
3 Random Projection and Hashing

Random Projection is another class of methods used for low-rank matrix approximation. A random pro-
jection algorithm projects datapoints from a high-dimensional space Rn onto a lower-dimensional subspace
Rr

(r ⌧ n) using a random matrix S 2 Rr⇥n. The key idea of random mapping comes from the Johnson-
Lindenstrauss lemma[7] (we will explain later in detail) that says “if points in a vector space are projected
onto a randomly selected subspace of suitably high dimension, then the distances between points are ap-
proximately preserved”.

Random projection methods are computationally efficient and sufficiently accurate in practice for dimen-
sionality reduction of high-dimensional datasets. Moreover, since complexity of many geometric algorithms
depends significantly on the dimension, applying random projection as pre-processing is a common task in
many data mining applications. As opposed to column sampling methods, that need to access data for ap-
proximating the low-rank subspace, random projections are data oblivious, as their computation involves
only a random matrix S.

3.1 Subspace Embedding
We start with the basic concepts and definitions required to understand random projections techniques.

Definition 1 (Column Space). Consider a matrix A 2 Rn⇥d
(n > d). Notice that as one ranges over

all vectors x 2 Rd, Ax ranges over all linear combinations of the columns of A and therefore defines a
d-dimensional subspace of Rn, which we refer to as the column space of A and denote it by C(A).

Definition 2 (`2-Subspace Embedding). A matrix S 2 Rr⇥n provides a subspace embedding for C(A) if
kSAxk22 = (1 ± ")kAxk22, 8x 2 Rd. Such matrix S provides a low distortion embedding, and is called a
(1± ") `2-subspace embedding.

Using an `2-subspace embedding, one can work with SA 2 Rr⇥d instead of A 2 Rn⇥d. Typically
r ⌧ n, so we are working with a smaller matrix that reduces the time/space complexity of many algorithms.
However note that definitely r needs to be larger than d if we are talking about the whole subspace Rd[11].
Note that subspace embedding does not depend on a particular basis for C(A), that means if we have a
matrix U that is an orthonormal basis for C(A), then Ux gives the same subspace as Ax. Therefore if S
is an embedding for A, it will be an embedding for U too. Let’s consider U 2 Rn⇥t, where t = rank(A).
Then kSUxk2 = (1± ")kUxk2 for all x 2 Rt, and a more general form of this is kSxk2 = (1± ")kxk2 for
all x 2 Rn[11].

There are many ways of constructing a `2-subspace embedding for a matrix, e.g. sampling rows of A
proportional to their squared norms or their leverage scores. However these embeddings are clearly data
dependent. As stated before, random projections provide oblivious subspace embeddings, which are data
independent. Below we define such embedding formally.

Definition 3 (Oblivious Subspace Embedding). Suppose ⇧ is a distribution on r ⇥ n matrices S, where r
is a function of n, d, ", and �. Suppose that with probability at least 1 � �, for any fixed n ⇥ d matrix A, a
matrix S drawn from distribution ⇧ has the property that S is a (1± ") `2-subspace embedding for A. Then
we call ⇧ an (", �) oblivious `2-subspace embedding[11].

But why is this even possible? Why would a random matrix S exists that preserve the column space of
any arbitrary matrix A?
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3.2 Johnson-Lindenstrauss Transform
In 1980, two mathematicians Johnson and Lindenstrauss proved that d datapoints in any dimension (e.g
Rn for n � d) can get embedded into roughly log d dimensional space, such that their pair-wise distances
are preserved to some extent (upto a multiplicative factor 1 ± ")[8]. More precisely, they defined a matrix
S 2 Rr⇥n as an orthogonal projection on a random r-dimensional subspace of Rn with r = O("�2

log d),
and showed that for any matrix A 2 Rn⇥d, SA preserves pair-wise distances between d datapoints in A.

Although, there are many other ways to construct a matrix S that preserve pair-wise distances, this choice
can still be considered the most intuitive geometrically. All of such matrices are called to have the Johnson-
Lindenstrauss Transform (JLT) property. Below we define this property formally.

Definition 4 (Johnson-Lindenstrauss Transform). A random matrix S 2 Rr⇥n forms a JLT (", �, d) if for
all vectors v, v0 of any subset of Rn with size d, we get kS(v � v0)k2 = (1 ± ")kv � v0k2 with probability
atleast 1� �.

JLT property can appear in dot product form too, i.e. |hSv, Sv0i � hv, v0i|  "kvkkv0k, both forms are
equivalent because

hSv, Sv0i =
�
kS(v + v0)k22 � kSvk22 � kSv0k22

�
/2

= (1± ")kv + v0k22 � (1± ")kvk22 � (1± ")kv0k22
= hv, v0i±O(")

which implies all inner products are preserved up to " by rescaling " by a constant[11].
There are many ways to construct a matrix S with JLT property. All different approaches either aim at

finding a matrix S with a small number of rows, i.e. r, or in other words small number of non-zeros, or
they aim at constructing a matrix S such that SA can be computed quickly. Below we review both group of
approaches.

