
L14: Parallel: Selection

scribe(s): Nitin Yadav, Xinran Luo

14.1 Selection
The selection problem is to find a k-th smallest element of A, and can be stated as follows:
Given an array A of n elements and an integer k, such that 1 ≤ k ≤ n, find a ∈ A, such that
|a’ ∈ A : a’ < a| ≤ k-1, and
|a’ ∈ A : a’ > a| ≥ n-k

We describe here a technique known as Accelerating Cascades, to solve the selection problem. The
Accelerating Cascades technique, in general, provides a way for taking several parallel algorithms for a
given problem and deriving out of them a parallel algorithm, which is more efficient than any of them
separately.

14.1.1 Model of Computation
The model of computation used here to solve the selection problem, is a PRAM model with concurrent
reads and concurrent writes. That is, the model consists of a number of CPUs sharing a memory unit, and
all CPUs can concurrently read and write from that memory unit.

The two quantities for this algorithm that we will measure are:
PTime: This is the maximum time that any one CPU could take for computation.
Work: This is defined as the sum of the number of operations that CPUs perform.

14.1.2 Accelerating Cascades
For devising the fast O(n)-work algorithm for the selection problem, we will use two algorithms to be run
one after the other:
(1) Algorithm 1 works in O(log n) iterations. Each iteration takes an instance of the selection problem
of size m and reduces it in O(logm) time and O(m) work to another instance of the selection problem
whose size is bounded by a fraction of m (specifically, 3m/4). The total running time of this algorithm is
O(log2 n) and its total work is O(n).
(2) Algorithm 2 is a sorting algorithm that runs in O(log n) time and O(n log n) work.

The advantage of Algorithm 1 is that it needs only O(n) work, while the advantage of Algorithm 2 is
that it requires less time. The benefit of accelerating cascades technique is that it combines these two algo-
rithms into a single algorithm that is both fast and needs only O(n) work. The main idea is to start with
Algorithm 1, but, instead of running it to completion, switch to Algorithm 2.

Algorithm 1 Algorithm 1 works in reducing iterations. Input to each iteration is an array B of size m and
an integer t, 1 ≤ t ≤ m. Given a selection problem to be solved for an array A of size n and an integer k,
we begin by passing A as the array (B = A), size as n (m = n) and integer as k (t = k). Algorithm 1 is
applied for O(log log n) rounds, which reduces the original instance of problem to a size ≤ n/ log n. An
iteration is described as follows:

1

Algorithm 14.1.1 Selection(B, m, t)
Partition B → B1, B2, B3, . . Bi, . . Bm/ logm

for i = 1 to m/ logm pardo
xi = seq −median(Bi)

x = median(x1, x2, x3, ... xm/ logm)
B → {L,M,R}, where

L = {a ∈ B : a < x}
M = {a ∈ B : a = x}
R = {a ∈ B : a > x}

if |L| > t
Do the iteration as Selection(L, t)

else if |L|+ |M | < t
Do the iteration as Selection(R, t− |L| − |M |)

else
return x

Algorithm 2 Algorithm 2 is a parallel-sorting algorithm for which,
PTime is O(logm) = O(log n), and
Work is O(m logm) = O(n)
*m = n/ log n

Complexity Analysis We first prove that r = O(log log n) rounds are sufficient to bring the size of the
problem below n/ log n. To get (3/4)rn ≤ n/ log n, we need (4/3)r ≥ log n. The smallest value of r
for which this holds is log4/3 log n, which is equivalent to O(log log n). Therefore, the Algorithm 1 takes
O(log n log logn) PTime. Amount of Work is

∑r−1
i=0 (3/4)

in = O(n). Algorithm 2 takes O(log n) PTime
and O(n) Work. So in total we take O(log n log logn) PTime and O(n) Work.

14.2 Max
The input is going to be an unsorted set A. |A| = n. We should find the largest element. So the sequential
time should be O(n). Also, the cost of PRAM and work are O(log log n) and O(n) separately.

14.2.1 Algorithm 1
The PTime is O(1), and work is O(n2). To find the max number, we need do a lot of comparisons among
elements. There are n2 possible comparisons in this operation. What we gonna do is compare all the O(n2)
pairs in parallel. For example:

A ai . . . aj

B 1 1 1 . . . 1 1

Let’s compare the ai and aj . If aj smaller than ai, aj would be lost. Then change the 1 to 0 correspond-
ingly in array B. Compare all elements like ai and aj and change the corresponding 1 to 0 in array B. After
all these comparisons, only the elements which larger than the others should be 1 in array. Naturally these
elements should be the max elements.

Since it is parallel operation, it is totally possible that after every comparison, they will modify array B
concurrently. The hardware should allow concurrently write like this. It doesn’t matter the order to write
the 0 because they should all should be written. Of course it is more easy for hardware to implement this
ans the array B can be seen as bit array.

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

14.2.2 Algorithm 2
The next algorithm PTime is O(log log n), and work is O(n log log n). What we are going to do is subdivide
A into

√
n equal sized sub-arrays. For example:

A1 = a1 a2 . . . a√n

A2 = a1+
√
n . . . a2

√
n

. . .

A
√
n = an−

√
n . . . an

Algorithm 14.2.1 Algorithm 2
for i = 1 to

√
n do

xh = Algorithm2−Max(Ah)
X = x1, . . . , x√n
return Algorithm1−Max(X)

Algorithm 2 Analysis The big O notation of time is T(n) = T(
√
n) + O(1) = O(log log n), and the work

takes W(n) =
√
n W(

√
n) + O(n) = O(n log logn). Note that for some t, n = 22

t
, then

√
n =
√
22t = 22

t−1

< − doubly geometrically decreasing.

Accelerating Cascades The steps of Accelerating Cascades are as followed:
• 1. Divide A into n/ log logn blocks A1, A2, . . . , An/ log logn each of size log logn.
• 2. Get the max element and return.

Algorithm 14.2.2 Accelerating Cascades
for i = 1 to log log n do
xh = Linear −Max(Ai)

X = x1, . . . , xn/ log logn
return x = Algorithm2−Max(X)

Step 1 takes O(log log n) time, and O(n) work.
Step 2 takes O(log log n) time, and (n/ log logn) ∗ log log n = O(n) work.

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

