let f = proc(x)0
in (f +(1,+(2,+(3,+(4,+(5,6))))))

The computed 21 is never used.

What if we were /azy about computing function arguments (in case they
aren’t used)?

let f = proc(x)0
in (f +(1,2))

Manual laziness:

let f = proc(xthunk)O
in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

let f = proc(xthunk)-((xthunk), 7)
in (f proc()+(1,+(2,+(3,+(4,+(5,6))))))

By using pr oc to delay evaluation, we can avoid unnecessary
computation.

How about making the language compute function arguments lazily in all
applications?

<

J[FIe] >ie] »ix[olel

let f = proc(x)O0
in (f +(1,2))

<
(o> >xfole]
+(1,2) e
let f = proc(x)0 let f = proc(x)0
in (f +(1,2)) in (f +(1,2))
Qe >O
N
flof>le] »xlose]
[x[o] >to] >1+(1, 2) Jo]
let f = proc(x)0 let f = proc(x)-(x,1)
in (f +(1,2)) in (f +(1,2))

The result is 0.

let f = proc(x)-(x,1)
in (f +(1,2))

sx[efrlefrl+(1, 2) o)

let f = proc(x)-(x,1)
in (f +(1,2))

let f = proc(x)-(x,1)
in (f +(1,2))

let f = proc(x)-(x,1)
in (f +(1,2))

Force evaluation of thunk.

sx[efrlefrl+(1, 2) o)

let f = proc(x)-(x,1)
in (f +(1,2))

With 3 as the value of x.

let f = proc(x)-(x,1)
inlet y=7
in (f +(1,y))

Lazy expression that needs its environment

let f = proc(x)-(x,1)
in (f +(1,2))

The result is 2.

Sl [o] >{o]>Ix[- (x, 1) o]

let f = proc(x)-(x,1)
inlet y =7
in (f +(1,y))

14

16

let f = proc(x)-(x,1) let f = proc(x)-(x,1)
inlet y =7 inlet y =7
in (f +(1,y)) in (f +(1,y))

< |
f x|-(x, 1) |®
27| ylol>{7
Sx[of>{e>+(1, y) o] X +(1,y)le
let f = proc(x)-(x,1) let f = proc(x)-(x,1)
inlet y =7 inlet y=7

in (f +(1,y)) in (f +(1,y))

>O Q-

[1o >lol x| (x, 1) fo
let f = proc(x)-(x,1) let f = proc(x)-(x,1)
inlet y = +(3,4) inlet y = +(3,4)
in (f +(1,y)) in (f +(1,y))

Change binding of y to an expression.

E o >Ix- (x, 1) o Jrjel el - (x.)le
e, 4)le Ve fe] (3, 4) 1o

+(1,y)®

let f = proc(x)-(x,1) let f = proc(x)-(x,1)
inlet y = +(3,4) inlet y = +(3,4)
in (f +(1,y)) in (f +(1,y))

Added lazy binding for y.

Sx[efrlebrl+(1, y) Je

let f = proc(x)-(x,1)
inlet y = +(3,4)
in (f +(1,y))

[x[o] >le} >+(1, y) [e

let f = proc(x)-(x,1)
inlet y = +(3,4)
in (f +(1,y))

let f = proc(x)-(x,1)
inlet y = +(3,4)
in (f +(1,y))

Interpreter changes:
® Change eval - f un-r ands to create thunks.

® Change variable lookup to eval thunks.

The lazy strategy we just implemented is call-by-name.
® Advantage: unneeded arguments are not computed.
® Disadvantage: needed arguments may be computed many times.

let f = proc(x)+(x, +(x,x))
in (f +(1,+(2,+(3,+(4,+(5,6))))))

Best of both worlds: call-by-need
Evaluates each lazy expression once, then remembers the result.

® Call-by-name, call-by-need = lazy evaluation

® Call-by-value = eager evaluation

Call-by-reference can augment either

31

Interpreter changes:

® Change variable lookup to replace thunks in locations with their
values.

® Most languages are call-by-value
O C, C++, Pascal, Scheme, Java, ML, Smalltalk...

® Some provide call-by-reference
O C++, Pascal

® A few are call-by-need
© Haskell

® Practically none are call-by-name

Why don’t more languages provide lazy evaluation?

® Disadvantage: evaluation order is not obvious.

let x =0

f=..
inlet y = set x=1
z = set x=2

in{ (fyz),; x}

Even in a purely functional language, lazy and eager evaluation produce
different results.

let f = proc(x)0
in (f <loop forever>)

® Eager answer: none

® Lazy answer: 0

Why do some languages provide lazy evaluation?
® Evaluation order does not matter if the language has no set form.
® Such languages are called purely functional.

Note: call-by-reference is meaningless in a purely functional language.

® A language with set can be called imperative.