3.2.1 Different Constructions for JLT
As noted before, the first JLT matrix was by Johnson and Lindenstrauss[7], where they set S =

p
n
rP 2

Rr⇥n, where P is an orthogonal projection matrix onto Rr, and r = O("�2
log d). Indyk and Motwani[6]

showed that the condition of orthogonality can be dropped, and instead they constructed S =

1p
r
P 2 Rr⇥n

where r = O(1/"2 log (d/�)) and P has entries as independent random variables with the standard normal
distribution N(0, 1). Clearly, this matrix S is much easier to generate than the orthogonal projection one[8].

However, Achlioptas[1] noted that S can be generated in a computationally simpler way. Namely, he
proved that the entries of S can be chosen as independent ±1 random variables (each attaining values +1

and �1 with probability 1/2). Another variant of his result has the entries of A attaining value 0 with
probability 2/3 and values +1 and �1 with probability 1/6 each. This latter setting allows for computing
the image Sx about 3 times faster than the former, since S is sparse, only about one third of the entries
are nonzero[8]. The underlying intuition here is that for a vector x 2 Rn whose norm is spread roughly
uniformly across its n coordinates, sampling a small number of its coordinates uniformly at random and
rescaling results in a good estimate of the `2 norm of x.

Dasgupta, Kumar,and Srlos[5] showed that it suffices for each column of S to have only O("�1polylog(d/�))
non-zeros per column. Note that if polylog(n/�) is much smaller than "�1, this is a significant improve-
ment over ⌦("�2

log (d/�)) number of non-zero entries per column achieved by previous schemes. The
O("�1polylog(d/�)) sparsity was later optimized by kane and nelson to O("�1

log (d/�)) non-zero en-
tries per column. The latter was shown to be almost tight by Nelson and Nguyen[9], who showed that
⌦("�1

log (d/�)/ log (1/")) column sparsity is required. In short, the above line of work shows that it is
possible to apply a JLT(", �, d) matrix S to a vector x in O(nnz(x)."�1. log (d/�)) time.
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A somewhat different line of work also came about in trying to speed up the basic construction. Instead
of trying to achieve a sparse matrix S, they tried to achieve an S which could be quickly applied to a vector.
The motivation was that if vector x’s mass is not well-spread, e.g., it is sparse, then sampling is a very poor
way to estimate the `2 norm of x, as typically most samples will be 0.

Ailon and Chazelle[2] came up with an ingenious extension of this idea. In order to deal with vectors x
that are not well-spread, they defined the matrix S as S = MHD, where:

• M 2 Rr⇥n is a sparse random matrix. Its entries are independent random variables, and each of them
attains value 0 with probability 1� q, and a value drawn from the normal distribution with zero mean
and variance 1/q with probability q. Here q 2 (0, 1) is a “sparsity parameter”, which can be chosen
as 1/n times a factor polylogarithmic in n.

• H 2 Rn⇥n is a Walsh matrix, it acts as a (scaled) isometry and that, given x, the product Hx can be
evaluated by O(n log n) arithmetic operations by a Fast Fourier Transform algorithm.

• D is a diagonal matrix with independent random ±1 entries.

Matrix S can be applied to a vector in O(n log n) time and to a n⇥ d matrix in O(nd log n) time. This was
further improved to O(nd log(d/" log n)) time. This construction which is often referred to as Fast Johnson
Lindenstrauss Transform(FJLT) is significantly faster than the previous O(nnz(x)"�1

log(d/�)) time for
many reasonable settings of the parameters, e.g., in a number of numerical linear algebra applications in
which 1/� can be exponentially large in d.

3.2.2 Hashing
Although there is a lower bound by[9] that states “any JLT requires ⌦("�1

log (n/�)/ log (1/")) non-zero
entries per column.”, a recent work by Clarkson and Woodruff[4] showed that it is indeed possible to achieve
a sparse `2 subspace embedding in O(nnz(A)) time. The key to bypass the lower bound is that the matrix
S 2 Rr⇥n they build is not a JLT, but is constructed based on the famous CountSkech from data stream
literature[3].

They define two hash functions h : [n] ! [r] and � : [n] ! {�1, 1}. Then for each column S:,i of S,
choose a random row h(i) 2 {1, 2, · · · , r}, and a random element of �(i) 2 {�1, 1}, and set Sh(i),i = �(i).
Every other element of that column is set to zero. Thus, S has only a single non-zero entry per column. This
construction is called “sparse embedding matrix”, has only r = O(d2/"2polylog(d/")) number of rows,
and one non-zero entry per column, therefore SA can be computed in O(nnz(A)) time.

3.3 Random Projection for Low-Rank Approximation
The Johnson Lindenstrauss Transform was first used by Sarlos[10] to speadup regression, matrix approxi-
mation and matrix multiplication. Specifically for matrix approximation, he showed projecting A onto the
low-rank subspace provided by a JLT matrix S, i.e. SA, gives a good approximation to the best rank k
subspace Ak. Below, we state his theorem without proving it.

Theorem 3.3.1. Let A 2 Rn⇥d be the input matrix, and S 2 Rr⇥n be Johnson-Lindenstrauss matrix with
iid zero-mean ±1 entries and r = O(k/"+ k log k), then with probability at least 1/2 it holds that

kA� ⇡SA(A)kF  (1 + ")kA�AkkF

This algorithm runs in two passes over A, one for computing SA and another for projecting A onto SA,
requires O(nnz(A)r + (d+ n)r2) time and O((d+ n)r2) space.
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