = Epen, [lIp — np)|?] - w/wmax. Curves in each bundle correspond to
fID| pED; pr = {0.5,0.6,0.7,0.8,0.9} from the bottom up.

We can then write Dependency on py is weak.

1 1

FRMSD’ (D, M, f) = 2] Z Ip = n(p)|? Since the noise standard deviatioracts merely as an
. pEDfl i, overall scale factor, these plots do not dependronit is

~ _ 21 L 2 apparent from the figure thatdepends weakly on the frac-

22 Bpep,[lIp = np)I7) = 2 /0 P olp)dp. tion p; of data inliers. The knees of the plots are at about

A= 13andX = 0.95 for d = 2 andd = 3 dimensions,

5.4 Stationary Point of the FrmsD Esti- respectively, corresponding i0/w,.x = 0.2. These knee

mate values are selected as general-purpose values for the defini-

tion of FRMSDin two and three dimensions.
At the minimum ofFRMSD(D, M, f), the derivative of

FRMSD? (D, M, f) with respect tof is zero. Differentiation
of the expression at the end of Section 5.3 yields
d

EFRl\/lSDQ(D,J\Lf) = oAt

6 Experiments

-2x (" 5 r? dr The main advantage of FICP over other variants of ICP is
/ P o(p)dp + 23 ¢(r) gjfhat it automatically determines the outlier set via a fraction

5



f and reaches a optimum in terms of the correspondence, of D. This represents outliers caused by some sort of
the transformation, and the fraction of outliers. In doing so, data retrieval noise or from spurious or new data.

it takes less time than algorithms which have no guarantees
despite searching a larger parameter space.

We deal empirically with the issue of the parameler
used in the definition ofRMSD. We observe thatRMSDis
robust to the choice of within a broad range. However the
radius of convergence and efficiency of FICP is improved
when ) is set to a slightly higher values than those deter-

T";?d ;2::21:0;;dgr:)tj{\fyénr?morgt:!ﬁs To?:g:stls('m gorr"ej::Ltl onStandRightfrom the Stanford 3D Scanning Repository
HIVETy, valu ! K€y ity from views24° or 48° apart. Because the different views

correspondences as outhers.vx{hen the allgnment|s not CIc’Seobserve different portions of the model, there are many
and thus get stuck in local minimum. For higher values of

o oints which have no good alignment in both the model and
these types of local minimum seem less prevalent. So for aIIp g 9

performance studies we skt= 3, unless otherwise speci- data set. These are outliers.
fied. For this value FICP has an expanded radius of conver
gence and tends to find very similar alignments as whisn
set according to the analysis in Section 5. After converging,
we recommend setting = 1.3 ford = 2 or A = .95 for

d = 3 to identify outliers more agressively. This final phase
should take very few additional iterations of the algorithm,
since, as we demonstrate, moderately modifying the value
of A has small effects on trerRMSD and f values returned.

Finally, we independently add Gaussian noise to each point
peD.

We perform many tests on synthetic data because we
know that a good match exists and it is thus easy to quantify
the performance on our algorithm.

Additionally, we perform tests on real scanned data. We
align pairs of scanned images of tiemagonmodel @drag-

6.2 Performance

For each data set and type of outliers described above,
we perform the following set of tests. Results are averaged
over all SQUID data sets or 10 random rotations for 3D
models. We first rotat® by 6 degrees wheré is from the
set{5°,10°,25°, 50°}. The axis of rotation is chosen ran-
domly for the 3D data. We then run ICP, TrICP searching
for f with the golden section search [4], and FICP, mini-
6.1 Data Sets mizing over all rigid motions. We report the total number

of iterations of each, the run time, and the final values of

We use the SQUID fish contour database [18] from the rmsD, FRMSD, and f. We vary the input so thai; is ei-
University of Surrey, UK. This database has 1100 2D con- ther {.75, .88, .95}. We expect that optimally’ should be
tours of fish and each contour has 500 to 3000 points. Thenearp; since in our data /wp,. is small. All experiments
size of this data set allows us to average results over a veryyere performed on a 3 GHz Pentium IV processor with 1
large set of experiments. Gb SD-RAM.

