Goals
e Define-datatype
e Concrete Syntax vs. Abstract Syntax

e Practice with recursive programs

A-exp = number
| +(A-exp, A-exp)
| -(A-exp, A-exp)
| *(A-exp, A-exp)
| /(A-exp, A-exp)

Alternate concrete syntax for arithmetic ex-
pressions
-(*(+(1, 2), 4),

/(64, 2))

A-exp = number
| A-exp 4+ A-exp
| A-exp - A-exp
| A-exp * A-exp
| A-exp / A-exp
| (A-exp)

Concrete syntax of arithmetic expressions
(14+2)*x4-64/2

Concrete syntax of a language specifies exactly
how to write down an expression of that lan-
guage.

To write a program that operates on a lan-
guage we need to represent expressions in that
language as computer data.

Such a representation is called an abstract syn-
tax.



Since programming languages are usually tree-
like, we call the internal representation of an
expression an Abstract Syntax Tree (AST)

ASIDE:

A compiler course usually spends a consider-
able time on parsing, the translation from con-
crete to abstract syntax.

Thursday you will see a tool to parse a lan-
guage like our second A-exp example.

A-expAST = number
| (list "+ A-expAST A-expAST)
| (list '- A-expAST A-expAST)
| (list "* A-expAST A-expAST)
| (list '/ A-expAST A-expAST)

An abstract syntax for A-exp.
(list '- (list "* (list '+ 1 2) 4)
(list '/ 64 2))
The correspondence between concrete and ab-
stract syntax is not always so obvious.

Let's do something simple.
Write a program to count the number of +
operators in an A-exp



Define-datatype to the rescue.

(define-datatype a-exp a-exp?
Our abstract syntax is lacking: [num (val number?)]
[plus (lhs a-exp?)
(rhs a-exp?)]
[minus (lhs a-exp?)
(rhs a-exp?)]
e No nmemonic clues as to what each part [times (Ihs a-exp?)
of the tree represents. (rhs a-exp?)]
[divide (Ihs a-exp?)
(rhs a-exp?)])

e Lots of car cdr cadar caddr caddar, etc...

e Not much error checking

(minus (times (plus (num 1) (num 2))
(num 4))
(divide (num 64) (num 2)))

Define-datatype has a counterpart: cases

(define (count+ exp)
(num 'a) = error (cases a-exp exp
(plus 3 4) = error [num (n) 0]
[plus (I r) (+ 1 (count+4 1) (count+ r))]
[minus (I r) (4 (count+4 I) (count+ r))]
[times (I r) (4+ (count+ I) (count4 r))]
[divide (I r) (4+ (count+ I) (count+ r))]

[else (error 'count+ “given an unknown a-exp’)]

11 12



Define-datatype provides a mechanism for defin-
ing and building trees (including ASTSs)

Cases provides a mechanism for extracting in-
formation from a define-datatype tree

General form of define-datatype and cases

13 14

This is how we might write a BNF for a-exp
as defined above (with 2 extensions)

va-exp = (num number)

(plus va-exp va-exp)
(minus va-exp va-exp)
(times va-exp va-exp)
(divide va-exp va-exp)
(pow va-exp va-exp)
(var symbol)

Let's build an evaluator for arithmatic expres-
sions

15 16



Here is the extended define-dataype:

(define-datatype a-exp a-exp?
[num (val number?)]
[plus (lhs a-exp?)

(rhs a-exp?)]
[minus (lhs a-exp?)
(rhs a-exp?)]
[times (Ihs a-exp?)
(rhs a-exp?)]
[divide (Ihs a-exp?)
(rhs a-exp?)]
[pow (lhs a-exp?)
(rhs a-exp?)]
[var (name symbol?)])

How does this change affect the evaluator?

We need to add a case to handle pow and

a case to handle var.
17



