
Implementing Type Checking with Classes

We used to have two records for each class:

Class declarations = abstract syntax

Class = run-time class information
flattened field and method lists

Now we’ll have three:

Class declarations = abstract syntax

Static class = check-time class information
flattened lists with types

Class = run-time class information
flattened lists

Static Class Elaboration

;; type-of-program : program -> type
(define (type-of-program pgm)
 (cases program pgm
 (a-program (c-decls exp)
 (statically-elaborate-class-decls! c-decls)
 (type-of-expression exp (empty-tenv))))))

Checking Class Declarations

Check:

Superclass exists, and no cyclic inheritance

Methods bodies ok

Use host class for type of self

Overriding method signatures are the same as in superclass

Except for initialize

class c2 extends c1
 method void m(int x, bool y)
 if y then +(2, x) else send self w()

Checking Class Declarations

Cyclic inheritance covered by requirement that classes are
ordered

(define statically-elaborate-class-decls!
 (lambda (c-decls)
 (for-each statically-elaborate-class-decl!
 c-decls)
 (for-each check-class-method-bodies!
 c-decls)))

1-5

Checking Class Declarations: Methods

(define (check-class-method-bodies! c-decl)
 ...
 (for-each
 (lambda (m-decl)
 (typecheck-method-decl!
 m-decl
 class-name super-name
 field-ids field-tys))
 m-decls))

Checking Class Declarations: Methods

(define (typecheck-method-decl! m-decl self-name
 super-name field-ids field-types)
 (cases method-decl m-decl
 (a-methd-decl (res-texp name id-texps ids body)
 (let* ((id-tys (expand-ty-exprs id-texps))
 (tenv
 (extend-tenv
 (cons ’%super (cons ’self ids))
 (cons (class-type super-name)
 (cons (class-type self-name)
 id-tys))
 (extend-tenv
 field-ids field-tys (empty-tenv))))
 (body-ty (type-of-expr body tenv)))
 (check-is-subtype!
 body-ty (expand-ty-expr res-texp) m-decl)))
 (an-abstract-method-decl (...) #t)))

Checking Object Creation

Check:

Class exists, and is not abstract

Class has an initialize method

initialize’s argument types match the operand types

class c1 extends object
 method void initialize(int x, bool y)
 ...

new c1(1, false)

Checking Object Creation

(define (type-of-new-obj-exp rand-types)
 (cases static-class (static-lookup class-name)
 (a-static-class (...)
 (cases abstraction-specifier specifier
 (abstract-specifier ()
 (eopl:error ...))
 (concrete-specifier ()
 (type-of-method-app-exp
 #t ;; means from ‘new’
 (class-type class-name)
 ’initialize
 rand-types)
 ;; Result:
 (class-type class-name))))))

6-9

Checking Method Calls

Check:

Receiver expression is an object

Method is in the object-type’s class

Except initialize...

Method’s argument types match the operand types

class c1 extends object
 method void initialize() ...
 method void m(int x, bool y)
 ...
let o1 = new c1()
in send o1 m(1, false)

Checking Method Calls

(define (type-of-method-app-exp for-new? obj-type
 msg rand-types)
 (if (and (eq? msg ’initialize) (not for-new?))
 (eopl:error ...))
 (cases type obj-type
 (class-type (class-name)
 (type-of-method-app-or-super-call
 #f class-name msg rand-types))
 (else
 (eopl:error ...))))

Checking Super Calls

Check:

Same as method calls, but simpler:

No check for initialize

No possibility of a non-object type

(define (type-of-super-call-exp super-name
 msg rand-types)
 (type-of-method-app-or-super-call
 #t super-name msg rand-types)

Checking Method Application

(define (type-of-method-app-or-super-call
 super-call? host-name msg rand-tys)
 (let ((method (statically-lookup-method msg
 (static-class->methods
 (static-lookup host-name)))))
 (if (static-method? method)
 (cases static-method method
 (a-static-method (method-name spec
 method-ty super-name)
 (let ((result-ty (type-of-app
 method-ty rand-tys)))
 (if super-call?
 (cases abstraction-specifier spec
 (concrete-spec () result-ty)
 (abstract-spec () (error ...)))
 result-ty))))
 (eopl:error ...))))

10-13

Checking Casts

Check:

Operand has an object type (for any class)

Target class exists

Class for operand and target must be comparable

Otherwise, cast cannot possibly succeed

class c1 extends object ...
class c2 extends object ...
cast new c1() c2

Checking Casts

(define (type-of-cast-exp ty name2 exp)
 (cases type ty
 (class-type (name1)
 (if (or (statically-is-subclass? name1 name2)
 (statically-is-subclass? name2 name1))
 (class-type name2)
 (eopl:error ...)))
 (else
 (eopl:error ...)))))

Checking Other Expressions

Other expression forms checked as before

check-is-subtype! often used instead of
check-equal-type!

Compiling with Classes (Optionally)

Recall that a compiler takes a program in language A and
produces a program in language B

To make compilation optional, a common trick is to set B = A,
with the expectation that source programs use only a subset
of A

14-18

Grammar with Compiler-target Cases

<expr> ::= <num>
::= <id>
::= <prim>(<expr>*(,))
...
::= send <expr> <id>(<expr>*(,))
...
::= <<num>,<num>>
::= send <expr> <<num>>(<expr>*(,))

Grammar with Compiler-target Cases

(define the-grammar
 ’((program ((arbno class-decl) expression)
 a-program)

 (expression (number) lit-exp)
 (expression ("true") true-exp)
 ...
 (expression ("lexvar" number number)
 lexvar-exp)
 (expression
 ("imethod" expression number
 (separated-list expression ","))
 apply-method-indexed-exp)))

Interpreter with Compiler-target Cases

(define (eval-expression exp env)
 (cases expression exp
 (lit-exp (datum) datum)
 (var-exp (id) (apply-env env id))
 ...
 (lexvar-exp (depth pos)
 (apply-env-lexvar env depth pos))
 (apply-method-indexed-exp (obj-exp pos rands)
 (let ((obj (eval-expression obj-exp env))
 (args (eval-rands rands env))
 (c-name (object->class-name obj)))
 (apply-method
 (list-ref
 (class->methods (lookup-class c-name))
 pos)
 ...)))))

HW 10

Homework 10:

Replace variables with lexical addresses

Attach field count to new

Index for initialize for new

Index for class, instead of finding by name

Change super to use class and method index

... and more, if you’d like

19-23

