Interpreter

»
Src,

\ 4
o

SIrc,

SIrcy

L- >M
compiler

Y

Compiler

=

answer

SIrc,

SIrc,

L->L
compiler

Y

Our Compiler

=

answer

SIrc,

SIrc,

L->L
compiler

Y

Our Compiler

=

\ 4

&

eval - program

=

\ 4

answer

SIrc,

SIrc,

L->L
compiler

Y

Our Compiler

=

=

transl at e- program ‘

answer

SIrc,

SIrc,

L->L
compiler

Y

Our Compiler

=

»
(a-program...)

" 4

=

\ 4

answer

® Start with simply typed pr oc language

® Write t r ansl| at e- expr that traverses the program, but makes no
changes

® Add expression forms for cheaper operations

® Changetransl at e- expr to replace expensive operations with
cheaper ones

“ Lexical addresses

® Given initial t r ansl at e- expr that implements some object
transformations

~ Replace method name with index in send

~ Remove obvious cast and i nst anceof
® Your task: add other compiler transformations

~ Lexical addresses

~ Pre-compute field array size for new

~ Pre-computeinitialize index for new

O []