We also perform some experiments on a limited num-  Tables 1, 2, 3, and 4 show a sample of these results.
ber of 3D models. In particular we use thanny(35,947  TrICP and FICP return similar values Rf1sb andFRMSD
points) and thehappy Buddha(144,647 points) data set on average while also determining reasonable valueg.for
from the Stanford 3D Scanning Repository. However, FICP is aboutx to 11x faster than TrICP using

We synthetically introduce outliers into the data sets in 3 the golden section search.
ways. We always begin by creating two copigsand D,
to represent the model and the input data, of the particular, Alg. | p; | time (s) | #iter. | RMSD | FRMSD f
data set. A parametey; fraction of the final seD are left ICP | .75| 0.335 | 245 | 9.454 | 9.454 | 1.000
undisturbed as data inliers. TrICP | .75 | 1.356 | 117.9| 0.217 | 0.541 | 0.744
FICP| .75| 0.178 | 13.6 | 0.178 | 0.424 | 0.749

e Occlusion: We randomly choose a balt and remove
all of the points fromM within B. This represents Table 1. SQUID: Occlusionoutliers, rotated 5°.
cases where the model set is only partially observed
because of occlusions, where two overlapping views

of the same object do not exactly align, or where the | Al9. | pr | time(s) | #iter. | RMSD | FRMSD | f
input dataD has grown since the model was formed. ICP | .75 ] 0.461 | 26.7 | 5.820| 5.820 | 1.000
TriICP | .75| 1578 | 92.9 | 0.176 | 0.399 | 0.768
e Deform: We randomly choose a balt and shift ran- FICP| .75| 0.264 | 13.7 | 0.175| 0.388 | 0.766
domly the point©DN B. This represents the case where
D is deformed slightly between time steps. Table 2. SQUID: New Dataoutliers, rotated 5°.
e New data: We add a set of points t&. These points Observe in Figure 2 how in the alignment of the bunny

are placed uniformly at random within a bounding box data set, the non-deformed points (red points on back side,



Alg. | pr | time(s)| #iter. | RMSD | FRMSD f set that converge to e#rMSD value within.01 and f value

ICP | .88| 29.6 48.0 | 0.4530| 0.4530 | 1.000 | within .01 of the alignment between the same sets with no
TrICP | .88 | 147.1 | 224.3| 0.0052| 0.0077 | 0.880 | initial rotation. Table 5 shows the results when New Data
FICP| .88 | 13.7 15.9 | 0.0052| 0.0077 | 0.880 | outliers withp; = .88 are added to the data sBt The re-
sults for the other types of noise are simlar. For 3D data sets
Table 3. bunny: Deformoutliers, rotated  5° we choseo proportionally smaller, so these convergence
rates are all slightly larger. Note that FICP with= 3
performs much better than when= 1.3.

Alg. | p; | time(s) | #iter. | RMSD | FRMSD f
ICP| .88 | 109.2 | 28.2 | 0.2975| 0.2975| 1.000
TrICP | .88 | 485.4 | 120.5| 0.0012| 0.0018 | 0.880 Alg. [ A 50 10° 25° 50°

FICP | .88 81.4 15.7 | 0.0012| 0.0017 | 0.880 ICP| - 10999 0.997| 0.994| 0.962
. TriCP | 3 | 0.875| 0.870| 0.853 | 0.816
Table 4. Buddha: Deformoutliers, rotated 5° Fice | 3 | 0.952| 0.945| 0.909| 0.875

FICP | 1.3 | 0.857| 0.473| 0.141 | 0.060

blue points are not visible because they lie exactly behind
the red points) are aligned almost exactly by the FICP algo-
rithm while the deformed points (shifted from visible blue
points in front) are ignored. Such an alignment allows one
to easily identify the portion of the data which has been de-  |cp has a larger radius of convergence than FICP, be-
formed, and by how much it has been deformed. Without a c4,se it searches a much smaller parameter space. FICP
proper registration to the model, the unaligned points havep,s 4 |arger radius of convergence than TrICP even though

no point of comparison to gauge their deformation. The they search the same parameter space.
alignment is skewed when ICP is used and it is not helpful

in determining which points are deformed. 6.4 Validating A

Table 5. Percentage of SQUID data sets con-
verging per initial rotation.

