Quiz Quiz

® Question #1: What is the value of the following expression? ® Question #2: What is the value of the following expression?

+(1,1) + proc 8

® \Wrong answer: 0. ® \Wrong answer: error.

® \Wrong answer: 42.
® Answer: Trick question! + proc 8 is not an expression.

® Answer: 2.
Quiz Quiz
® Question #3: Is the following an expression? ® Question #4: What is the value of the following expression?
addi(1, 7) addl(1, 7)
® \Wrong answer: No. ® Answer: 2 (according to our interpreter).
® Answer: Yes (according to our grammar). ® But no real language (e,g., C++) would accept add1(1, 7).

® | et'sagree to calladd1(1, 7) an jll-formed expression because
add1l should be used with only one argument.

® | et's agree to never evaluate ill-formed expressions.

Quiz Quiz
® Question #5: What is the value of the following expression? ® Question #6: Is the following a well-formed expression?
addi(1, 7) +(proc(x)x, 5)
® Answer: None - the expression is ill-formed. ® Answer: Yes.
Quiz Quiz
® Question #7: What is the value of the following expression? ® Question #8: Is the following a well-formed expression?
+(proc(x)x, 5) +(proc(x)x, 5)
® Answer: None - it produces an error: ® Answer: No.
+: expects type <number> as 1st argument,
given: (closure ((cbv-var x)) (var-exp x)
(empty-env-record)); other arguments were: 5
® | et’s agree that a pr oc expression cannot be inside a + form.

Quiz

® Question #9: Is the following a well-formed expression?
+((proc(x)x 7), 5)
® Answer: Depends on what we meant by inside in our most recent
agreement.
© Anywhere inside - No.
O Immediately inside - Yes.

® Since our intrepreter produces 12, and since that result makes sense,
let's agree on immediately inside.

Quiz

® Question #10: Is the following a well-formed expression?

+((proc(x)x true), 5)

® Answer: Yes, but we don't want it to be!

Quiz

® Question #11: Is it possible to define well-formed (as a decideable
property) so that we reject all expressions that produce errors?

® Answer: Yes, obviously: reject all expressions!

Quiz

® Question #12: Is it possible to define well-formed (as a decideable
property) so that we reject only expressions that produce errors?

® Answer: No.

+(1, if ... then 1 else proc(x)x)

® |f we always knew whether . . . produces true or false, we could solve
the halting problem.

Types Types

® Solution to our dilemma 1: int

© In the process of rejecting expressions that are certainly bad, also true : bool
reject some expressions that are good.

+(1, if (prinme? 131101) then 1 el se proc(x)x) +(1, 2)

® Overall strategy: i nt

O Assign a type to each expression.
+(1, false)
O Compute the type of a complex expression based on the types of

its subexpressions. It bool
no type
Types Types
if true then 1 else 2 X . notype
bool i ‘nt i nt
i nt proc(bool x)Xx
bojrl
if +(1,2) then 1 else 2 bool -> bool
i nt ‘
no type proc(bool x)if x then 1 else 2
bool i nt i nt
if false then 2 else false int
bool [+t bool bool -> int

no type

Types

(proc(bool x)if x then 1 else 2 true)

bool -> inﬁ bool

i nt

(proc(bool x)if x then 1 else 2 5)
bool -> i+t i nt

no type
(7 5)
i nt i nt

no type

Types

proc(int x, int y)+(x, y)

i i nt
i nt

int * int ->int

(proc(int x, int y)+(x, y) 5 6)

int * int —>int‘ i nt i nt

i nt

(proc(int x, int y)+(x, y) 5)

int * int -> int i nt

no type

New Interpreter and Checker

® Change our interpreter:

O Add types for arguments and letrec results to the grammar

® Implement a type-checker:
O Recursively assign types to subexpressions
O Check consistency at i f and application
O Treat primitives as built-in functions

+ :int * int ->int