We empirically justify thaFRMSDIis not sensitive to the
choice ofA. We run FICP with\ set to{1,1.3,2,3,4,5}.
We plot the averaged results on the SQUID data set when
Occlusion noise is added wifly = .75 and D is initially
rotated0° and5° in Table 6 and Table 7, respectively. Al-
tering A does not dramatically affect the converged solution,
but can affect the radius of convergence. The output is sim-
ilar for different types of noise. On 3D data, FICP performs
slightly better than 2D data for smallar

Alg. A | time (s) | #iter. | RMSD | FRMSD f

FICP 1| 0.142 | 10.38| 0.158 | 0.225 | 0.701
FICP| 1.3| 0.069 | 3.81 | 0.170| 0.248 | 0.749
FICP| 2| 0.059 | 3.06 | 0.170| 0.303 | 0.750
FICP| 3| 0.061 | 3.17 | 0.170| 0.404 | 0.750
FICP| 4| 0062 | 3.21 | 0.171| 0.538 | 0.751
FICP| 5| 0.063 | 3.30 | 0.172| 0.717 | 0.751

Figure 2. bunny: M in blue (top leftyand D in
red (top right) with Deformnoise with p; = .75. Table 6. FICP, varying ), with D rotated 0°.
Registered using FICP (bottom left) and ICP

(bottom right).

6.5 Aligning Scanned Model Data

We aligned tha&lragonscan4° and48° apart with ICP,
6.3 Funnel of Convergence TrICP, and FICP. See longer version [14] for tables. For
most alignments both FICP and TrICP realize an alignment
We measure the radius of convergence of each algorithmwith a much lowerrMsD value than ICP, with FICP, occa-
by calculating the percentage of cases from the SQUID datasionally, noticeably outperforming TrICP. FICP is usually



Alg. A | time (s) | #iter. | RMSD | FRMSD f

FICP| 1] 0.733 | 37.23| 0.298 | 1.503 | 0.274
FICP| 1.3| 0.488 | 36.44| 0.219 | 0.563 | 0.660
FICP| 2| 0.244 | 17.00| 0.176 | 0.329 | 0.740
FICP| 3| 0.198 | 13.59| 0.178 | 0.424 | 0.749
FICP| 4| 0.194 | 13.28| 0.184 | 0.570 | 0.751
FICP| 5| 0.200 | 13.66| 0.299 | 0.875 | 0.756

Table 7. FICP, varying A, with D rotated 5°.

about as fast as ICP, and is consistently aldoutto 10x
faster than TrICP.
Figure 3 shows the alignment of the scardataligned

with the scan at8° using ICP and FICP. Notice how when

(3]

(4]

(5]

(6]

(7]

Y. Chen and G. Medioni. Object modelling by registration
of multiple range imageslm. and Vis. Comp.10:145-155,
1992.

D. Chetverikov, D. Stepanov, and P. Krsek. Robust euclidean
alignment of 3d point sets: the trimmed iterative closest point
algorithm.Im. and Vis. Comp23(3):299-309, 2005.

G. Dalley and P. Flynn. Pair-Wise Range Image Registration:
A Study of Outlier ClassificationComp. Vis. and Im. Und.
87:104-115, 2002.

N. Gelfand, L. lkemoto, S. Rusinkiewicz, and M. Levoy. Ge-
ometrically stable sampling for the icp algorithm. 3BIM,
2003.

N. Gelfand, M. J. Mitra, L. J. Guibas, and H. Pottmann. Ro-
bust global alignmentEG Symp. Geom. Prq2005.

the scans are aligned with ICP, the points in the dragon’s tail [8] W. E. Grimson, R. Kikinis, F. A. Jolesz, and P. M. Black.

are slightly misaligned, whereas with FICP, the alignment is

much better.

0° and 48° with M

Figure 3. Dragon scans at
in blue and D in red, registered using FICP
(top left) and ICP (top right). Zoomed images
of the alignment around dragon’s tail with
FICP (bot. left) and ICP (bot. right) demon-
strate the skew in the alignment due to ICP.
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